

CivilBay Concrete Anchorage Design v1.2.7

User Manual

Dongxiao Wu P. Eng. (Alberta, Canada)

Web: www.civilbay.com

Tel: 1-403-5120568

TABLE OF CONTENTS

1.0 END USER LICENSE AGREEMENT	3
2.0 QUICK START.....	5
3.0 REVISION HISTORY	8
4.0 DESIGN EXAMPLES.....	9
Example 01: Anchor Bolt + Anchor Reinf + Tension & Shear + ACI 318-08 Code.....	9
Example 02: Anchor Bolt + Anchor Reinf + Tension & Shear + CSA A23.3-04 Code.....	16
Example 03: Anchor Bolt + Anchor Reinf + Tension Shear & Moment + ACI 318-08 Code.....	23
Example 04: Anchor Bolt + Anchor Reinf + Tension Shear & Moment + CSA A23.3-04 Code	31
Example 11: Anchor Bolt + No Anchor Reinf + Tension & Shear + ACI 318-08 Code	39
Example 12: Anchor Bolt + No Anchor Reinf + Tension & Shear + CSA A23.3-04 Code	47
Example 13: Anchor Bolt + No Anchor Reinf + Tension Shear & Moment + ACI 318-08 Code	55
Example 14: Anchor Bolt + No Anchor Reinf + Tension Shear & Moment + CSA A23.3-04 Code	63
Example 21: Welded Stud + Anchor Reinf + Tension & Shear + ACI 318-08 Code.....	71
Example 23: Welded Stud + Anchor Reinf + Tension Shear & Moment + ACI 318-08 Code.....	85
Example 24: Welded Stud + Anchor Reinf + Tension Shear & Moment + CSA A23.3-04 Code	93
Example 31: Welded Stud + No Anchor Reinf + Tension & Shear + ACI 318-08 Code	101
Example 32: Welded Stud + No Anchor Reinf + Tension & Shear + CSA A23.3-04 Code	108
Example 33: Welded Stud + No Anchor Reinf + Tension Shear & Moment + ACI 318-08 Code	115
Example 34: Welded Stud + No Anchor Reinf + Tension Shear & Moment + CSA A23.3-04 Code	122
Example 41: Shear Lug Design ACI 349-06 Code	129
Example 42: Shear Lug Design ACI 349M-06 Code	133
Example 51: Base Plate (LRFD) & Anchor Bolt (ACI 318-08) Design With Anchor Reinforcement	137
Example 52: Base Plate (S16-09) & Anchor Bolt (CSA A23.3-04) Design With Anchor Reinforcement	147
5.0 REFERENCES.....	157

1.0 END USER LICENSE AGREEMENT**1.1 General**

This End-User License Agreement ("EULA") is a legal agreement between Don Structural Ltd. ("AUTHOR") and you, the user of the licensed software ("SOFTWARE") that accompanies this EULA. You agree to be bound by the terms of this EULA by downloading and/or using the SOFTWARE. If you do not agree to all of the terms of this EULA, please do not download, install and use this SOFTWARE on your computer.

1.2 License Grant

The SOFTWARE is licensed, not sold, to you by AUTHOR for use only under the terms of this License, and AUTHOR reserves any rights not expressly granted to you.

1.2.1 License Types

AUTHOR provides the following types of licenses - Evaluation License (Trial Mode) and Single User License.

1.2.2 Evaluation License

The Evaluation License only applies when you obtain a copy of the SOFTWARE for the first time. You may use the Evaluation (Trial) version of the SOFTWARE for a 14-day evaluation period. After the evaluation period, if you want to continue to use the SOFTWARE you must purchase the license from AUTHOR.

1.2.3 Single User License

The Single User License only applies after you have purchased the Single User License from AUTHOR.

The Single User License authorizes you to use one copy of the SOFTWARE on a single computer for one year period starting from the date you obtain the license. After one year, if you want to continue to use the SOFTWARE you must renew the license by paying an annual maintenance fee. The annual renewal maintenance fee is 40% of current Single User License price.

1.3 Software Deliverables

The licensed SOFTWARE is delivered as Excel spreadsheets compiled as EXE applications. AUTHOR does not provide uncompiled or unprotected native Excel files.

You can download all SOFTWARE including user manual in electronic file format from AUTHOR provided website. The AUTHOR does not provide any hard copy or burned CD for the licensed SOFTWARE.

1.4 Software Upgrading

The Single User License authorizes you to use one copy of the SOFTWARE on a single computer for one year period starting from the date you obtain the license. During this one year period you can get all available SOFTWARE upgrades without paying additional maintenance fee. After one year, if you want to continue to use the SOFTWARE, you must renew the license by paying an annual maintenance fee. The annual renewal maintenance fee is 40% of current Single User License price. After paying the annual maintenance fee, you can continue to get all available SOFTWARE upgrades free of charge.

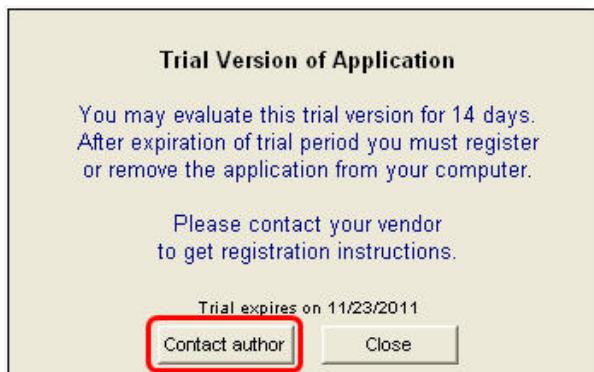
1.5 No Refund

No refund is given at any time, unless authorized by the AUTHOR under unexpected circumstances.

Please contact the AUTHOR to see if you qualify for a refund.

1.6 Disclaimer of Warranty and Liability

Licensee of this SOFTWARE acknowledges that Don Structural Ltd., CivilBay.com, its employees and affiliates are not and cannot be responsible for either the accuracy or adequacy of the output produced by the licensed SOFTWARE. Furthermore, Don Structural Ltd., CivilBay.com, its employees and affiliates neither make any warranty expressed nor implied with respect to the correctness of the output prepared by the licensed SOFTWARE. Although Don Structural Ltd. and CivilBay.com have endeavored to produce the licensed SOFTWARE error free the SOFTWARE are not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, Don Structural Ltd., CivilBay.com, its employees and affiliates disclaim all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the licensed SOFTWARE.


This disclaimer of warranty constitutes an essential part of this License.

Copyright 2010-2012, Don Structural Ltd. and CivilBay.com. All rights reserved

2.0 QUICK START

2.1 Software Installation

- After downloading the ZIP file the user can unzip the file and save it to user's computer.
- The extracted files are in two folders, one US Code folder, and another one Canadian Code folder. Each folder contains seven compiled Excel files in EXE format.
- User can double click these EXE files and open them just as normal Excel files.
- The 14-day trial will start the same date when user tries any of these compiled Excel files.
- During trial period the software provides full functions except that the user can not save the file, but the user can print the file to printer and get a hard copy of the calculation for verification.
- The trial period will expire after 14 days. Any time during or after trial period the user can go to www.civilbay.com to purchase a license.
- After placing the order, the user shall send his/her Computer ID to author for licensing. The user can get his/her Computer ID by clicking on Contact author button on the pop-up dialog box.

2.2 Software Licensing

- After receiving user's Computer ID, the author will send the user a license key to unlock the trial version.
- The user shall save the license key file at the same folder where the compiled Excel files locate.
- The user can copy, save and rename any of the compiled Excel files and use them same as the normal Excel files.
- All the compiled Excel files will fully function as long as they can find the license key in the same folder.
- The license key is created using the Computer ID sent by the user and it only works on that computer where the Computer ID is retrieved from.

2.3 Concrete Anchorage Design v1.2.7 Modules

- **01 US Code ACI 318-08**

02-01-01 Headed Anchor Bolt ACI 318-08.exe

→ Headed anchor bolt design using ACI 318-08 code

02-01-01 Headed Welded Stud ACI 318-08.exe

→ Headed welded stud design using ACI 318-08 code

02-02-01 Base Plate (LRFD) & Anchor Bolt (ACI 318-08) Design With Anchor Reinf - PIN.exe

→ One input to design both base plate and anchor bolt using ACI 318-08 code

In anchor bolt design Anchor Reinforcement is used to replace concrete tension/shear breakout strength.

In base plate design the column base is assumed to be PIN connection and doesn't have moment.

02-02-02 Base Plate (LRFD) & Anchor Bolt (ACI 318-08) Design No Anchor Reinf - PIN.exe

→ One input to design both base plate and anchor bolt using ACI 318-08 code

In anchor bolt design NO Anchor Reinforcement is used.

In base plate design the column base is assumed to be PIN connection and doesn't have moment.

02-02-03 Base Plate (LRFD) & Anchor Bolt (ACI 318-08) Design With Anchor Reinf - MC.exe

→ One input to design both base plate and anchor bolt using ACI 318-08 code

In anchor bolt design Anchor Reinforcement is used to replace concrete tension/shear breakout strength.

In base plate design the column base is assumed to be Moment connection and carries moment.

02-02-04 Base Plate (LRFD) & Anchor Bolt (ACI 318-08) Design No Anchor Reinf - MC.exe

→ One input to design both base plate and anchor bolt using ACI 318-08 code

In anchor bolt design NO Anchor Reinforcement is used.

In base plate design the column base is assumed to be Moment connection and carries moment.

02-03-01 Shear Key ACI 349-06.exe

→ Shear lug design using ACI 349-06 code

- **02 US Code ACI318M-08 SI Unit**

02-01-03 Headed Anchor Bolt ACI 318M-08 SI Unit.exe

→ Headed anchor bolt design using ACI 318M-08 code in SI metric unit

02-01-03 Headed Welded Stud ACI 318M-08 SI Unit.exe

→ Headed welded stud design using ACI 318M-08 code in SI metric unit

- **03 Canadian Code**

02-01-02 Headed Anchor Bolt CSA A23.3-04.exe

→ Headed anchor bolt design using CSA A23.3-04 code

02-01-02 Headed Welded Stud CSA A23.3-04.exe

→ Headed welded stud design using CSA A23.3-04 code

02-02-05 Base Plate & Anchor Bolt (CSA A23.3-04) Design With Anchor Reinf - PIN.exe

→ One input to design both base plate and anchor bolt using CSA A23.3-04 code

 In anchor bolt design Anchor Reinforcement is used to replace concrete tension/shear breakout strength.

 In base plate design the column base is assumed to be PIN connection and doesn't have moment.

02-02-06 Base Plate & Anchor Bolt (CSA A23.3-04) Design No Anchor Reinf - PIN.exe

→ One input to design both base plate and anchor bolt using CSA A23.3-04 code

 In anchor bolt design NO Anchor Reinforcement is used.

 In base plate design the column base is assumed to be PIN connection and doesn't have moment.

02-02-07 Base Plate & Anchor Bolt (CSA A23.3-04) Design With Anchor Reinf - MC.exe

→ One input to design both base plate and anchor bolt using CSA A23.3-04 code

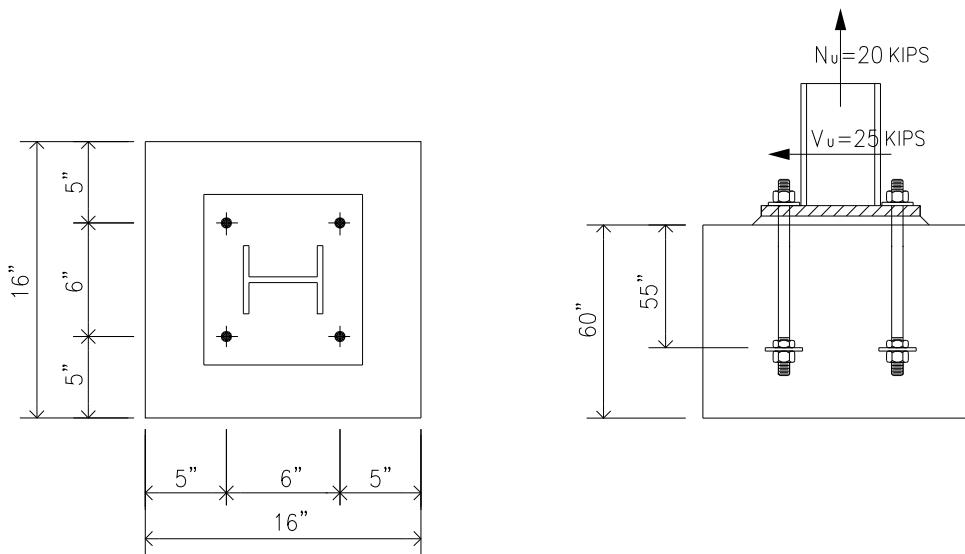
 In anchor bolt design Anchor Reinforcement is used to replace concrete tension/shear breakout strength.

 In base plate design the column base is assumed to be Moment connection and carries moment.

02-02-08 Base Plate & Anchor Bolt (CSA A23.3-04) Design No Anchor Reinf - MC.exe

→ One input to design both base plate and anchor bolt using CSA A23.3-04 code

 In anchor bolt design NO Anchor Reinforcement is used.


 In base plate design the column base is assumed to be Moment connection and carries moment.

02-03-02 Shear Key ACI 349M-06.exe

→ Shear lug design using ACI 349M-06 code (metric unit)

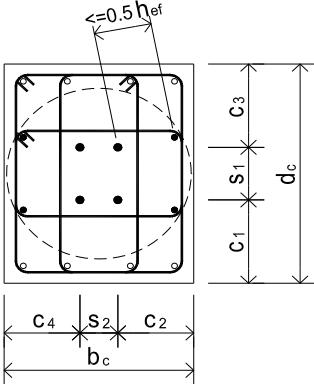
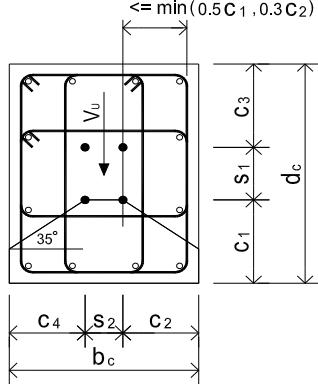
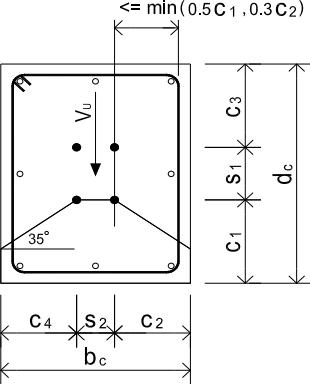
3.0 REVISION HISTORY

Date	Version	Revision Details
2011-12-30	1.2.7	<ul style="list-style-type: none">▪ Bug fixed in 3 edges h_{ef} adjustment routine as per ACI 318-08 D.5.2.3▪ Bug fixed in 3 edges c_{a1} adjustment routine as per ACI 318-08 D.6.2.4▪ User now has the option of defining different rebar yield strength for vertical and horizontal anchor reinforcement▪ User now has the option to set uncracked concrete for increased Ψ value as per ACI 318-08 D.5.2.6, D5.3.6 and D.6.2.7▪ Anchor bolt and anchor stud design as per ACI 318M-08 in SI metric unit is added
2011-12-22	1.2.5	Spreadsheet running speed is greatly improved and the latency between data entries is eliminated. The spreadsheet now runs the same speed as native Excel file.
2011-12-16	1.2.1	User now can select 180 degree hook or hairpin as vertical tensile anchor reinforcement top anchorage option and reduce the required anchor bolt embedment depth h_{ef} In previous versions the vertical tensile anchor reinforcement top anchorage can be only straight bar. In order to provide enough development length on both sides of the concrete breakout failure plane, the anchor bolt embedment depth h_{ef} has to be very deep to provide enough straight bar development length l_d . if 180 degree hook or hairpin is used, the required development length l_{dh} is much less compared to l_d and thus reduce the required anchor bolt embedment depth h_{ef}
2011-12-12	1.2.0	Bug in anchor bolt side face blowout check fixed
2011-12-09	1.0.1	Bug in anchor bolt side face blowout check fixed
2011-11-12	1.0.0	First released

4.0 DESIGN EXAMPLES**Example 01: Anchor Bolt + Anchor Reinfnt + Tension & Shear + ACI 318-08 Code** $N_u = 20$ kips (Tension)Concrete $f_c' = 4$ ksiPedestal size $16'' \times 16''$

Anchor bolt F1554 Grade 36 1.0" dia

Seismic design category $\geq C$




Anchor reinforcement

 $V_u = 25$ kipsRebar $f_y = 60$ ksi

Hex Head

 $h_{ef} = 55''$ $h_a = 60''$ Tension \rightarrow 8-No 8 ver. barShear \rightarrow 2-layer, 4-leg No 4 hor. bar

Provide built-up grout pad

ANCHOR BOLT DESIGN Combined Tension and Shear			
Anchor bolt design based on		Code Abbreviation	
ACI 318-08 Building Code Requirements for Structural Concrete and Commentary Appendix D		ACI 318-08	
PIP STE05121 Anchor Bolt Design Guide-2006		PIP STE05121	
Assumptions		Code Reference	
1. Concrete is cracked		ACI 318-08	
2. Condition A - supplementary reinforcement is provided		D.4.4 (c)	
3. Load combinations shall be as per ACI 318-08 Chapter 9 or ASCE 7-05 Chapter 2		D.4.4	
4. Anchor reinf strength is used to replace concrete tension / shear breakout strength as per ACI318-08 Appendix D clause D.5.2.9 and D.6.2.9		D.5.2.9 & D.6.2.9	
5. For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective			
6. Strut-and-Tie model is used to anlyze the shear transfer and to design the required tie reinf			
7. Anchor bolt washer shall be tack welded to base plate for all anchor bolts to transfer shear		AISC Design Guide 1 section 3.5.3	
Anchor Bolt Data			
set $N_u = 0$ if it's compression			
Factored tension for design	$N_u = 20.0$ [kips]	= 89.0 [kN]	
Factored shear	$V_u = 25.0$ [kips]	= 111.2 [kN]	
Factored shear for design	$V_u = 25.0$ [kips]	$V_u = 0$ if shear key is provided	
Concrete strength	$f_c = 4.0$ [ksi]	= 27.6 [MPa]	
Anchor bolt material	= F1554 Grade 36		
Anchor tensile strength	$f_{uta} = 58$ [ksi]	= 400 [MPa]	ACI 318-08
Anchor is ductile steel element			
Anchor bolt diameter	$d_a = 1$ [in]	= 25.4 [mm]	D.1
Bolt sleeve diameter	$d_s = 3.0$ [in]		PIP STE05121
Bolt sleeve height	$h_s = 10.0$ [in]		Page A -1 Table 1
min required			
Anchor bolt embedment depth	$h_{ef} = 55.0$ [in]	12.0	OK
Pedestal height	$h = 60.0$ [in]	58.0	OK
Pedestal width	$b_c = 16.0$ [in]		
Pedestal depth	$d_c = 16.0$ [in]		
Ver. Reinf For Tension		Hor. Ties For Shear - 4 Legs	
		Hor. Ties For Shear - 2 Legs	

					2 of 6
Bolt edge distance c_1	$c_1 = 5.0$	[in]	4.5	OK	Code Reference
Bolt edge distance c_2	$c_2 = 5.0$	[in]	4.5	OK	PIP STE05121
Bolt edge distance c_3	$c_3 = 5.0$	[in]	4.5	OK	Page A -1 Table 1
Bolt edge distance c_4	$c_4 = 5.0$	[in]	4.5	OK	
Outermost bolt line spacing s_1	$s_1 = 6.0$	[in]	4.0	OK	Page A -1 Table 1
Outermost bolt line spacing s_2	$s_2 = 6.0$	[in]	4.0	OK	
To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost anchor's centerline. In this design $0.5h_{ef}$ value is limited to 8 in.					RD.5.2.9
$0.5h_{ef} = 8.0$ [in]					
No of ver. rebar that are effective for resisting anchor tension			$n_v = 8$		
Ver. bar size No.	8	: 1.000 [in] dia	single bar area $A_s = 0.79$ [in ²]		
To be considered effective for resisting anchor shear, hor. reinf shall be located within min($0.5c_1, 0.3c_2$) from the outmost anchor's centerline			$\min(0.5c_1, 0.3c_2) = 1.5$ [in]	RD.6.2.9	
No of tie <u>leg</u> that are effective to resist anchor shear			$n_{leg} = 4$?		
No of tie <u>layer</u> that are effective to resist anchor shear			$n_{lay} = 2$?		
Hor. tie bar size No.	4	: 0.500 [in] dia	single bar area $A_s = 0.20$ [in ²]		
For anchor reinf shear breakout strength calc			100% hor. tie bars develop full yield strength		
suggest					
Rebar yield strength	$f_y = 60$ [ksi]	60	= 414	[MPa]	
No of bolt carrying tension	$n_t = 4$				
No of bolt carrying shear	$n_s = 4$				
For side-face blowout check use					
No of bolt along width edge	$n_{bw} = 2$				
No of bolt along depth edge	$n_{bd} = 2$				
Anchor head type			= Hex		
Anchor effective cross sect area	$A_{se} = 0.606$	[in ²]			
Bearing area of head	$A_{brg} = 1.163$	[in ²]		Bolt No Input for Side-Face Blowout Check Use	
Bolt 1/8" (3mm) corrosion allowance	= No	?			
Provide shear key ?	= No	?		ACI 318-08	
Seismic design category >= C	= Yes	?		D.3.3.3	
Provide built-up grout pad ?	= Yes	?		D.6.1.3	
Strength reduction factors					
Anchor reinforcement	$\phi_s = 0.75$			D.5.2.9 & D.6.2.9	
Anchor rod - ductile steel	$\phi_{t,s} = 0.75$		$\phi_{v,s} = 0.65$	D.4.4(a)	
Concrete - condition A	$\phi_{t,c} = 0.75$		$\phi_{v,c} = 0.75$	D.4.4(c)	

CONCLUSION

Abchor Rod Embedment, Spacing and Edge Distance

Code Reference

OK ACI 318-08

Min Rquired Anchor Reinft. Development Length

ratio = 0.25

OK 12.2.1

Overallratio = **0.70**

OK

Tension

Anchor Rod Tensile Resistance

ratio = 0.19

OK

Anchor Reinft Tensile Breakout Resistance

ratio = 0.09

OK

Anchor Pullout Resistance

ratio = 0.26

OK

Side Blowout Resistance

ratio = 0.27

OK

Shear

Anchor Rod Shear Resistance

ratio = 0.57

OK

Anchor Reinft Shear Breakout Resistance

Strut Bearing Strength

ratio = 0.59

OK

Tie Reinforcement

ratio = 0.46

OK

Conc. Pryout Not Govern When $h_{ef} \geq 12d_a$

OK

Tension Shear Interaction

Tension Shear Interaction

ratio = 0.70

OK

Ductility

Tension Non-ductile

Shear Ductile

ACI 318-08

Seismic Design Requirement

NG D.3.3.4

SDC>= C, ACI318-08 D.3.3.5 or D.3.3.6 must be satisfied for non-ductile design

CACULATION

ACI 318-08

Anchor Rod Tensile $\phi_{t,s} N_{sa} = \phi_{t,s} n_t A_{se} f_{uta}$

= 105.4

[kips] D.5.1.2 (D-3)

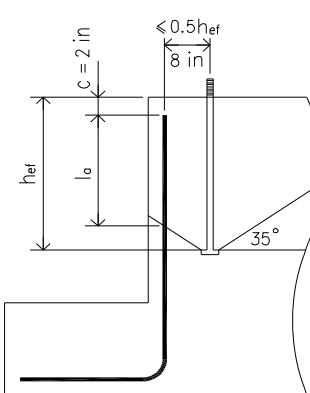
Resistance

ratio = 0.19

> N_u

OK

Anchor Reinft Tensile Breakout Resistance


Min tension development length

 l_d =

= 47.4

[in] 12.2.1, 12.2.2, 12.2.4

for ver. #8 bar

= 47.4

[in]

12.2.1

Actual development length

 $l_a = h_{ef} - c$ (2 in) - 8 in $\times \tan 35^\circ$

= 47.4

[in]

OK 12.2.1

Seismic design strength reduction $N_{rb} = \phi_s \times f_y \times n_v \times A_s \times (l_a / l_d, \text{ if } l_a < l_d)$

= 284.2

[kips] 12.2.5

= $x 0.75$ applicable

= 213.1

[kips] D.3.3.3

ratio = 0.09

> N_u

OK

Code Reference

ACI 318-08

Anchor Pullout Resistance

Single bolt pullout resistance	$N_p = 8 A_{brg} f_c'$	= 37.2	[kips]	D.5.3.4 (D-15)
	$N_{cpr} = \phi_{t,c} N_{pn} = \phi_{t,c} n_t \Psi_{c,p} N_p$	= 104.2	[kips]	D.5.3.1 (D-14)
Seismic design strength reduction	= $x 0.75$ applicable	= 78.2	[kips]	D.3.3.3
	ratio = 0.26	> N_u	OK	
	$\Psi_{c,p} = 1$ for cracked conc			D.5.3.6
	$\phi_{t,c} = 0.70$ pullout strength is always Condition B			D.4.4(c)

Side Blowout Resistance

Failure Along Pedestal Width Edge

Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal width edge	$N_{buw} = N_u \times n_{bw} / n_t$	= 10.0	[kips]	RD.5.4.2
	$c = \min(c_1, c_3)$	= 5.0	[in]	
Check if side blowout applicable	$h_{ef} = 55.0$ [in]			D.5.4.1
	> 2.5c	side bowout is applicable		
Check if edge anchors work as a group or work individually	$s_{22} = 6.0$ [in]	$s = s_2 = 6.0$	[in]	D.5.4.2
Single anchor SB resistance	$\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c}$	= 40.9	[kips]	D.5.4.1 (D-17)
Multiple anchors SB resistance	$\phi_{t,c} N_{sbg,w} =$			
work as a group - applicable	= $(1+s/6c) \times \phi_{t,c} N_{sb}$	= 49.1	[kips]	D.5.4.2 (D-18)
work individually - not applicable	= $n_{bw} \times \phi_{t,c} N_{sb} \times [1+(c_2 \text{ or } c_4)/c] / 4$	= 0.0	[kips]	D.5.4.1
Seismic design strength reduction	= $x 0.75$ applicable	= 36.8	[kips]	D.3.3.3
	ratio = 0.27	> N_{buw}	OK	

Failure Along Pedestal Depth Edge

Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal depth edge	$N_{bd} = N_u \times n_{bd} / n_t$	= 10.0	[kips]	RD.5.4.2
	$c = \min(c_2, c_4)$	= 5.0	[in]	
Check if side blowout applicable	$h_{ef} = 55.0$ [in]			D.5.4.1
	> 2.5c	side bowout is applicable		
Check if edge anchors work as a group or work individually	$s_{11} = 6.0$ [in]	$s = s_1 = 6.0$	[in]	D.5.4.2
Single anchor SB resistance	$\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c}$	= 40.9	[kips]	D.5.4.1 (D-17)
Multiple anchors SB resistance	$\phi_{t,c} N_{sbg,d} =$			
work as a group - applicable	= $(1+s/6c) \times \phi_{t,c} N_{sb}$	= 49.1	[kips]	D.5.4.2 (D-18)
work individually - not applicable	= $n_{bd} \times \phi_{t,c} N_{sb} \times [1+(c_1 \text{ or } c_3)/c] / 4$	= 0.0	[kips]	D.5.4.1
Seismic design strength reduction	= $x 0.75$ applicable	= 36.8	[kips]	D.3.3.3
	ratio = 0.27	> N_{bd}	OK	

$$\phi_{t,c} N_{sbg} = \phi_{t,c} \min\left(\frac{N_{sbg,w}}{n_{bw}}, \frac{N_{sbg,d}}{n_{bd}} n_t\right) = 73.7 \text{ [kips]}$$

$$\text{Govern Tensile Resistance} \quad N_r = \phi_{t,c} \min(N_s, N_{rb}, N_{cp}, N_{sbg}) = 73.7 \text{ [kips]}$$

Tie Reinforcement

Code Reference

- * For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
- * For enclosed tie, at hook location the tie cannot develop full yield strength f_y . Use the pullout resistance in tension of a single hooked bolt as per ACI318-08 Eq. (D-16) as the max force can be developed at hook T_h
- * Assume 100% of hor. tie bars can develop full yield strength.

Total number of hor tie bar $n = n_{leg} (\text{leg}) \times n_{lay} (\text{layer})$ = 8

ACI 318-08

Pull out resistance at hook $T_h = \phi_{t,c} 0.9 f_c' e_h d_a$ = 3.0 [kips] D.5.3.5 (D-16)
 $e_h = 4.5 d_b$ = 2.250 [in]

Single tie bar tension resistance $T_r = \phi_s \times f_y \times A_s$ = 9.0 [kips]

Total tie bar tension resistance $V_{rb} = 1.0 \times n \times T_r$ = 72.0 [kips]

Seismic design strength reduction ratio = 0.46 = 54.0 [kips] D.3.3.3

OK

Conc. Pryout Shear Resistance

The prayout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with $h_{ef} \geq 12d_a$, the prayout failure will not govern

$12d_a = 12.0$ [in] $h_{ef} = 55.0$ [in]
 $> 12d_a$ OK

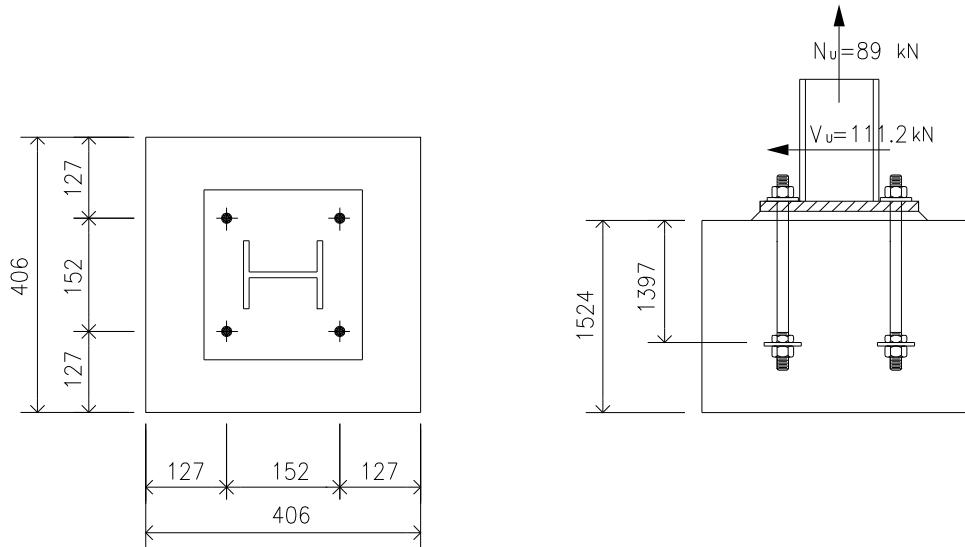
Govern Shear Resistance $V_r = \min (\phi_{v,s} V_{sa}, V_{rb})$ = 43.9 [kips]

Tension Shear Interaction

Check if $N_u > 0.2\phi N_n$ and $V_u > 0.2\phi V_n$ Yes D.7.1 & D.7.2
 $N_u / \phi N_n + V_u / \phi V_n$ = 0.84 D.7.3 (D-32)
ratio = 0.70 < 1.2 OK

Ductility Tension

$\phi_{t,s} N_{sa} = 105.4$ [kips]
 $> \min [N_{rb}, \phi_{t,c} (N_{pn}, N_{sb})]$ = 73.7 [kips]


Non-ductile

Ductility Shear

$\phi_{v,s} V_{sa} = 43.9$ [kips]
 $< V_{rb}$ = 54.0 [kips]

Ductile

Example 02: Anchor Bolt + Anchor Reinft + Tension & Shear + CSA A23.3-04 Code

$N_u = 89 \text{ kN}$ (Tension)

$V_u = 111.2 \text{ kN}$

Concrete $f_c' = 27.6 \text{ MPa}$

Rebar $f_y = 414 \text{ MPa}$

Pedestal size $406\text{mm} \times 406\text{mm}$

Anchor bolt F1554 Grade 36 1.0" dia Hex Head $h_{ef} = 1397\text{mm}$ $h_a = 1524\text{mm}$

Seismic design $I_E F_a S_a(0.2) \geq 0.35$

Anchor reinforcement Tension \rightarrow 8-25M ver. bar

Shear \rightarrow 2-layer, 4-leg 15M hor. bar

Provide built-up grout pad

ANCHOR BOLT DESIGN

Combined Tension and Shear

Anchor bolt design based on

CSA-A23.3-04 (R2010) Design of Concrete Structures Annex D

ACI 318M-08 Metric Building Code Requirements for Structural Concrete and Commentary

PIP STE05121 Anchor Bolt Design Guide-2006

Code Abbreviation

A23.3-04 (R2010)

ACI318 M-08

PIP STE05121

Assumptions

1. Concrete is cracked
2. Condition A - supplementary reinforcement is provided
3. Anchor reinf strength is used to replace concrete tension / shear breakout strength as per ACI318 M-08 Appendix D clause D.5.2.9 and D.6.2.9
4. For tie reinf, only the top most 2 or 3 layers of ties (50mm from TOC and 2x75mm after) are effective
5. Strut-and-Tie model is used to anlyze the shear transfer and to design the required tie reinf
6. Anchor bolt washer shall be tack welded to base plate for all anchor bolts to transfer shear

AISC Design Guide 1
section 3.5.3

Input Data

set $N_u = 0$ if it's compression

Factored tension for design

 $N_u = 89.0$ [kN] = 20.0 [kips]

Factored shear

 $V_u = 111.2$ [kN] = 25.0 [kips]

Factored shear for design

 $V_u = 111.2$ [kN] $V_u = 0$ if shear key is provided

Concrete strength

 $f_c = 28$ [MPa] = 4.0 [ksi]

Anchor bolt material

= F1554 Grade 36

Anchor tensile strength

 $f_{utu} = 58$ [ksi] = 400 [MPa]

A23.3-04 (R2010)

Anchor bolt diameter

 $d_a = 1$ [in] = 25.4 [mm]

D.2

Bolt sleeve diameter

 $d_s = 76$ [mm] = 25.4 [mm]

PIP STE05121

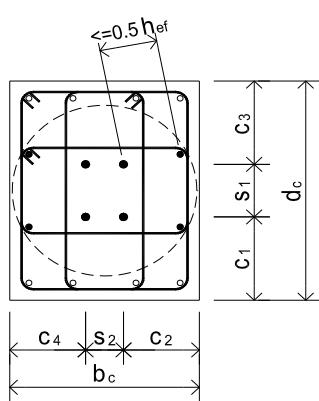
Bolt sleeve height

 $h_s = 254$ [mm]

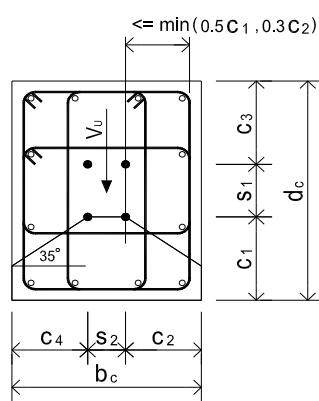
Page A -1 Table 1

Anchor bolt embedment depth

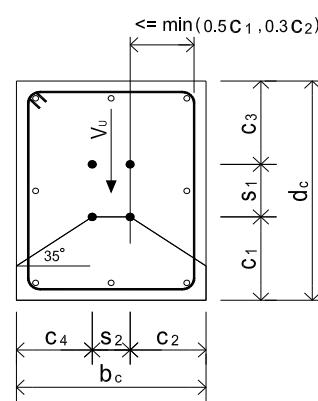
 $h_{ef} = 1397$ [mm] 305 OK Page A -1 Table 1


Pedestal height

 $h = 1524$ [mm] 1473 OK

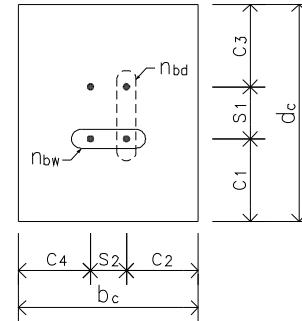

Pedestal width

 $b_c = 406$ [mm]


Pedestal depth

 $d_c = 406$ [mm]

Ver. Reinf For Tension



Hor. Ties For Shear - 4 Legs

Hor. Ties For Shear - 2 Legs

min required					2 of 6
Bolt edge distance c_1	$c_1 = 127$	[mm]	114	OK	Code Reference
Bolt edge distance c_2	$c_2 = 127$	[mm]	114	OK	PIP STE05121
Bolt edge distance c_3	$c_3 = 127$	[mm]	114	OK	Page A -1 Table 1
Bolt edge distance c_4	$c_4 = 127$	[mm]	114	OK	
Outermost bolt line spacing s_1	$s_1 = 152$	[mm]	102	OK	Page A -1 Table 1
Outermost bolt line spacing s_2	$s_2 = 152$	[mm]	102	OK	ACI318 M-08
To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost anchor's centerline. In this design $0.5h_{ef}$ value is limited to 200mm.					RD.5.2.9
$0.5h_{ef} = 200$ [mm]					
No of ver. rebar that are effective for resisting anchor tension	$n_v = 8$				
Ver. bar size	$d_b = 25$		single bar area $A_s = 500$ [mm ²]		
To be considered effective for resisting anchor shear, hor. reinf shall be located within $\min(0.5c_1, 0.3c_2)$ from the outmost anchor's centerline					RD.6.2.9
$\min(0.5c_1, 0.3c_2) = 38$ [mm]					
No of tie <u>leg</u> that are effective to resist anchor shear	$n_{leg} = 4$				
No of tie <u>layer</u> that are effective to resist anchor shear	$n_{lay} = 2$				
Hor. bar size	$d_b = 15$		single bar area $A_s = 200$ [mm ²]		
For anchor reinf shear breakout strength calc	100% hor. tie bars develop full yield strength				?
suggest					
Rebar yield strength	$f_y = 414$	[MPa]	400	$= 60.0$ [ksi]	
No of bolt carrying tension	$n_t = 4$				
No of bolt carrying shear	$n_s = 4$				
For side-face blowout check use					
No of bolt along width edge	$n_{bw} = 2$				
No of bolt along depth edge	$n_{bd} = 2$				
Anchor head type	$= \text{Hex}$?	
Bearing area of head	$A_{se} = 391$	[mm ²]			
	$A_{brg} = 750$	[mm ²]			
	A_{brg}	[mm ²]	not applicable		
Bolt 1/8" (3mm) corrosion allowance	$= \text{No}$?			Bolt No Input for Side-Face
Provide shear key ?	$= \text{No}$?			Blowout Check Use
Seismic region where $I_E F_a S_a(0.2) \geq 0.35$	$= \text{Yes}$?			A23.3-04 (R2010)
Provide built-up grout pad ?	$= \text{Yes}$?			D.4.3.5
Strength reduction factors					D.7.1.3
Anchor reinforcement factor	$\phi_{as} = 0.75$				D.7.2.9
Steel anchor resistance factor	$\phi_s = 0.85$				8.4.3 (a)
Concrete resistance factor	$\phi_c = 0.65$				8.4.2
Resistance modification factors					
Anchor rod - ductile steel	$R_{t,s} = 0.80$		$R_{v,s} = 0.75$		D.5.4(a)
Concrete - condition A	$R_{t,c} = 1.15$		$R_{v,c} = 1.15$		D.5.4(c)

CONCLUSION

Abchor Rod Embedment, Spacing and Edge Distance

Code Reference

OK A23.3-04 (R2010)

Min Rquired Anchor Reinft. Development Length

ratio = 0.25

OK 12.2.1

Overallratio = **0.71**

OK

Tension

Anchor Rod Tensile Resistance

ratio = 0.21

OK

Anchor Reinft Tensile Breakout Resistance

ratio = 0.10

OK

Anchor Pullout Resistance

ratio = 0.28

OK

Side Blowout Resistance

ratio = 0.27

OK

Shear

Anchor Rod Shear Resistance

ratio = 0.58

OK

Anchor Reinft Shear Breakout Resistance

Strut Bearing Strength

ratio = 0.60

OK

Tie Reinforcement

ratio = 0.30

OK

Conc. Pryout Not Govern When $h_{ef} \geq 12d_a$

ratio = 0.21

OK

Anchor Rod on Conc Bearing

Tension Shear Interaction

Tension Shear Interaction

ratio = 0.71

OK

Ductility

Tension

Non-ductile

Shear

Ductile

Seismic Design Requirement

NG D.4.3.6

 $IeFaSa(0.2) \geq 0.35$, A23.3-04 D.4.3.7 or D.4.3.8 must be satisfied for non-ductile design**CACULATION**

A23.3-04 (R2010)

Anchor Rod Tensile $N_{sr} = n_t A_{se} \phi_s f_{uta} R_{t,s}$

= 425.3

[kN] D.6.1.2 (D-3)

Resistance

ratio = 0.21

> N_u

OK

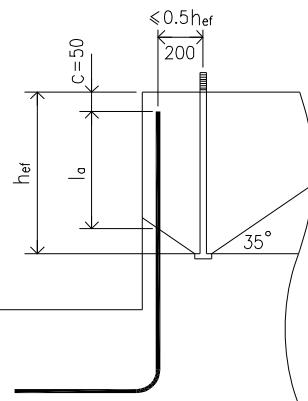
Anchor Reinft Tensile Breakout ResistanceMin tension development length $l_d =$

= 887

[mm] 12.2.3

for ver. 25M bar

Actual development lenngth


 $l_a = h_{ef} - c (50mm) - 200mm \times \tan 35^\circ$

= 1207

[mm]

> 300

OK 12.2.1

$$N_{rbr} = \phi_{as} \times f_y \times n_v \times A_s \times (l_a / l_d, \text{ if } l_a < l_d) = 1242.0 \quad [\text{kN}] \quad 12.2.5$$

Seismic design strength reduction

= 0.75 applicable

= 931.5

[kN] D.4.3.5

ratio = 0.10

> N_u

OK

Anchor Pullout Resistance

			Code Reference
Single bolt pullout resistance	$N_{pr} = 8 A_{brg} \phi_c f_c' R_{t,c}$	= 107.7 [kN]	A23.3-04 (R2010) D.6.3.4 (D-16)
	$N_{cpr} = n_t \Psi_{c,p} N_{pr}$	= 430.7 [kN]	D.6.3.1 (D-15)
Seismic design strength reduction	= x 0.75 applicable	= 323.1 [kN]	D.4.3.5
	ratio = 0.28	> N_u	OK
	$\Psi_{c,p} = 1$ for cracked conc		D.6.3.6
	$R_{t,c} = 1.00$ pullout strength is always Condition B		D.5.4(c)

Side Blowout ResistanceFailure Along Pedestal Width Edge

Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal width edge	$N_{buw} = N_u \times n_{bw} / n_t$	= 44.5 [kN]	ACI318 M-08 RD.5.4.2
	$c = \min(c_1, c_3)$	= 127 [mm]	
Check if side blowout applicable	$h_{ef} = 1397$ [mm]		A23.3-04 (R2010)
	> 2.5c	side bowout is applicable	D.6.4.1
Check if edge anchors work as a group or work individually	$s_{22} = 152$ [mm]	$s = s_2 = 152$ [mm]	
	< 6c	edge anchors work as a group	D.6.4.2
Single anchor SB resistance	$N_{sbr,w} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$	= 181.7 [kN]	D.6.4.1 (D-18)
Multiple anchors SB resistance	$N_{sbgr,w} =$		
work as a group - applicable	= (1+s/6c) x $N_{sbr,w}$	= 217.9 [kN]	D.6.4.2 (D-19)
work individually - not applicable	= $n_{bw} \times N_{sbr,w} \times [1+(c_2 \text{ or } c_4) / c] / 4$	= 0.0 [kN]	D.6.4.1
Seismic design strength reduction	= x 0.75 applicable	= 163.5 [kN]	D.4.3.5
	ratio = 0.27	> N_{buw}	OK

Failure Along Pedestal Depth Edge

Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal depth edge	$N_{bd} = N_u \times n_{bd} / n_t$	= 44.5 [kN]	ACI318 M-08 RD.5.4.2
	$c = \min(c_2, c_4)$	= 127 [mm]	
Check if side blowout applicable	$h_{ef} = 1397$ [mm]		A23.3-04 (R2010)
	> 2.5c	side bowout is applicable	D.6.4.1
Check if edge anchors work as a group or work individually	$s_{11} = 152$ [mm]	$s = s_1 = 152$ [mm]	
	< 6c	edge anchors work as a group	D.6.4.2
Single anchor SB resistance	$N_{sbr,d} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$	= 181.7 [kN]	D.6.4.1 (D-18)
Multiple anchors SB resistance	$N_{sbgr,d} =$		
work as a group - applicable	= (1+s/6c) x $\phi_{t,c} N_{sbr,d}$	= 217.9 [kN]	D.6.4.2 (D-19)
work individually - not applicable	= $n_{bd} \times N_{sbr,d} \times [1+(c_1 \text{ or } c_3) / c] / 4$	= 0.0 [kN]	D.6.4.1
Seismic design strength reduction	= x 0.75 applicable	= 163.5 [kN]	D.4.3.5
	ratio = 0.27	> N_{bd}	OK

$$N_{sbgr} = \min\left(\frac{N_{sbgr,w}}{n_{bw}} n_t, \frac{N_{sbgr,d}}{n_{bd}} n_t\right) = 326.9 \text{ [kN]}$$

$$\mathbf{Govern Tensile Resistance} \quad N_r = \min(N_{sr}, N_{rbr}, N_{cpr}, N_{sbgr}) = 323.1 \text{ [kN]}$$

Note: Anchor bolt sleeve portion must be tape wrapped and grouted to resist shear

Code Reference

A23.3-04 (R2010)

Anchor Rod Shear

$$V_{sr} = n_s A_{se} \phi_s 0.6 f_{uta} R_{v,s}$$

$$= 239.2 \text{ [kN]} \quad \text{D.7.1.2 (b) (D-21)}$$

Resistance

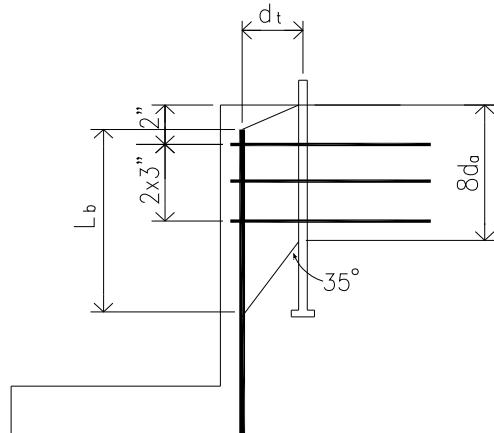
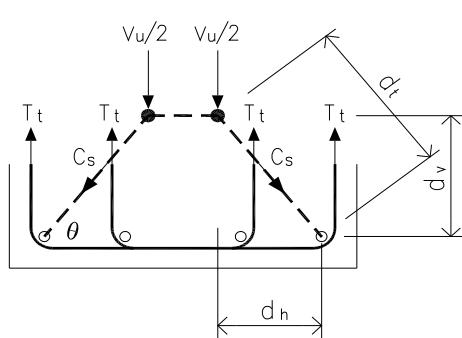
Reduction due to built-up grout pads

= x 0.8, applicable

= 191.4 [kN] **OK**

ratio = 0.58

> V_u



Anchor Reinf Shear Breakout Resistance

ACI318 M-08

Strut-and-Tie model is used to analyze the shear transfer and to design the required tie reinf

STM strength reduction factor $\phi_{st} = 0.75$

9.3.2.6

Strut-and-Tie model geometry

$$d_v = 57 \text{ [mm]}$$

$$d_h = 57 \text{ [mm]}$$

$$\theta = 45$$

$$d_t = 81 \text{ [mm]}$$

Strut compression force

$$C_s = 0.5 V_u / \sin\theta$$

$$= 78.6 \text{ [kN]} \quad \text{OK}$$

ACI318 M-08

Strut Bearing Strength

Strut compressive strength

$$f_{ce} = 0.85 f_c$$

$$= 23.5 \text{ [MPa]} \quad \text{A.3.2 (A-3)}$$

* Bearing of anchor bolt

Anchor bearing length

$$l_e = \min(8d_a, h_{ef})$$

$$= 203 \text{ [mm]} \quad \text{D.6.2.2}$$

Anchor bearing area

$$A_{brg} = l_e \times d_a$$

$$= 5161 \text{ [mm}^2\text{]}$$

Anchor bearing resistance

$$C_r = n_s \times \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 363.3 \text{ [kN]}$$

> V_u **OK**

* Bearing of ver reinf bar

Ver bar bearing area

$$A_{brg} = (l_e + 1.5 \times d_t - d_a/2 - d_b/2) \times d_b$$

$$= 7473 \text{ [mm}^2\text{]}$$

Ver bar bearing resistance

$$C_r = \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 131.5 \text{ [kN]}$$

ratio = 0.60

> C_s **OK**

Tie Reinforcement

Code Reference

- * For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
- * For enclosed tie, at hook location the tie cannot develop full yield strength f_y . Use the pullout resistance in tension of a single J-bolt as per A23.3-04 Annex D Eq. (D-17) as the max force can be developed at hook T_h
- * Assume 100% of hor. tie bars can develop full yield strength.

Total number of hor tie bar	$n = n_{leg} (leg) \times n_{lay} (layer)$	= 8	A23.3-04 (R2010)	
Pull out resistance at hook	$T_h = 0.9 \phi_c f_c' e_h d_b R_{tc}$	= 16.3	[kN]	D.6.3.5 (D-17)
	$e_h = 4.5 d_b$	= 68	[mm]	
Single tie bar tension resistance	$T_r = \phi_{as} x f_y x A_s$	= 62.1	[kN]	
Total tie bar tension resistance	$V_{rbr} = 1.0 \times n \times T_r$	= 496.8	[kN]	
Seismic design strength reduction ratio	= 0.75 applicable	= 372.6	[kN]	D.4.3.5
	ratio = 0.30	> V_u	OK	

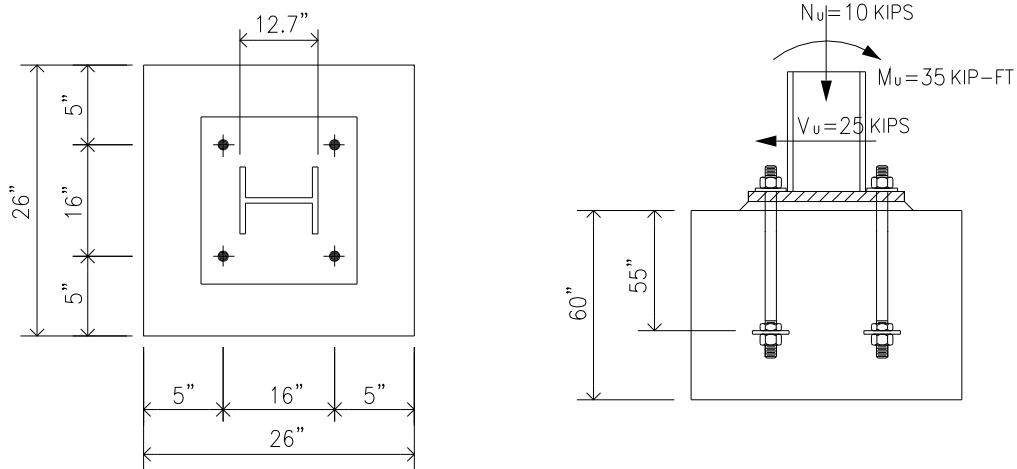
Conc. Pryout Shear Resistance

The pryout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with $h_{ef} \geq 12d_a$, the pryout failure will not govern

	$12d_a = 305$ [mm]	$h_{ef} = 1397$ [mm]		
		> $12d_a$	OK	CSA S16-09
Anchor Rod on Conc Bearing	$B_r = n_s \times 1.4 \times \phi_c \times \min(8d_a, h_{ef}) \times d_a \times f_c'$	= 518.5	[kN]	25.3.3.2
	ratio = 0.21	> V_u	OK	
Govern Shear Resistance	$V_r = \min(V_{sr}, V_{rbr}, B_r)$	= 191.4	[kN]	A23.3-04 (R2010)

Tension Shear Interaction

Check if $N_u > 0.2 N_r$ and $V_u > 0.2 V_r$	Yes		D.8.2 & D.8.3
	$N_u/N_r + V_u/V_r$	= 0.86	D.8.4 (D-35)
	ratio = 0.71	< 1.2	OK


Ductility Tension

$N_{sr} = 425.3$ [kN]			
> $\min(N_{rbr}, N_{cpr}, N_{sbgr})$		= 323.1	[kN]

Non-ductile

Ductility Shear

$V_{sr} = 191.4$ [kN]			
< $\min(V_{rbr}, B_r)$		= 372.6	[kN]
	Ductile		

Example 03: Anchor Bolt + Anchor Reinfnt + Tension Shear & Moment + ACI 318-08 Code

$M_u = 35 \text{ kip-ft}$ $N_u = 10 \text{ kips (Compression)}$ $V_u = 25 \text{ kips}$
 Concrete $f'_c = 4 \text{ ksi}$ Rebar $f_y = 60 \text{ ksi}$
 Pedestal size 26" x 26"
 Anchor bolt F1554 Grade 36 1.25" dia Hex Head $h_{ef} = 55"$ $h_a = 60"$
 Seismic design category < C
 Anchor reinforcement Tension → 2-No 8 ver. bar
 Shear → 2-layer, 2-leg No 4 hor. bar

Provide built-up grout pad

ANCHOR BOLT DESIGN**Combined Tension, Shear and Moment**

Anchor bolt design based on

Code Abbreviation

ACI 318-08 Building Code Requirements for Structural Concrete and Commentary Appendix D

ACI 318-08

PIP STE05121 Anchor Bolt Design Guide-2006

PIP STE05121

Assumptions**Code Reference**

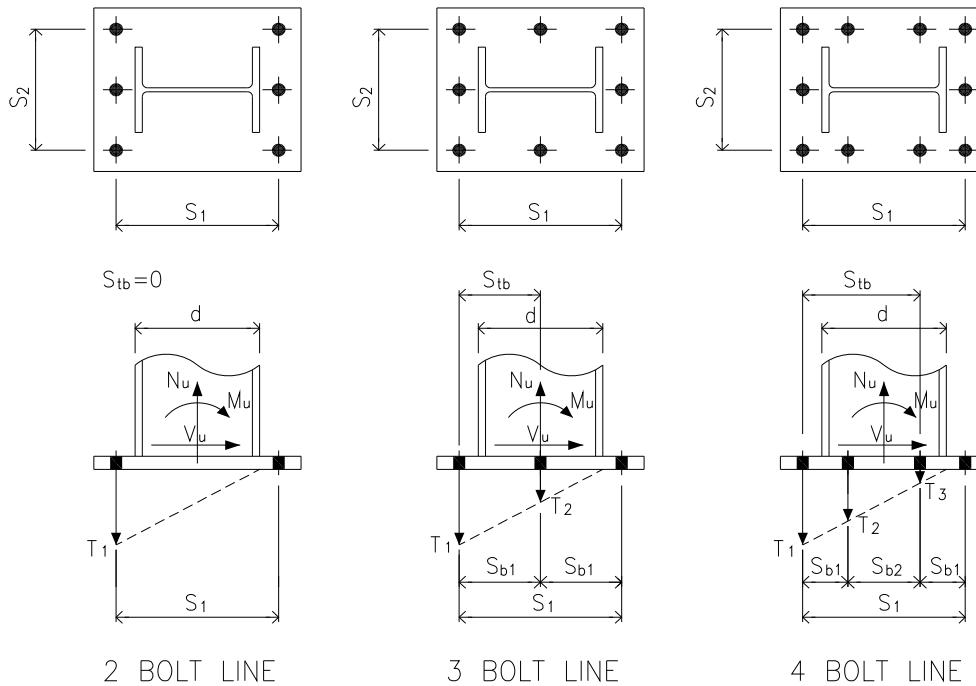
1. Concrete is cracked
2. Condition A - supplementary reinforcement is provided
3. Load combinations shall be as per ACI 318-08 Chapter 9 or ASCE 7-05 Chapter 2
4. Anchor reinf strength is used to replace concrete tension / shear breakout strength as per ACI318-08 Appendix D clause D.5.2.9 and D.6.2.9
5. For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
6. Strut-and-Tie model is used to anlyze the shear transfer and to design the required tie reinf
7. For anchor group subject to moment, the anchor tensile load is designed using elastic analysis and there is no redistribution of the forces between highly stressed and less stressed anchors
8. For anchor tensile force calc in anchor group subject to moment, assume the compression resultant is at the outside edge of the compression flange and base plate exhibits rigid-body rotation. This simplified approach yields conservative output
9. Shear carried by only half of total anchor bolts due to oversized holes in column base plate

AISC Design Guide 1
section 3.5.3**Anchor Bolt Data**

Factored moment

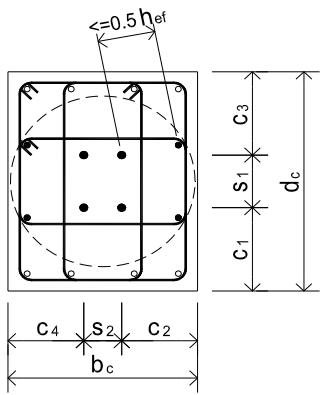
$$M_u = 35.0 \text{ [kip-ft]} = 47.5 \text{ [kNm]}$$

Factored tension /compression

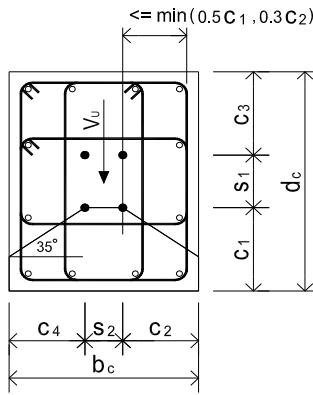

$$N_u = -10.0 \text{ [kips]} \text{ in compression} = -44.5 \text{ [kN]}$$

Factored shear

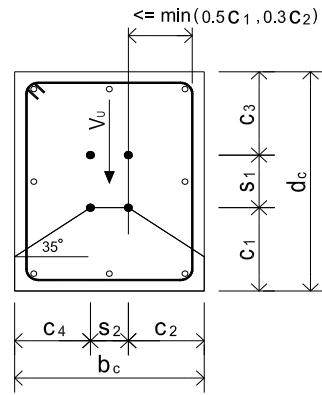
$$V_u = 25.0 \text{ [kips]} = 111.2 \text{ [kN]}$$


Factored shear for design

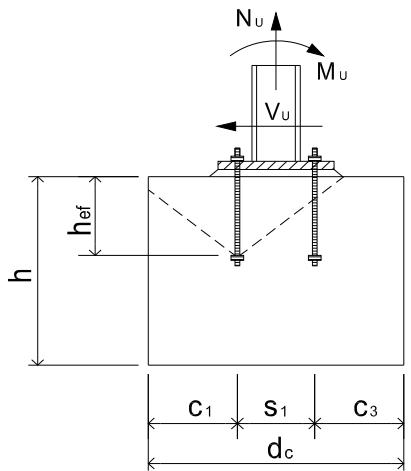
$$V_u = 25.0 \text{ [kips]} \quad V_u = 0 \text{ if shear key is provided}$$



Code Reference


No of bolt line for resisting moment	= <input type="button" value="2 Bolt Line"/>			
No of bolt along outermost bolt line	= <input type="button" value="2"/>			
Outermost bolt line spacing s_1	$s_1 = 16.0$ [in]	5.0	min required	<input type="button" value="OK"/>
Outermost bolt line spacing s_2	$s_2 = 16.0$ [in]	5.0		<input type="button" value="OK"/>
Internal bolt line spacing s_{b1}	$s_{b1} = 10.5$ [in]	5.0		<input type="button" value="OK"/>
Internal bolt line spacing s_{b2}	$s_{b2} = 0.0$ [in]	5.0		<input type="button" value="OK"/>
Column depth	$d = 12.7$ [in]			
Concrete strength	$f_c = 4.0$ [ksi]		= 27.6 [MPa]	
Anchor bolt material	= <input type="button" value="F1554 Grade 36"/>			
Anchor tensile strength	$f_{uta} = 58$ [ksi]		= 400 [MPa]	ACI 318-08
				D.1
Anchor bolt diameter	$d_a = 1.25$ [in]		= 31.8 [mm]	PIP STE05121
Bolt sleeve diameter	$d_s = 3.0$ [in]			Page A -1 Table 1
Bolt sleeve height	$h_s = 10.0$ [in]			
Anchor bolt embedment depth	$h_{ef} = 55.0$ [in]	15.0	min required	<input type="button" value="OK"/>
Pedestal height	$h = 60.0$ [in]	58.0		<input type="button" value="OK"/>
Pedestal width	$b_c = 26.0$ [in]			
Pedestal depth	$d_c = 26.0$ [in]			
Bolt edge distance c_1	$c_1 = 5.0$ [in]	5.0		<input type="button" value="OK"/>
Bolt edge distance c_2	$c_2 = 5.0$ [in]	5.0		<input type="button" value="OK"/>
Bolt edge distance c_3	$c_3 = 5.0$ [in]	5.0		<input type="button" value="OK"/>
Bolt edge distance c_4	$c_4 = 5.0$ [in]	5.0		<input type="button" value="OK"/>

Ver. Reinf For Tension



Hor. Ties For Shear - 4 Legs

Hor. Ties For Shear - 2 Legs

Code Reference

ACI 318-08

RD.5.2.9

To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost anchor's centerline. In this design $0.5h_{ef}$ value is limited to 8 in.

$$0.5h_{ef} = 8.0 \quad [\text{in}]$$

No of ver. rebar that are effective for resisting anchor tension

$$n_v = 2$$

Ver. bar size No.

$$8 \quad \text{1.000} \quad [\text{in}] \text{ dia} \quad \text{single bar area } A_s = 0.79 \quad [\text{in}^2]$$

To be considered effective for resisting anchor shear, hor. reinf shall be located

RD.6.2.9

within $\min(0.5c_1, 0.3c_2)$ from the outmost anchor's centerline

$$\min(0.5c_1, 0.3c_2) = 1.5 \quad [\text{in}]$$

No of tie leg that are effective to resist anchor shear

$$n_{leg} = 2 \quad ?$$

No of tie layer that are effective to resist anchor shear

$$n_{lay} = 2 \quad ?$$

Hor. tie bar size No.

$$4 \quad 0.500 \quad [\text{in}] \text{ dia} \quad \text{single bar area } A_s = 0.20 \quad [\text{in}^2]$$

For anchor reinf shear breakout strength calc

$$100\% \text{ hor. tie bars develop full yield strength} \quad ?$$

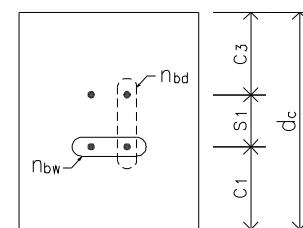
suggest

Rebar yield strength

$$f_y = 60 \quad [\text{ksi}] \quad 60 \quad = 414 \quad [\text{MPa}]$$

Total no of anchor bolt

$$n = 4$$


No of bolt carrying tension

$$n_t = 2$$

No of bolt carrying shear

$$n_s = 2$$

For side-face blowout check use

No of bolt along width edge

$$n_{bw} = 2$$

Anchor head type

$$= \text{Hex} \quad ?$$

Anchor effective cross sect area

$$A_{se} = 0.969 \quad [\text{in}^2]$$

Bearing area of head

$$A_{brg} = 1.817 \quad [\text{in}^2]$$

$$A_{brg} \quad [\text{in}^2] \quad \text{not applicable}$$

Bolt No Input for Side-Face
Blowout Check Use

Bolt 1/8" (3mm) corrosion allowance

$$= \text{No} \quad ?$$

ACI 318-08

Provide shear key ?

$$= \text{No} \quad ?$$

D.3.3.3

Seismic design category >= C

$$= \text{No} \quad ?$$

D.6.1.3

Provide built-up grout pad ?

$$= \text{Yes} \quad ?$$

				Code Reference
Strength reduction factors				ACI 318-08
Anchor reinforcement	$\phi_s = 0.75$			D.5.2.9 & D.6.2.9
Anchor rod - ductile steel	$\phi_{t,s} = 0.75$		$\phi_{v,s} = 0.65$	D.4.4(a)
Concrete - condition A	$\phi_{t,c} = 0.75$		$\phi_{v,c} = 0.75$	D.4.4(c)
CONCLUSION				
Anchor Rod Embedment, Spacing and Edge Distance			OK	
Min Required Anchor Reinft. Development Length		ratio = 0.25	OK	12.2.1
Overall				
Tension				
Anchor Rod Tensile Resistance		ratio = 0.29	OK	
Anchor Reinft Tensile Breakout Resistance		ratio = 0.35	OK	
Anchor Pullout Resistance		ratio = 0.31	OK	
Side Blowout Resistance		ratio = 0.32	OK	
Shear				
Anchor Rod Shear Resistance		ratio = 0.71	OK	
Anchor Reinft Shear Breakout Resistance				
Strut Bearing Strength		ratio = 0.51	OK	
Tie Reinforcement		ratio = 0.69	OK	
Conc. Prount Not Govern When $h_{ef} \geq 12d_a$			OK	
Tension Shear Interaction				
Tension Shear Interaction		ratio = 0.89	OK	
Ductility				
Tension	Non-ductile		Shear	ACI 318-08
Seismic Design Requirement			Ductile	OK D.3.3.4
SDC< C, ACI318-08 D.3.3 ductility requirement is NOT required				
CACULATION				
Anchor Tensile Force				
Single bolt tensile force	$T_1 = 12.42$ [kips]	No of bolt for $T_1 n_{T1} = 2$		ACI 318-08
	$T_2 = 0.00$ [kips]	No of bolt for $T_2 n_{T2} = 0$		
	$T_3 = 0.00$ [kips]	No of bolt for $T_3 n_{T3} = 0$		
Sum of bolt tensile force	$N_u = \sum n_i T_i$	= 24.8	[kips]	
Anchor Rod Tensile Resistance				
$\phi_{t,s} N_{sa} = \phi_{t,s} A_{se} f_{uta}$		= 42.2	[kips]	D.5.1.2 (D-3)
ratio = 0.29		> T_1	OK	
Anchor Reinft Tensile Breakout Resistance				
Min tension development length for ver. #8 bar	$l_d =$	= 47.4	[in]	12.2.1, 12.2.2, 12.2.4
Actual development lenngth	$l_a = h_{ef} - c (2 \text{ in}) - 8 \text{ in} \times \tan 35$	= 47.4	[in]	
		> 12.0	OK	12.2.1

Code Reference					
5 of 7					
ACI 318-08					
Seismic design strength reduction	$N_{rbr} = \phi_s \times f_y \times n_v \times A_s \times (l_a / l_d, \text{ if } l_a < l_d)$ = x 1.0 not applicable ratio = 0.35	= 71.0 = 71.0 > N_u	[kips]	12.2.5 [kips]	D.3.3.3 OK
Anchor Pullout Resistance					
Single bolt pullout resistance	$N_p = 8 A_{brg} f_c'$ $N_{cpr} = \phi_{t,c} N_{pn} = \phi_{t,c} \Psi_{c,p} N_p$	= 58.1 = 40.7	[kips]	D.5.3.4 (D-15) [kips]	D.5.3.1 (D-14)
Seismic design strength reduction	= x 1.0 not applicable ratio = 0.31	= 40.7 > T_1	[kips]	D.3.3.3 OK	D.5.3.6
	$\Psi_{c,p} = 1$ for cracked conc $\phi_{t,c} = 0.70$ pullout strength is always Condition B				D.4.4(c)
Side Blowout Resistance					
<u>Failure Along Pedestal Width Edge</u>					
Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal width edge	$N_{buw} = n_{T1} T_1$ $c = \min(c_1, c_3)$	= 24.8 = 5.0	[kips]	RD.5.4.2 [in]	
Check if side blowout applicable	$h_{ef} = 55.0$ [in] > 2.5c	side blowout is applicable			D.5.4.1
Check if edge anchors work as a group or work individually	$s_{22} = 16.0$ [in] < 6c	$s = s_2 = 16.0$	[in]		D.5.4.2
Single anchor SB resistance	$\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f_c'}$	= 51.2	[kips]		D.5.4.1 (D-17)
Multiple anchors SB resistance	$\phi_{t,c} N_{sbg,w} =$ work as a group - applicable = $(1+s/6c) \times \phi_{t,c} N_{sb}$ work individually - not applicable = $n_{bw} \times \phi_{t,c} N_{sb} \times [1+(c_2 \text{ or } c_4)/c] / 4$	= 78.4 = 0.0	[kips]		D.5.4.2 (D-18) D.5.4.1
Seismic design strength reduction	= x 1.0 not applicable ratio = 0.32	= 78.4 > N_{buw}	[kips]	D.3.3.3 OK	
Group side blowout resistance	$\phi_{t,c} N_{sbg} = \phi_{t,c} \frac{N_{sbgr,w}}{n_{T1}} n_t$	= 78.4	[kips]		
Govern Tensile Resistance					
	$N_r = \phi_{t,c} \min(n_t N_s, N_{rb}, n_t N_{cp}, N_{sbg})$	= 71.0	[kips]		

Note: Anchor bolt sleeve portion must be tape wrapped and grouted to resist shear

Code Reference

ACI 318-08

Anchor Rod Shear

$$\phi_{v,s} V_{sa} = \phi_{v,s} n_s 0.6 A_{se} f_{uta}$$

$$= 43.8$$

[kips] D.6.1.2 (b) (D-20)

Resistance

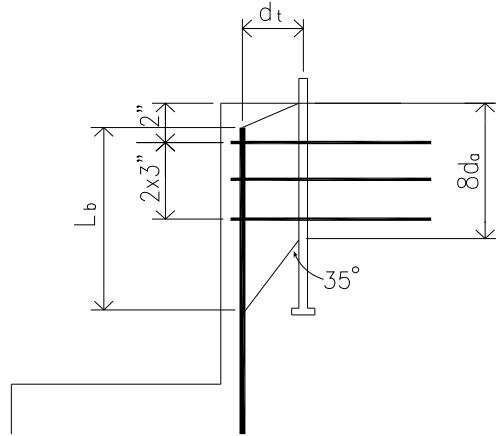
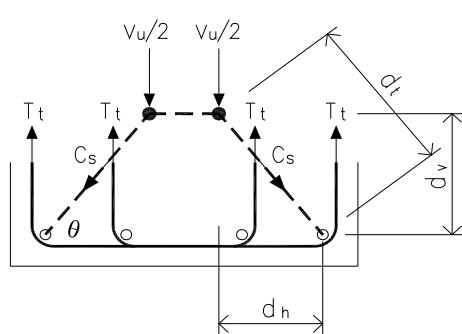
Reduction due to built-up grout pads = x 0.8, applicable

$$= 35.1$$

[kips] D.6.1.3

$$\text{ratio} = 0.71$$

$$> V_u$$



OK

Anchor Reinf Shear Breakout Resistance

Strut-and-Tie model is used to analyze the shear transfer and to design the required tie reinf

STM strength reduction factor $\phi_{st} = 0.75$

9.3.2.6

Strut-and-Tie model geometry

$$d_v = 2.250 \text{ [in]}$$

$$d_h = 2.250 \text{ [in]}$$

$$\theta = 45$$

$$d_t = 3.182 \text{ [in]}$$

Strut compression force

$$C_s = 0.5 V_u / \sin\theta$$

$$= 17.7 \text{ [kips]}$$

ACI 318-08

Strut Bearing Strength

Strut compressive strength

$$f_{ce} = 0.85 f_c$$

$$= 3.4$$

[ksi] A.3.2 (A-3)

* Bearing of anchor bolt

Anchor bearing length

$$l_e = \min(8d_a, h_{ef})$$

$$= 10.0$$

[in] D.6.2.2

Anchor bearing area

$$A_{brg} = l_e \times d_a$$

$$= 12.5$$

[in²]

Anchor bearing resistance

$$C_r = n_s \times \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 63.8$$

[kips]

$$> V_u$$

OK

* Bearing of ver reinf bar

Ver bar bearing area

$$A_{brg} = (l_e + 1.5 \times d_t - d_a/2 - d_b/2) \times d_b$$

$$= 13.6$$

[in²]

Ver bar bearing resistance

$$C_r = \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 34.8$$

[kips]

$$\text{ratio} = 0.51$$

$$> C_s$$

OK

Code Reference

ACI 318-08

Tie Reinforcement

- * For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
- * For enclosed tie, at hook location the tie cannot develop full yield strength f_y . Use the pullout resistance in tension of a single hooked bolt as per ACI318-08 Eq. (D-16) as the max force can be developed at hook T_h
- * Assume 100% of hor. tie bars can develop full yield strength.

$$\text{Total number of hor tie bar} \quad n = n_{\text{leg}} (\text{leg}) \times n_{\text{lay}} (\text{layer}) = 4$$

$$\text{Pull out resistance at hook} \quad T_h = \phi_{t,c} 0.9 f_c' e_h d_a = 3.0 \quad [\text{kips}] \quad \text{D.5.3.5 (D-16)}$$

$$e_h = 4.5 d_b = 2.250 \quad [\text{in}]$$

$$\text{Single tie bar tension resistance} \quad T_r = \phi_s \times f_y \times A_s = 9.0 \quad [\text{kips}]$$

$$\text{Total tie bar tension resistance} \quad V_{rb} = 1.0 \times n \times T_r = 36.0 \quad [\text{kips}]$$

$$\text{Seismic design strength reduction ratio} = x 1.0 \quad \text{not applicable} = 36.0 \quad [\text{kips}] \quad \text{D.3.3.3}$$

$$\text{ratio} = 0.69 > V_u \quad \text{OK}$$

Conc. Pryout Shear Resistance

The prayout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with $h_{\text{ef}} >= 12d_a$, the prayout failure will not govern

$$12d_a = 15.0 \quad [\text{in}] \quad h_{\text{ef}} = 55.0 \quad [\text{in}]$$

$$> 12d_a \quad \text{OK}$$

$$\text{Govern Shear Resistance} \quad V_r = \min (\phi_{v,s} V_{sa}, V_{rb}) = 35.1 \quad [\text{kips}]$$

Tension Shear Interaction

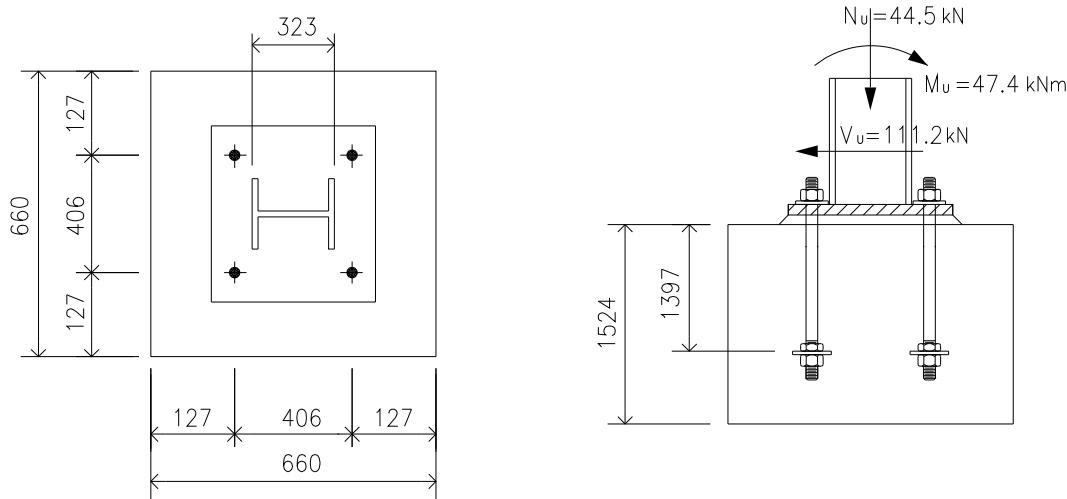
$$\text{Check if } N_u > 0.2\phi N_n \text{ and } V_u > 0.2\phi V_n \quad \text{Yes} \quad \text{D.7.1 & D.7.2}$$

$$N_u / \phi N_n + V_u / \phi V_n = 1.06 \quad \text{D.7.3 (D-32)}$$

$$\text{ratio} = 0.89 < 1.2 \quad \text{OK}$$

$$\text{Ductility Tension} \quad \phi_{t,s} N_{sa} = 42.2 \quad [\text{kips}]$$

$$> \phi_{t,c} \min (N_{rb}, N_{pn}, N_{sb}) = 40.7 \quad [\text{kips}]$$


Non-ductile

$$\text{Ductility Shear} \quad \phi_{v,s} V_{sa} = 35.1 \quad [\text{kips}]$$

$$< V_{rb} = 36.0 \quad [\text{kips}]$$

Ductile

Example 04: Anchor Bolt + Anchor Reinft + Tension Shear & Moment + CSA A23.3-04 Code

$M_u = 47.4 \text{ kNm}$ $N_u = -44.5 \text{ kN}$ (Compression) $V_u = 111.2 \text{ kN}$
 Concrete $f'_c = 27.6 \text{ MPa}$ Rebar $f_y = 414 \text{ MPa}$
 Pedestal size 660mm x 660mm
 Anchor bolt F1554 Grade 36 1.25" dia Hex Head $h_{ef} = 1397\text{mm}$ $h_a = 1524\text{mm}$
 Seismic design $I_E F_a S_a(0.2) < 0.35$
 Anchor reinforcement Tension \rightarrow 2-25M ver. bar
 Shear \rightarrow 2-layer, 2-leg 15M hor. bar

Provide built-up grout pad

ANCHOR BOLT DESIGN

Combined Tension, Shear and Moment

Anchor bolt design based on

Code Abbreviation

CSA-A23.3-04 (R2010) Design of Concrete Structures Annex D

A23.3-04 (R2010)

ACI 318M-08 Metric Building Code Requirements for Structural Concrete and Commentary

ACI318 M-08

PIP STE05121 Anchor Bolt Design Guide-2006

PIP STE05121

Code Reference

Assumptions

1. Concrete is cracked
2. Condition A - supplementary reinforcement is provided
3. Anchor reinf strength is used to replace concrete tension / shear breakout strength as per ACI318 M-08 Appendix D clause D.5.2.9 and D.6.2.9
4. For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
5. Strut-and-Tie model is used to anlyze the shear transfer and to design the required tie reinf
6. For anchor group subject to moment, the anchor tensile load is designed using elastic analysis and there is no redistribution of the forces between highly stressed and less stressed anchors
7. For anchor tensile force calc in anchor group subject to moment, assume the compression resultant is at the outside edge of the compression flange and base plate exhibits rigid-body rotation. This simplified approach yields conservative output
8. Shear carried by only half of total anchor bolts due to oversized holes in column base plate

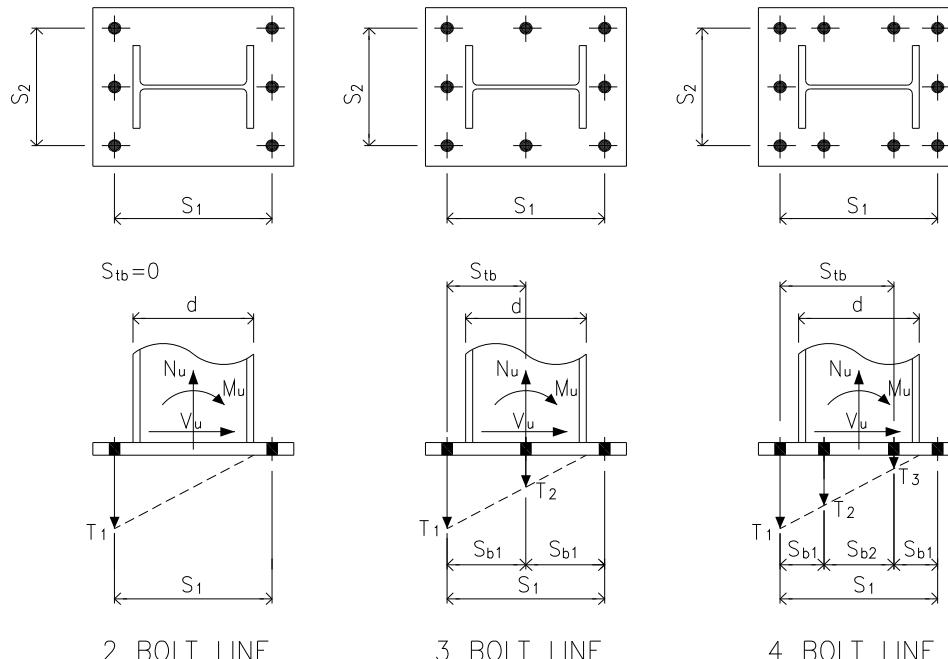
AISC Design Guide 1
section 3.5.3

Anchor Bolt Data

Factored moment

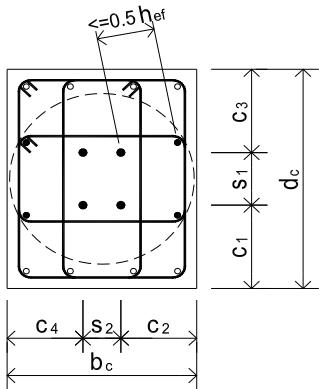
$$M_u = 47.4 \text{ [kNm]} \quad = 35.0 \text{ [kip-ft]}$$

Factored tension /compression

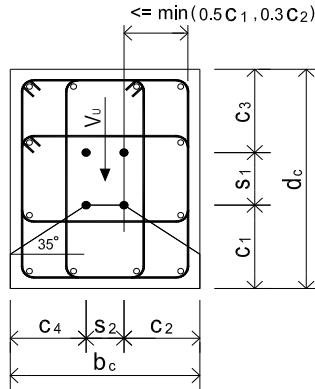

$$N_u = -44.5 \text{ [kN]} \quad \text{in compression} \quad = -10.0 \text{ [kips]}$$

Factored shear

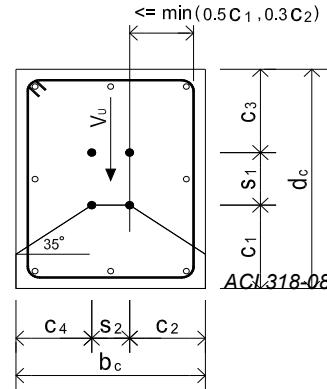
$$V_u = 111.2 \text{ [kN]} \quad = 25.0 \text{ [kips]}$$


Factored shear for design

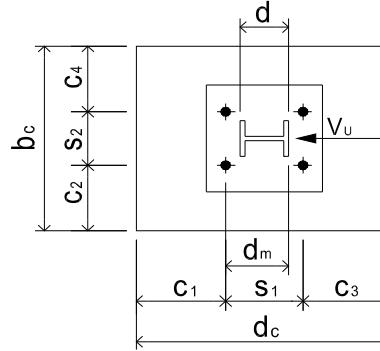
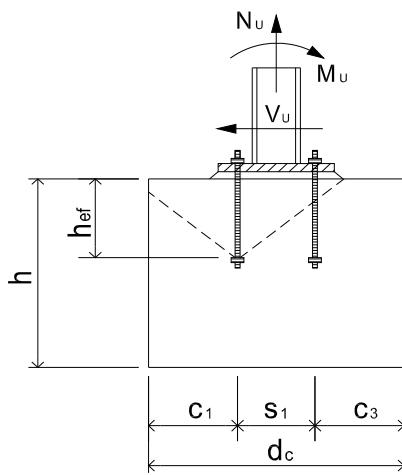
$$V_u = 111.2 \text{ [kN]} \quad V_u = 0 \text{ if shear key is provided}$$



Code Reference


No of bolt line for resisting moment	= 2 Bolt Line			
No of bolt along outermost bolt line	= 2			
Outermost bolt line spacing s_1	$s_1 = 406$ [mm]	127	min required	OK
Outermost bolt line spacing s_2	$s_2 = 406$ [mm]	127		OK
Internal bolt line spacing s_{b1}	$s_{b1} = 267$ [mm]	127		OK
Internal bolt line spacing s_{b2}	$s_{b2} = 0$ [mm]	127		OK
Column depth	$d = 323$ [mm]			
Concrete strength	$f_c = 28$ [MPa]		= 4.0 [ksi]	
Anchor bolt material	= F1554 Grade 36			
Anchor tensile strength	$f_{uta} = 58$ [ksi]		= 400 [MPa]	A23.3-04 (R2010)
				D.2
Anchor bolt diameter	$d_a = 1.25$ [in]		= 31.8 [mm]	PIP STE05121
Bolt sleeve diameter	$d_s = 76$ [mm]			Page A -1 Table 1
Bolt sleeve height	$h_s = 254$ [mm]			
Anchor bolt embedment depth	$h_{ef} = 1397$ [mm]	381	min required	OK
Pedestal height	$h = 1524$ [mm]	1473		OK
Pedestal width	$b_c = 660$ [mm]			
Pedestal depth	$d_c = 660$ [mm]			
Bolt edge distance c_1	$c_1 = 127$ [mm]	127		OK
Bolt edge distance c_2	$c_2 = 127$ [mm]	127		OK
Bolt edge distance c_3	$c_3 = 127$ [mm]	127		OK
Bolt edge distance c_4	$c_4 = 127$ [mm]	127		OK

Ver. Reinft For Tension

Hor. Ties For Shear - 4 Legs

Hor. Ties For Shear - 2 Legs

Code Reference

ACI318 M-08

RD.5.2.9

To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost anchor's centerline. In this design $0.5h_{ef}$ value is limited to 200mm.

$$0.5h_{ef} = 200 \text{ [mm]}$$

No of ver. rebar that are effective for resisting anchor tension

Ver. bar size

$$d_b = 25$$

$$n_v = 2$$

$$\text{single bar area } A_s = 500 \text{ [mm}^2\text{]}$$

To be considered effective for resisting anchor shear, hor. reinf shall be located within $\min(0.5c_1, 0.3c_2)$ from the outmost anchor's centerline

$$\min(0.5c_1, 0.3c_2) = 38 \text{ [mm]}$$

RD.6.2.9

No of tie leg that are effective to resist anchor shear

$$n_{leg} = 2 \text{ ?}$$

No of tie layer that are effective to resist anchor shear

$$n_{lay} = 2 \text{ ?}$$

Hor. bar size

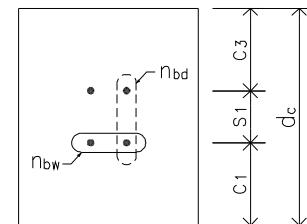
$$d_b = 15$$

$$\text{single bar area } A_s = 200 \text{ [mm}^2\text{]}$$

For anchor reinf shear breakout strength calc

100% hor. tie bars develop full yield strength ?

suggest


Rebar yield strength

$$f_y = 414 \text{ [MPa]} \quad 400$$

$$= 60.0 \text{ [ksi]}$$

Total no of anchor bolt

$$n = 4$$

No of bolt carrying tension

$$n_t = 2$$

No of bolt carrying shear

$$n_s = 2$$

For side-face blowout check use

No of bolt along width edge

$$n_{bw} = 2$$

Anchor head type

$$= \text{Hex}$$

$$A_{se} = 625 \text{ [mm}^2\text{]}$$

Bearing area of head

$$A_{brg} = 1172 \text{ [mm}^2\text{]}$$

$$A_{brg} \text{ [mm}^2\text{]} \text{ not applicable}$$

Bolt 1/8" (3mm) corrosion allowance

$$= \text{No} \text{ ?}$$

A23.3-04 (R2010)

Provide shear key ?

$$= \text{No} \text{ ?}$$

Seismic region where $I_E F_a S_a(0.2) \geq 0.35$

$$= \text{No} \text{ ?}$$

D.4.3.5

Provide built-up grout pad ?

$$= \text{Yes} \text{ ?}$$

D.7.1.3

Code Reference			
Strength reduction factors			A23.3-04 (R2010)
Anchor reinforcement factor	$\phi_{as} = 0.75$		D.7.2.9
Steel anchor resistance factor	$\phi_s = 0.85$		8.4.3 (a)
Concrete resistance factor	$\phi_c = 0.65$		8.4.2
Resistance modification factors			
Anchor rod - ductile steel	$R_{t,s} = 0.80$	$R_{v,s} = 0.75$	D.5.4(a)
Concrete - condition A	$R_{t,c} = 1.15$	$R_{v,c} = 1.15$	D.5.4(c)
CONCLUSION			
Abchor Rod Embedment, Spacing and Edge Distance			OK
Min Rquired Anchor Reinfnt. Development Length		ratio = 0.25	OK 12.2.1
Overall		ratio = 0.90	OK
Tension			
Anchor Rod Tensile Resistance		ratio = 0.32	OK
Anchor Reinfnt Tensile Breakout Resistance		ratio = 0.36	OK
Anchor Pullout Resistance		ratio = 0.33	OK
Side Blowout Resistance		ratio = 0.32	OK
Shear			
Anchor Rod Shear Resistance		ratio = 0.73	OK
Anchor Reinfnt Shear Breakout Resistance			
Strut Bearing Strength		ratio = 0.52	OK
Tie Reinforcement		ratio = 0.45	OK
Conc. Prouyt Not Govern When $h_{ef} \geq 12d_a$			OK
Anchor Rod on Conc Bearing		ratio = 0.27	OK
Tension Shear Interaction			
Tension Shear Interaction		ratio = 0.90	OK
Ductility			
Tension	Non-ductile	Shear	Ductile
Seismic Design Requirement			
leFaSa(0.2)<0.35, A23.3-04 D.4.3.3 ductility requirement is NOT required			OK D.4.3.6
CACULATION			
Anchor Tensile Force			
Single bolt tensile force	$T_1 = 55.2$ [kN]	No of bolt for T_1 $n_{T1} = 2$	
	$T_2 = 0.0$ [kN]	No of bolt for T_2 $n_{T2} = 0$	
	$T_3 = 0.0$ [kN]	No of bolt for T_3 $n_{T3} = 0$	
Sum of bolt tensile force	$N_u = \sum n_i T_i$	= 110.3	[kN]
Anchor Rod Tensile Resistance			
	$N_{sr} = A_{se} \phi_s f_{uta} R_{t,s}$	= 170.0	[kN]
Resistance	ratio = 0.32	> T_1	OK
Anchor Reinfnt Tensile Breakout Resistance			
Min tension development length	$l_d =$	= 887	[mm]
for ver. 25M bar			12.2.3

Code Reference					
Actual development length	$l_a = h_{ef} - c (50\text{mm}) - 200\text{mm} \times \tan 35^\circ$	= 1207	[mm]	A23.3-04 (R2010)	
		> 300		OK	12.2.1
Seismic design strength reduction ratio	$N_{rbr} = \phi_{as} \times f_y \times n_v \times A_s \times (l_a / l_d, \text{ if } l_a < l_d)$ = x 1.0 not applicable ratio = 0.36	= 310.5	[kN]	12.2.5	
		= 310.5	[kN]	D.4.3.5	
		> N_u		OK	
Anchor Pullout Resistance					
Single bolt pullout resistance	$N_{pr} = 8 A_{brg} \phi_c f_c' R_{t,c}$	= 168.2	[kN]	D.6.3.4 (D-16)	
Seismic design strength reduction ratio	$N_{cpr} = \psi_{c,p} N_{pr}$ = x 1.0 not applicable ratio = 0.33	= 168.2	[kN]	D.6.3.1 (D-15)	
		= 168.2	[kN]	D.4.3.5	
		> T ₁		OK	
	$\psi_{c,p} = 1$ for cracked conc $R_{t,c} = 1.00$ pullout strength is always Condition B			D.6.3.6	
				D.5.4(c)	
Side Blowout Resistance					
Failure Along Pedestal Width Edge				ACI318 M-08	
Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal width edge	$N_{buw} = n_{T1} T_1$ $c = \min(c_1, c_3)$	= 110.3	[kN]	RD.5.4.2	
		= 127	[mm]		
Check if side blowout applicable	$h_{ef} = 1397$ [mm] > 2.5c side blowout is applicable			A23.3-04 (R2010)	
				D.6.4.1	
Check if edge anchors work as a group or work individually	$s_{22} = 406$ [mm] $s = s_2 = 406$ [mm]				
	< 6c edge anchors work as a group			D.6.4.2	
Single anchor SB resistance	$N_{sbr,w} = 13.3c \sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$	= 227.1	[kN]	D.6.4.1 (D-18)	
Multiple anchors SB resistance work as a group - applicable	$N_{sbgr,w} = (1+s/6c) \times N_{sbr,w}$	= 348.1	[kN]	D.6.4.2 (D-19)	
work individually - not applicable	= $n_{bw} \times N_{sbr,w} \times [1+(c_2 \text{ or } c_4)/c] / 4$	= 0.0	[kN]	D.6.4.1	
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.32	= 348.1	[kN]	D.4.3.5	
		> N _{buw}		OK	
Group side blowout resistance	$N_{sbgr} = \frac{N_{sbgr,w}}{n_{bw}} n_t$	= 348.1	[kN]		
Govern Tensile Resistance	$N_r = \min(n_t N_{sr}, N_{rbr}, n_t N_{cpr}, N_{sbgr})$	= 310.5	[kN]		

Note: Anchor bolt sleeve portion must be tape wrapped and grouted to resist shear

Code Reference

A23.3-04 (R2010)

Anchor Rod Shear

$$V_{sr} = n_s A_{se} \phi_s 0.6 f_{uta} R_{v,s}$$

$$= 191.2 \text{ [kN]} \quad \text{D.7.1.2 (b) (D-21)}$$

Resistance

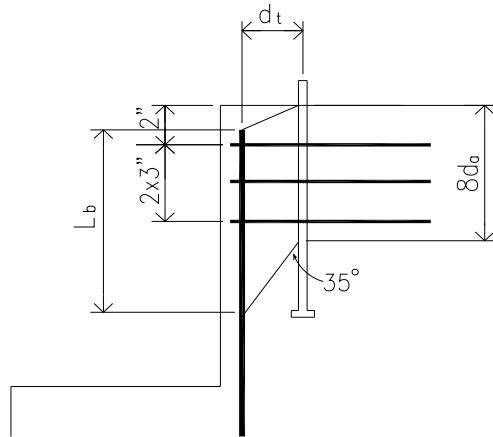
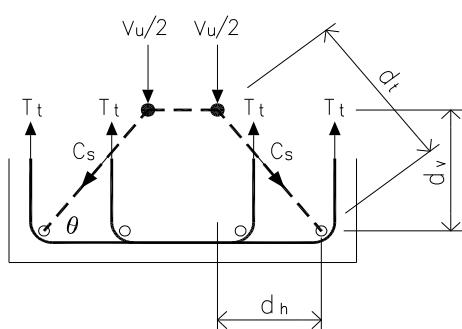
Reduction due to built-up grout pads

= x 0.8, applicable

= 153.0 [kN] OK

ratio = 0.73

> V_u



Anchor Reinf Shear Breakout Resistance

ACI318 M-08

Strut-and-Tie model is used to analyze the shear transfer and to design the required tie reinf

STM strength reduction factor $\phi_{st} = 0.75$

9.3.2.6

Strut-and-Tie model geometry

$$d_v = 57 \text{ [mm]}$$

$$d_h = 57 \text{ [mm]}$$

$$\theta = 45^\circ$$

$$d_t = 81 \text{ [mm]}$$

Strut compression force

$$C_s = 0.5 V_u / \sin\theta$$

$$= 78.6 \text{ [kN]} \quad \text{OK}$$

ACI318 M-08

Strut Bearing Strength

Strut compressive strength

$$f_{ce} = 0.85 f_c$$

$$= 23.5 \text{ [MPa]} \quad \text{A.3.2 (A-3)}$$

* Bearing of anchor bolt

Anchor bearing length

$$l_e = \min(8d_a, h_{ef})$$

$$= 254 \text{ [mm]} \quad \text{D.6.2.2}$$

Anchor bearing area

$$A_{brg} = l_e \times d_a$$

$$= 8065 \text{ [mm}^2\text{]}$$

Anchor bearing resistance

$$C_r = n_s \times \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 283.8 \text{ [kN]} \quad \text{OK}$$

* Bearing of ver reinf bar

Ver bar bearing area

$$A_{brg} = (l_e + 1.5 \times d_t - d_a/2 - d_b/2) \times d_b$$

$$= 8664 \text{ [mm}^2\text{]}$$

Ver bar bearing resistance

$$C_r = \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 152.4 \text{ [kN]} \quad \text{OK}$$

ratio = 0.52

> C_s

Code Reference

Tie Reinforcement

- * For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
- * For enclosed tie, at hook location the tie cannot develop full yield strength f_y . Use the pullout resistance in tension of a single J-bolt as per A23.3-04 Annex D Eq. (D-17) as the max force can be developed at hook T_h
- * Assume 100% of hor. tie bars can develop full yield strength.

A23.3-04 (R2010)

Total number of hor tie bar	$n = n_{leg} (\text{leg}) \times n_{lay} (\text{layer})$	= 4	
Pull out resistance at hook	$T_h = 0.9 \phi_c f_c' e_h d_b R_{t,c}$	= 16.3 [kN]	D.6.3.5 (D-17)
	$e_h = 4.5 d_b$	= 68 [mm]	
Single tie bar tension resistance	$T_r = \phi_{as} \times f_y \times A_s$	= 62.1 [kN]	
Total tie bar tension resistance	$V_{rbr} = 1.0 \times n \times T_r$	= 248.4 [kN]	
Seismic design strength reduction	= x 1.0 not applicable	= 248.4 [kN]	D.4.3.5
	ratio = 0.45	> V_u	OK

Conc. Pryout Shear Resistance

The prayout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with $h_{ef} >= 12d_a$, the prayout failure will not govern

$12d_a = 381$	[mm]	$h_{ef} = 1397$	[mm]	
		> $12d_a$	OK	CSA S16-09
Anchor Rod on Conc Bearing	$B_r = n_s \times 1.4 \times \phi_c \times \min(8d_a, h_{ef}) \times d_a \times f_c'$	= 405.1	[kN]	25.3.3.2
	ratio = 0.27	< V_u	OK	
Govern Shear Resistance	$V_r = \min(V_{sr}, V_{rbr}, B_r)$	= 153.0	[kN]	

Tension Shear Interaction

A23.3-04 (R2010)

Check if $N_u > 0.2 N_r$ and $V_u > 0.2 V_r$	Yes		D.8.2 & D.8.3
	$N_u/N_r + V_u/V_r$	= 1.08	D.8.4 (D-35)
	ratio = 0.90	< 1.2	OK

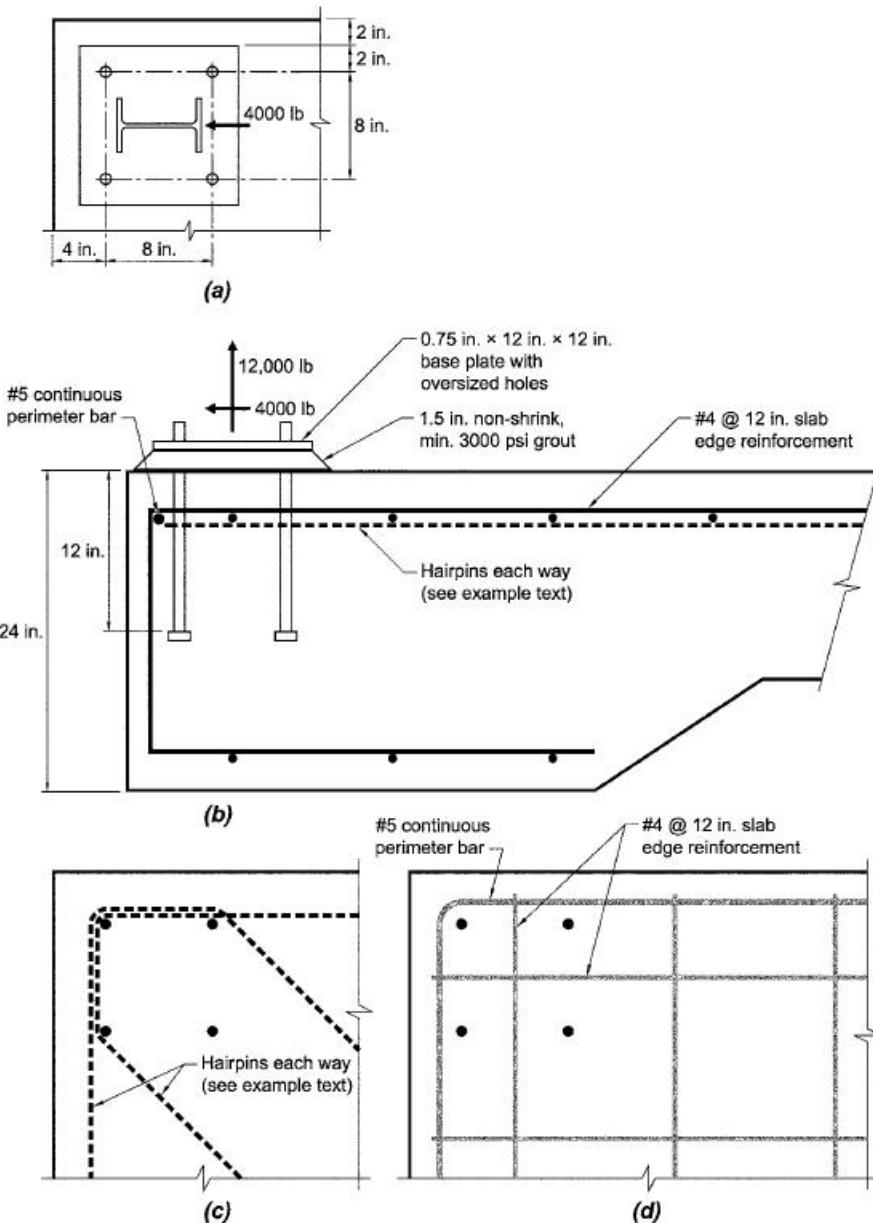
Ductility Tension

$$N_{sr} = 170.0 \quad [\text{kN}]$$

$$> \min(N_{rbr}, N_{cpr}, N_{sbgr}) = 168.2 \quad [\text{kN}]$$

Non-ductile

Ductility Shear


$$V_{sr} = 153.0 \quad [\text{kN}]$$

$$< \min(V_{rbr}, B_r) = 248.4 \quad [\text{kN}]$$

Ductile

Example 11: Anchor Bolt + No Anchor Reinfnt + Tension & Shear + ACI 318-08 Code

This example taken from Example 8 on page 71 of *ACI 355.3R-11 Guide for Design of Anchorage to Concrete: Examples Using ACI 318 Appendix D*

$$N_u = 12 \text{ kips (tension)}, \quad V_u = 4 \text{ kips}, \quad f'_c = 3 \text{ ksi}$$

Anchor bolt $d_a = 3/4$ in ASTM F1554 Grade 55 $h_{ef} = 12$ in $h_a = 24$ in Anchor head \rightarrow Hex

Supplementary reinforcement Tension \rightarrow Condition B

Shear \rightarrow Condition A $\Psi_{c,V} = 1.2$

Provide built-up grout pad Seismic is not a consideration

Field welded plate washers to base plate at each anchor

ANCHOR BOLT DESIGN

Combined Tension and Shear

Anchor bolt design based on

Code Abbreviation

ACI 318-08 Building Code Requirements for Structural Concrete and Commentary Appendix D

ACI 318-08

PIP STE05121 Anchor Bolt Design Guide-2006

PIP STE05121

Anchor Bolt Data

set $N_u = 0$ if it's compression

Code Reference

Factored tension for design

 $N_u = 12.0$ [kips] = 53.4 [kN]

Factored shear

 $V_u = 4.0$ [kips] = 17.8 [kN]

Factored shear for design

 $V_u = 4.0$ [kips] $V_u = 0$ if shear key is provided

Concrete strength

 $f_c = 3.0$ [ksi] = 20.7 [MPa]

Anchor bolt material

F1554 Grade 55

Anchor tensile strength

 $f_{uta} = 75$ [ksi] = 517 [MPa]

ACI 318-08

Anchor is ductile steel element

Anchor bolt diameter

 $d_a = 0.75$ [in] = 19.1 [mm]

D.1

Bolt sleeve diameter

 $d_s = 2.0$ [in]

PIP STE05121

Bolt sleeve height

 $h_s = 7.0$ [in]

Page A -1 Table 1

min required

Anchor bolt embedment depth

 $h_{ef} = 12.0$ [in]

9.0

OK

Page A -1 Table 1

Concrete thickness

 $h_a = 24.0$ [in]

15.0

OK

Page A -1 Table 1

Bolt edge distance c_1 $c_1 = 4.0$ [in]

4.5

Warn

Page A -1 Table 1

Bolt edge distance c_2 $c_2 = 4.0$ [in]

4.5

Warn

Page A -1 Table 1

Bolt edge distance c_3 $c_3 = 100.0$ [in]

4.5

OK

Page A -1 Table 1

Bolt edge distance c_4 $c_4 = 100.0$ [in]

4.5

OK

ACI 318-08

 $c_i > 1.5h_{ef}$ for at least two edges to avoid reducing of h_{ef} when $N_u > 0$

D.5.2.3

Adjusted h_{ef} for design $h_{ef} = 12.00$ [in]

9.0

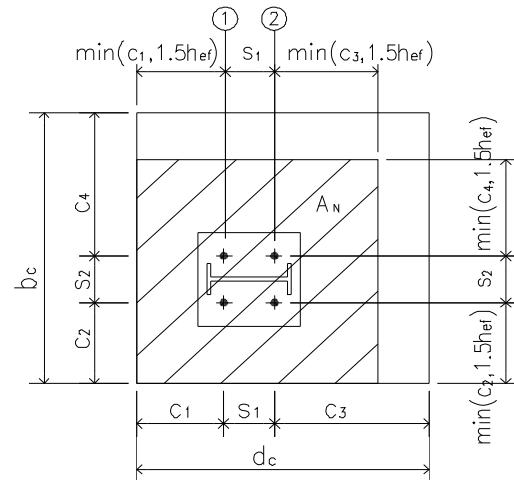
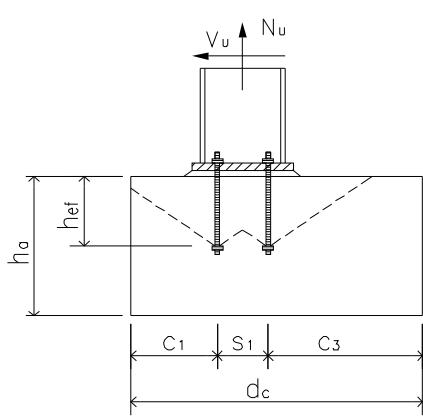
OK

D.5.2.3

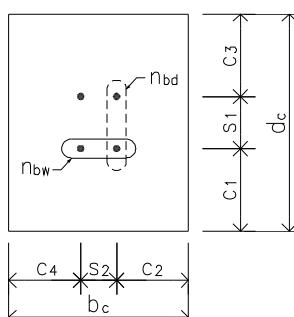
Outermost bolt line spacing s_1 $s_1 = 8.0$ [in]

3.0

OK



PIP STE05121

Outermost bolt line spacing s_2 $s_2 = 8.0$ [in]


3.0

OK

Page A -1 Table 1

2 of 7

Number of bolt at bolt line 1	$n_1 = 2$	
Number of bolt at bolt line 2	$n_2 = 2$	
Number of bolt carrying tension	$n_t = 4$	
Oversized holes in base plate ?	= <input type="checkbox"/> No ?	
Number of bolt carrying shear	$n_s = 4$	
For side-face blowout check use		
No of bolt along width edge	$n_{bw} = 2$	
No of bolt along depth edge	$n_{bd} = 2$	
Anchor head type	= <input type="checkbox"/> Hex ?	
Anchor effective cross sect area	$A_{se} = 0.334 \text{ [in}^2]$	
Bearing area of head	$A_{brg} = 0.654 \text{ [in}^2]$	
	A_{brg} [in ²] not applicable	
Bolt 1/8" (3mm) corrosion allowance	<input type="checkbox"/> No ?	Code Reference
Provide shear key ?	<input type="checkbox"/> No ?	ACI 318-08
Seismic design category >= C	<input type="checkbox"/> No ?	D.3.3.3
Supplementary reinforcement		
For tension	<input type="checkbox"/> No Condition B	D.4.4 (c)
For shear	$\Psi_{c,V} = 1.2$ Condition A ?	D.6.2.7
Provide built-up grout pad ?	<input type="checkbox"/> Yes ?	D.6.1.3
Strength reduction factors		
Anchor reinforcement	$\phi_s = 0.75$	D.5.2.9 & D.6.2.9
Anchor rod - ductile steel	$\phi_{t,s} = 0.75$	$\phi_{v,s} = 0.65$ style="vertical-align: top; text-align: right;">D.4.4 (a)
Concrete	$\phi_{t,c} = 0.70$ Cdn-B	$\phi_{v,c} = 0.75$ Cdn-A style="vertical-align: top; text-align: right;">D.4.4 (c)
Assumptions		
1. Concrete is cracked		D.4.4 (c)
2. Condition B - no supplementary reinforcement provided		D.4.4
3. Load combinations shall be per ACI 318-08 Chapter 9 or ASCE 7-05 Chapter 2		D.5.2.4
4. Tensile load acts through center of bolt group $\Psi_{ec,N} = 1.0$		D.6.2.5
5. Shear load acts through center of bolt group $\Psi_{ec,V} = 1.0$		AISC Design Guide 1 section 3.5.3

CONCLUSION				3 of 7
Abchor Rod Embedment, Spacing and Edge Distance				Warn
Overall				OK
Tension				
Anchor Rod Tensile Resistance				ratio = 0.16 OK
Conc. Tensile Breakout Resistance				ratio = 0.58 OK
Anchor Pullout Resistance				ratio = 0.27 OK
Side Blowout Resistance				ratio = 0.23 OK
Shear				
Anchor Rod Shear Resistance				ratio = 0.13 OK
Conc. Shear Breakout Resistance				ratio = 0.41 OK
Conc. Pryout Shear Resistance				ratio = 0.10 OK
Tension Shear Interaction				
Tension Shear Interaction				ratio = 0.83 OK
Ductility				
Tension		Non-ductile	Shear	
Seismic Design Requirement				OK D.3.3.4
SDC< C, ACI318-08 D.3.3 ductility requirement is NOT required				
CALCULATION				Code Reference
				ACI 318-08
Anchor Rod Tensile Resistance		$\phi_{t,s} N_{sa} = \phi_{t,s} n_t A_{se} f_{uta}$	= 75.2	[kips] D.5.1.2 (D-3)
Resistance		ratio = 0.16	> N _u	OK
Conc. Tensile Breakout Resistance				
$N_b = 24 \lambda \sqrt{f_c} h_{ef}^{1.5}$ if $h_{ef} < 11"$ or $h_{ef} > 25" = 55.1$				[kips] D.5.2.2 (D-7)
$16 \lambda \sqrt{f_c} h_{ef}^{5/3}$ if $11" \leq h_{ef} \leq 25"$				D.5.2.2 (D-8)
Projected conc failure area		$1.5h_{ef} = 18.00$	= 18.00	[in]
$A_{Nc} = [s_1 + \min(c_1, 1.5h_{ef}) + \min(c_3, 1.5h_{ef})]x = 900.0$		= 900.0	= 900.0	[in ²] D.5.2.1 (D-6)
$[s_2 + \min(c_2, 1.5h_{ef}) + \min(c_4, 1.5h_{ef})]$				
$A_{Nco} = 9 h_{ef}^2 = 1296.0$		= 1296.0	= 1296.0	[in ²] D.5.2.1 (D-6)
$A_{Nc} = \min(A_{Nc}, n_t A_{Nco}) = 900.0$		= 900.0	= 900.0	[in ²] D.5.2.1
$c_{min} = \min(c_1, c_2, c_3, c_4) = 4.0$		= 4.0	= 4.0	[in]
Min edge distance				
Eccentricity effects		$\Psi_{ec,N} = 1.0$ for no eccentric load		D.5.2.4
Edge effects		$\Psi_{ed,N} = \min[(0.7 + 0.3c_{min}/1.5h_{ef}), 1.0] = 0.77$	= 0.77	D.5.2.5
Concrete cracking		$\Psi_{c,N} = 1.0$ for cracked concrete		D.5.2.6
Concrete splitting		$\Psi_{cp,N} = 1.0$ for cast-in anchor		D.5.2.7

Code Reference

ACI 318-08

Concrete breakout resistance $\phi_{t,c} N_{cbg} = \phi_{t,c} \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b = 20.5$ [kips] D.5.2.1 (D-5)

Seismic design strength reduction ratio = x 1.0 not applicable = 20.5 > N_u [kips] D.3.3.3
ratio = 0.58

OK

Anchor Pullout Resistance

Single bolt pullout resistance N_p = 8 A_{brg} f_{c'} = 15.7 [kips] D.5.3.4 (D-15)

$\phi_{t,c} N_{pn} = \phi_{t,c} n_t \Psi_{c,p} N_p = 43.9$ [kips] D.5.3.1 (D-14)

Seismic design strength reduction ratio = x 1.0 not applicable = 43.9 > N_u [kips] D.3.3.3
ratio = 0.27

OK

$\Psi_{c,p} = 1$ for cracked conc D.5.3.6

$\phi_{t,c} = 0.70$ pullout strength is always Condition B D.4.4(c)

Side Blowout Resistance

Failure Along Pedestal Width Edge

Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal width edge N_{buw} = N_u x n_{bw} / n_t = 6.0 [kips] RD.5.4.2
c = min (c₁, c₃) = 4.0 [in]

Check if side blowout applicable h_{ef} = 12.0 [in]
> 2.5c side blowout is applicable D.5.4.1

Check if edge anchors work as a group or work individually s₂₂ = 8.0 [in] s = s₂ = 8.0 [in] D.5.4.2
< 6c edge anchors work as a group

Single anchor SB resistance $\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c} = 19.8$ [kips] D.5.4.1 (D-17)

Multiple anchors SB resistance $\phi_{t,c} N_{sbg,w} =$
work as a group - applicable = (1+s/6c) x $\phi_{t,c} N_{sb}$ = 26.5 [kips] D.5.4.2 (D-18)

work individually - not applicable = n_{bw} x $\phi_{t,c} N_{sb} \times [1+(c_2 \text{ or } c_4) / c] / 4$ = 0.0 [kips] D.5.4.1

Seismic design strength reduction ratio = 0.23 > N_{buw} [kips] D.3.3.3

OK

Failure Along Pedestal Depth Edge

Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal depth edge N_{bud} = N_u x n_{bd} / n_t = 6.0 [kips] RD.5.4.2
c = min (c₂, c₄) = 4.0 [in]

Check if side blowout applicable h_{ef} = 12.0 [in]
> 2.5c side blowout is applicable D.5.4.1

Check if edge anchors work as a group or work individually s₁₁ = 8.0 [in] s = s₁ = 8.0 [in] D.5.4.2
< 6c edge anchors work as a group

Single anchor SB resistance $\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c} = 19.8$ [kips] D.5.4.1 (D-17)

Multiple anchors SB resistance $\phi_{t,c} N_{sbg,d} =$
work as a group - applicable = (1+s/6c) x $\phi_{t,c} N_{sb}$ = 26.5 [kips] D.5.4.2 (D-18)

work individually - not applicable = n_{bd} x $\phi_{t,c} N_{sb} \times [1+(c_1 \text{ or } c_3) / c] / 4$ = 0.0 [kips] D.5.4.1

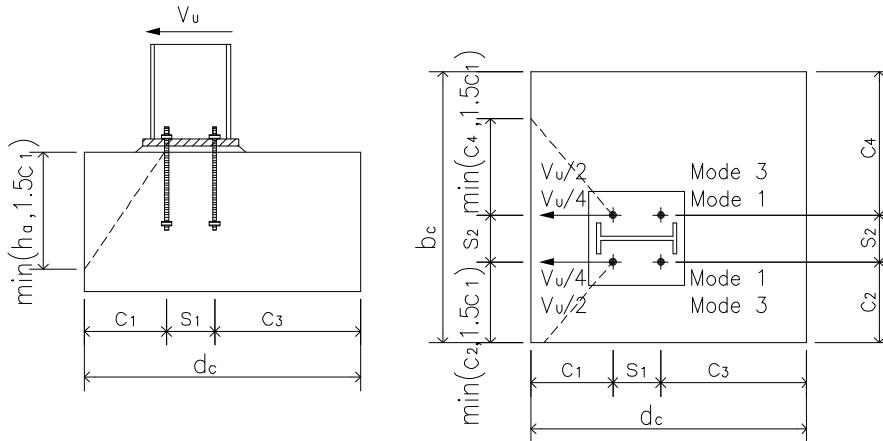
Seismic design strength reduction ratio = 0.23 > N_{bud} [kips] D.3.3.3

OK

Group side blowout resistance $\phi_{t,c} N_{sbg} = \phi_{t,c} \min\left(\frac{N_{sbg,w}}{n_{bw}}, \frac{N_{sbg,d}}{n_{bd}} n_t\right) = 52.9$ [kips] Code Reference ACI 318-08

Govern Tensile Resistance $N_r = \min[\phi_{t,s} N_{sa}, \phi_{t,c} (N_{cbg}, N_{pn}, N_{sbg})] = 20.5$ [kips]

Note: Anchor bolt sleeve portion must be tape wrapped and grouted to resist shear


Anchor Rod Shear Resistance $\phi_{v,s} V_{sa} = \phi_{v,s} n_s 0.6 A_{se} f_{uta}$ = 39.1 [kips] D.6.1.2 (b) (D-20)

Reduction due to built-up grout pads = $x 0.8$, applicable ratio = 0.13 = 31.3 [kips] D.6.1.3 > V_u **OK**

Conc. Shear Breakout Resistance

Mode 1 Failure cone at front anchors, strength check against $0.5 \times V_u$

Mode 3 Failure cone at front anchors, strength check against $1.0 \times V_u$, applicable when oversized holes are used in base plate

Bolt edge distance $c_1 =$ = 4.0 [in]

Limiting c_{a1} when anchors are influenced by 3 or more edges = No D.6.2.4

Bolt edge distance - adjusted $c_1 = c_{a1}$ needs NOT to be adjusted = 4.0 [in] D.6.2.4

$c_2 =$ = 4.0 [in]

$1.5c_1 =$ = 6.0 [in]

$A_{Vc} = [\min(c_2, 1.5c_1) + s_2 + \min(c_4, 1.5c_1)] \times \min(1.5c_1, h_a)$ = 108.0 [in²] D.6.2.1

$A_{Vco} = 4.5c_1^2$ = 72.0 [in²] D.6.2.1 (D-23)

$A_{Vc} = \min(A_{Vc}, n_1 A_{Vco})$ = 108.0 [in²] D.6.2.1

$l_e = \min(8d_a, h_{ef})$ = 6.0 [in] D.6.2.2

$V_b = \left[7 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \right] \lambda \sqrt{f_c} c_1^{1.5}$ = 4.0 [kips] D.6.2.2 (D-24)

Eccentricity effects $\Psi_{ec,v} = 1.0$ shear acts through center of group D.6.2.5

Edge effects $\Psi_{ed,v} = \min[(0.7 + 0.3c_2/1.5c_1), 1.0]$ = 0.90 D.6.2.6

Concrete cracking $\Psi_{c,v} =$ = 1.20 D.6.2.7

Member thickness $\Psi_{h,v} = \max[\sqrt{1.5c_1/h_a}, 1.0]$ = 1.00 D.6.2.8

Code Reference

ACI 318-08

Conc. Pryout Shear Resistance

$$k_{cp} = 2.0$$

D.6.3

Factored shear prout resistance $\phi_{v,c} V_{cpg} = \phi_{v,c} k_{cp} N_{cbg}$ = 41.1 [kips] D.6.3 (D-31)
 $\phi_{v,c} = 0.70$ prout strength is always Condition B D.4.4(c)

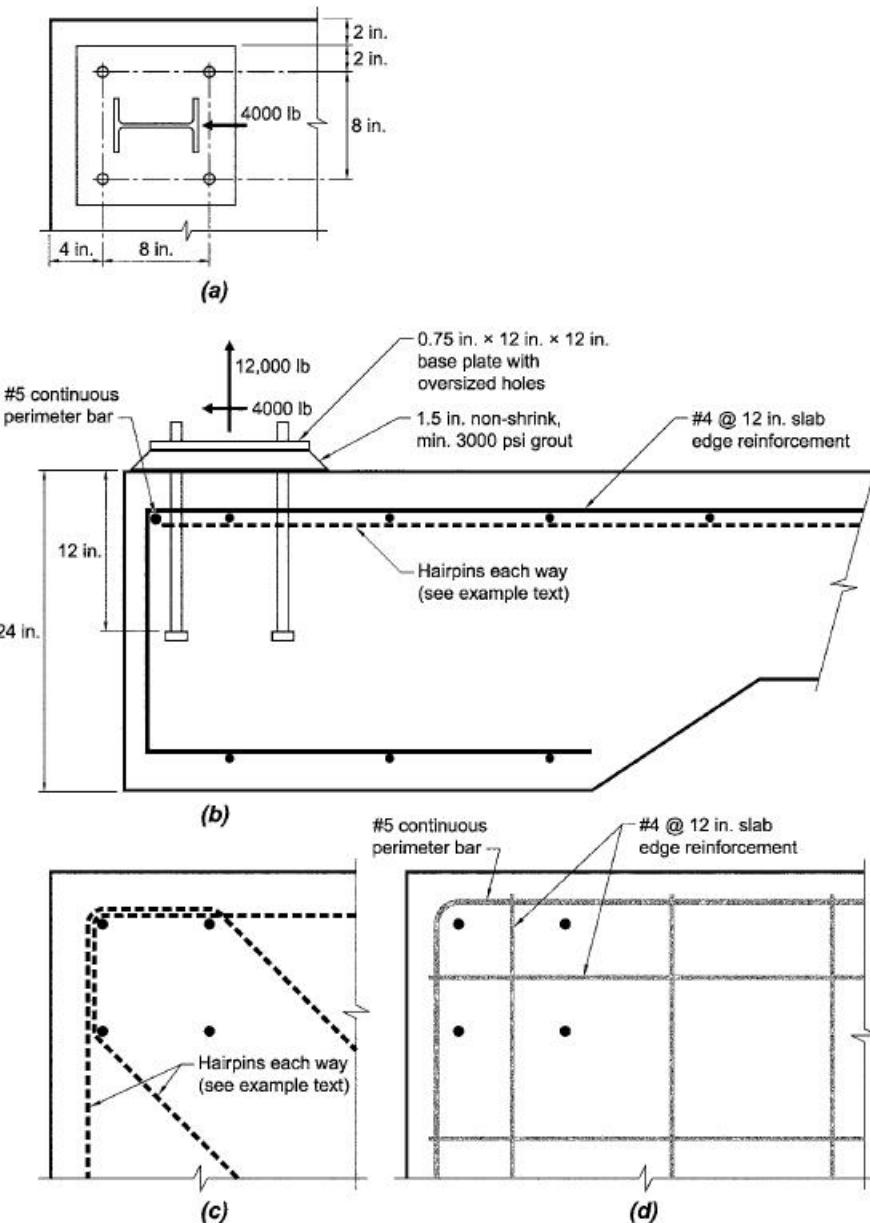
Seismic design strength reduction ratio = x 1.0 not applicable = 41.1 [kips] D.3.3.3
ratio = 0.10 > V_u **OK**

Govern Shear Resistance $V_r = \min [\phi_{v,s} V_{sa}, \phi_{v,c} (V_{cbg}, V_{cpg})]$ = **9.8** [kips]

Tension Shear Interaction

Check if $N_u > 0.2\phi N_n$ and $V_u > 0.2\phi V_n$ Yes D.7.1 & D.7.2
 $N_u / \phi N_n + V_u / \phi V_n$ = 0.99 D.7.3 (D-32)
ratio = 0.83 < 1.2 **OK**

Ductility Tension


$\phi_{t,s} N_{sa} = 75.2$ [kips]
 $> \phi_{t,c} \min (N_{cbg}, N_{pn}, N_{sbg})$ = 20.5 [kips]
Non-ductile

Ductility Shear

$\phi_{v,s} V_{sa} = 31.3$ [kips]
 $> \phi_{v,c} \min (V_{cbg}, V_{cpg})$ = 9.8 [kips]
Non-ductile

Example 12: Anchor Bolt + No Anchor Reinfnt + Tension & Shear + CSA A23.3-04 Code

This example taken from Example 8 on page 71 of *ACI 355.3R-11 Guide for Design of Anchorage to Concrete: Examples Using ACI 318 Appendix D*

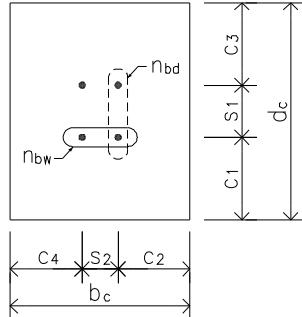
$$N_u = 53.4 \text{ kN (tension)}, \quad V_u = 17.8 \text{ kN}, \quad f'_c = 20.7 \text{ MPa}$$

Anchor bolt $d_a = 3/4$ in ASTM F1554 Grade 55 $h_{ef} = 305\text{mm}$ $h_a = 610\text{mm}$ Anchor head \rightarrow Hex

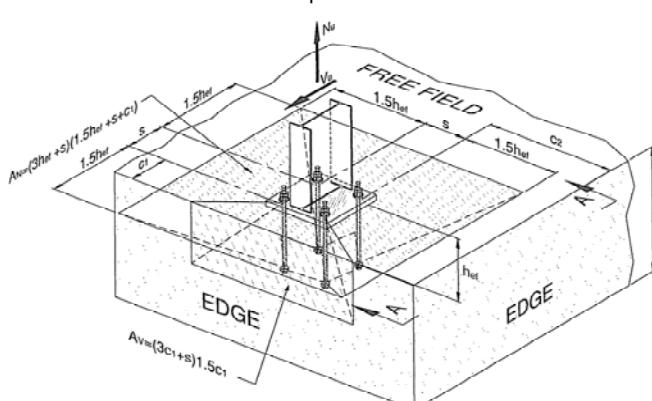
Supplementary reinforcement Tension \rightarrow Condition B

Shear \rightarrow Condition A $\Psi_{c,V} = 1.2$

Provide built-up grout pad Seismic is not a consideration


Field welded plate washers to base plate at each anchor

ANCHOR BOLT DESIGN		Combined Tension and Shear		Code Abbreviation
Anchor bolt design based on				
CSA-A23.3-04 (R2010) Design of Concrete Structures Annex D				A23.3-04 (R2010)
PIP STE05121 Anchor Bolt Design Guide-2006				PIP STE05121
Anchor Bolt Data		set $N_u = 0$ if it's compression		Code Reference
Factored tension for design	$N_u = 53.4$ [kN]	$N_u = 12.0$ [kips]		
Factored shear	$V_u = 17.8$ [kN]	$V_u = 4.0$ [kips]		
Factored shear for design	$V_u = 17.8$ [kN]	$V_u = 0$ if shear key is provided		
Concrete strength	$f'_c = 21$ [MPa]	$f'_c = 3.0$ [ksi]		
Anchor bolt material	= F1554 Grade 55			
Anchor tensile strength	$f_{uta} = 75$ [ksi]	$f_{uta} = 517$ [MPa]		A23.3-04 (R2010)
Anchor bolt diameter	$d_a = 0.75$ [in]	$d_a = 19.1$ [mm]		D.2
Bolt sleeve diameter	$d_s = 51$ [mm]			PIP STE05121
Bolt sleeve height	$h_s = 178$ [mm]			Page A -1 Table 1
		min required		
Anchor bolt embedment depth	$h_{ef} = 305$ [mm]	229	OK	Page A -1 Table 1
Concrete thickness	$h_a = 610$ [mm]	381	OK	
Bolt edge distance c_1	$c_1 = 102$ [mm]	114	Warn	Page A -1 Table 1
Bolt edge distance c_2	$c_2 = 102$ [mm]	114	Warn	
Bolt edge distance c_3	$c_3 = 2540$ [mm]	114	OK	
Bolt edge distance c_4	$c_4 = 2540$ [mm]	114	OK	A23.3-04 (R2010)
$c_i > 1.5h_{ef}$ for at least two edges to avoid reducing of h_{ef} when $N_u > 0$			Yes	D.6.2.3
Adjusted h_{ef} for design	$h_{ef} = 305$ [mm]	229	OK	D.6.2.3
Outermost bolt line spacing s_1	$s_1 = 203$ [mm]	76	OK	PIP STE05121
Outermost bolt line spacing s_2	$s_2 = 203$ [mm]	76	OK	Page A -1 Table 1


2011-12-30 Rev 1.2.7

Page 48 of 157

2 of 7

Number of bolt at bolt line 1	$n_1 = 2$		
Number of bolt at bolt line 2	$n_2 = 2$		
Number of bolt carrying tension	$n_t = 4$		
Oversized holes in base plate ?	= <input checked="" type="checkbox"/> No ?		
Number of bolt carrying shear	$n_s = 4$		
For side-face blowout check use			
No of bolt along width edge	$n_{bw} = 2$		
No of bolt along depth edge	$n_{bd} = 2$		
Anchor head type	= <input checked="" type="checkbox"/> Hex ?		
Bearing area of head	$A_{se} = 215 \text{ [mm}^2\text{]}$		
Bolt 1/8" (3mm) corrosion allowance	= <input checked="" type="checkbox"/> No ?	Code Reference	
Provide shear key ?	= <input checked="" type="checkbox"/> No ?	A23.3-04 (R2010)	
Seismic region where $I_E F_a S_a(0.2) \geq 0.35$	= <input checked="" type="checkbox"/> No ?	D.4.3.5	
Supplementary reinforcement			
For tension	= <input checked="" type="checkbox"/> No ? Condition B	D.5.4 (c)	
For shear	$\Psi_{c,V} = 1.2$ <input checked="" type="checkbox"/> Condition A ?	D.7.2.7	
Provide built-up grout pad ?	= <input checked="" type="checkbox"/> Yes ?	D.7.1.3	
Strength reduction factors			
Anchor reinforcement factor	$\phi_{as} = 0.75$	D.7.2.9	
Steel anchor resistance factor	$\phi_s = 0.85$	8.4.3 (a)	
Concrete resistance factor	$\phi_c = 0.65$	8.4.2	
Resistance modification factors			
Anchor rod - ductile steel	$R_{t,s} = 0.80$	$R_{v,s} = 0.75$	D.5.4(a)
Concrete	$R_{t,c} = 1.00$	$R_{v,c} = 1.15$	Cdn-B Cdn-A D.5.4(c)
Assumptions			
1. Concrete is cracked			
2. Condition B for tension - no supplementary reinforcement provided		D.5.4 (c)	
3. Tensile load acts through center of bolt group $\Psi_{ec,N} = 1.0$		D.6.2.4	
4. Shear load acts through center of bolt group $\Psi_{ec,V} = 1.0$		D.7.2.5	
5. Anchor bolt washer shall be tack welded to base plate for all anchor bolts to transfer shear		AISC Design Guide 1 section 3.5.3	

Diagram of a concrete foundation with anchor bolts:

CONCLUSION			3 of 7
Abchor Rod Embedment, Spacing and Edge Distance		Warn	
Overall	ratio = 0.86	OK	
Tension			
Anchor Rod Tensile Resistance	ratio = 0.18	OK	
Conc. Tensile Breakout Resistance	ratio = 0.62	OK	
Anchor Pullout Resistance	ratio = 0.29	OK	
Side Blowout Resistance	ratio = 0.24	OK	
Shear			
Anchor Rod Shear Resistance	ratio = 0.13	OK	
Conc. Shear Breakout Resistance	ratio = 0.41	OK	
Conc. Pryout Shear Resistance	ratio = 0.10	OK	
Anchor Rod on Conc Bearing	ratio = 0.08	OK	
Tension Shear Interaction			
Tension Shear Interaction	ratio = 0.86	OK	
Ductility			
Tension	Non-ductile		
Shear	Non-ductile		
Seismic Design Requirement		OK	D.4.3.6
leFaSa(0.2)<0.35, A23.3-04 D.4.3.3 ductility requirement is NOT required			
CALCULATION			Code Reference
			A23.3-04 (R2010)
Anchor Rod Tensile Resistance	$N_{sr} = n_t A_{se} \phi_s f_{uta} R_{t,s}$	= 303.1 [kN]	D.6.1.2 (D-3)
	ratio = 0.18	> N_u	OK
Conc. Tensile Breakout Resistance			
	$N_{br} = 10 \phi_c \sqrt{f_c} h_{ef}^{1.5} R_{t,c}$ if $h_{ef} \leq 275$ or $h_{ef} \geq 625$		D.6.2.2 (D-7)
	$3.9 \phi_c \sqrt{f_c} h_{ef}^{5/3} R_{t,c}$ if $275 < h_{ef} < 625$		D.6.2.2 (D-8)
		= 160.5 [kN]	
Projected conc failure area	$1.5h_{ef} =$	= 458 [mm]	
	$A_{Nc} = [s_1 + \min(c_1, 1.5h_{ef}) + \min(c_3, 1.5h_{ef})]x$	= 5.8E+05 [mm ²]	
	$[s_2 + \min(c_2, 1.5h_{ef}) + \min(c_4, 1.5h_{ef})]$		
	$A_{Nco} = 9 h_{ef}^2$	= 8.4E+05 [mm ²]	D.6.2.1 (D-6)
	$A_{Nc} = \min(A_{Nc}, n_t A_{Nco})$	= 5.8E+05 [mm ²]	D.6.2.1
Min edge distance	$c_{min} = \min(c_1, c_2, c_3, c_4)$	= 102 [mm]	
Eccentricity effects	$\Psi_{ec,N} = 1.0$ for no eccentric load		D.6.2.4
Edge effects	$\Psi_{ed,N} = \min[(0.7 + 0.3c_{min}/1.5h_{ef}), 1.0]$	= 0.77	D.6.2.5
Concrete cracking	$\Psi_{c,N} = 1.0$ for cracked concrete		D.6.2.6
Concrete splitting	$\Psi_{cp,N} = 1.0$ for cast-in anchor		D.6.2.7

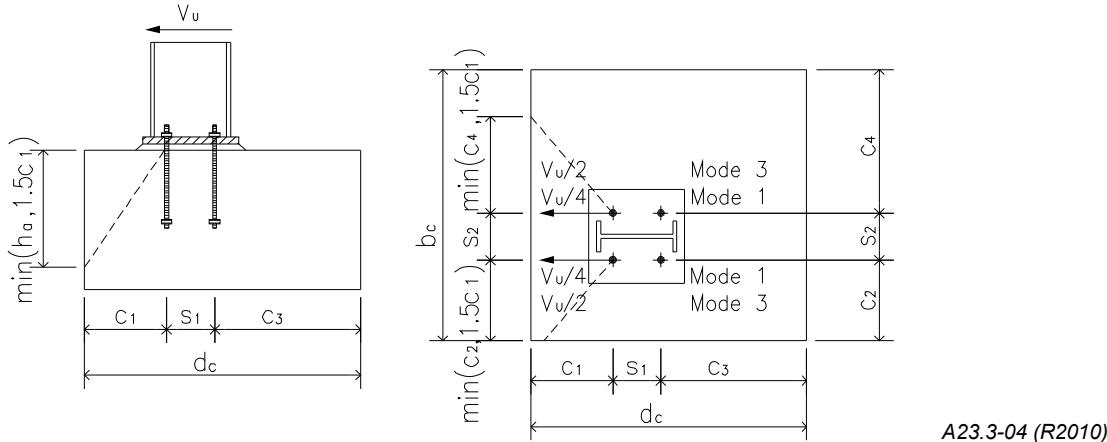
Code Reference					
A23.3-04 (R2010)					
Concrete breakout resistance	$N_{cbgr} = \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{br}$	= 85.5	[kN]	D.6.2.1 (D-5)	
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.62	= 85.5 > N _u	[kN]	D.4.3.5 OK	
Anchor Pullout Resistance					
Single bolt pullout resistance	$N_{pr} = 8 A_{brg} \phi_c f_c' R_{t,c}$	= 46.1	[kN]	D.6.3.4 (D-16)	
	$N_{cpr} = n_t \Psi_{c,p} N_{pr}$	= 184.3	[kN]	D.6.3.1 (D-15)	
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.29	= 184.3 > N _u	[kN]	D.4.3.5 OK	
	$\Psi_{c,p} = 1$ for cracked conc			D.6.3.6	
	$R_{t,c} = 1.00$ pullout strength is always Condition B			D.5.4(c)	
Side Blowout Resistance					
<u>Failure Along Pedestal Width Edge</u>					
Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal width edge	$N_{buw} = N_u \times n_{bw} / n_t$	= 26.7	[kN]	ACI318 M-08 RD.5.4.2	
	$c = \min(c_1, c_3)$	= 102	[mm]		
Check if side blowout applicable	$h_{ef} = 305$ [mm]			A23.3-04 (R2010)	
	> 2.5c	side blowout is applicable		D.6.4.1	
Check if edge anchors work as a group or work individually	$s_{22} = 203$ [mm]	$s = s_2 = 203$	[mm]		
	< 6c	edge anchors work as a group		D.6.4.2	
Single anchor SB resistance	$N_{sbr,w} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$	= 83.0	[kN]	D.6.4.1 (D-18)	
Multiple anchors SB resistance	$N_{sbgr,w} =$ work as a group - applicable = (1+s/6c) x N _{sbr,w}	= 110.5	[kN]	D.6.4.2 (D-19)	
	work individually - not applicable = n _{bw} x N _{sbr,w} x [1+(c ₂ or c ₄)/c] / 4	= 0.0	[kN]	D.6.4.1	
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.24	= 110.5 > N _{buw}	[kN]	D.4.3.5 OK	
<u>Failure Along Pedestal Depth Edge</u>					
Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal depth edge	$N_{bd} = N_u \times n_{bd} / n_t$	= 26.7	[kN]	ACI318 M-08 RD.5.4.2	
	$c = \min(c_2, c_4)$	= 102	[mm]		
Check if side blowout applicable	$h_{ef} = 305$ [mm]			A23.3-04 (R2010)	
	> 2.5c	side blowout is applicable		D.6.4.1	
Check if edge anchors work as a group or work individually	$s_{11} = 203$ [mm]	$s = s_1 = 203$	[mm]		
	< 6c	edge anchors work as a group		D.6.4.2	
Single anchor SB resistance	$N_{sbr,d} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$	= 83.0	[kN]	D.6.4.1 (D-18)	
Multiple anchors SB resistance	$N_{sbgr,d} =$ work as a group - applicable = (1+s/6c) x $\phi_{t,c}$ N _{sbr,d}	= 110.5	[kN]	D.6.4.2 (D-19)	
	work individually - not applicable = n _{bd} x N _{sbr,d} x [1+(c ₁ or c ₃)/c] / 4	= 0.0	[kN]	D.6.4.1	
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.24	= 110.5 > N _{bd}	[kN]	D.4.3.5 OK	

5 of 7

Group side blowout resistance $N_{sbgr} = \min\left(\frac{N_{sbgr,w}}{n_{bw}} n_t, \frac{N_{sbgr,d}}{n_{bd}} n_t\right) = 221.1$ [kN] Code Reference A23.3-04 (R2010)

Govern Tensile Resistance $N_r = \min(N_{sr}, N_{rbr}, N_{cpr}, N_{sbgr}) = 85.5$ [kN]

Note: Anchor bolt sleeve portion must be tape wrapped and grouted to resist shear


Anchor Rod Shear Resistance $V_{sr} = n_s A_{se} \phi_s 0.6 f_{uta} R_{v,s} = 170.5$ [kN] D.7.1.2 (b) (D-21)

Reduction due to built-up grout pads = $x 0.8$, applicable ratio = 0.13 = 136.4 [kN] D.7.1.3 > V_u **OK**

Conc. Shear Breakout Resistance

Mode 1 Failure cone at front anchors, strength check against $0.5 \times V_u$

Mode 3 Failure cone at front anchors, strength check against $1.0 \times V_u$, applicable when oversized holes are used in base plate

A23.3-04 (R2010)

Bolt edge distance $c_1 = 102$ [mm]

Limiting c_{a1} when anchors are influenced by 3 or more edges = No D.7.2.4

Bolt edge distance - adjusted $c_1 = c_{a1}$ needs NOT to be adjusted = 102 [mm] D.7.2.4

$c_2 = 102$ [mm]

$1.5c_1 = 153$ [mm]

$A_{Vc} = [\min(c_2, 1.5c_1) + s_2 + \min(c_4, 1.5c_1)] \times \min(1.5c_1, h_a) = 7.0E+04$ [mm²] D.7.2.1

$A_{Vco} = 4.5c_1^2 = 4.7E+04$ [mm²] D.7.2.1 (D-24)

$A_{Vc} = \min(A_{Vc}, n_1 A_{Vco}) = 7.0E+04$ [mm²] D.7.2.1

$l_e = \min(8d_a, h_{ef}) = 152$ [mm] D.3

$V_{br} = 0.58 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \phi_s \sqrt{f_c} c_{a1}^{1.5} R_{v,c} = 13.5$ [kN] D.7.2.2 (D-25)

Eccentricity effects $\Psi_{ec,v} = 1.0$ shear acts through center of group D.7.2.5

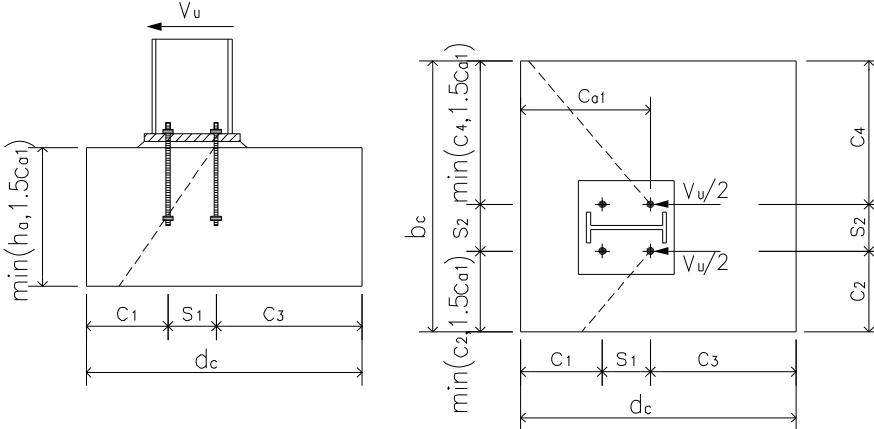
Edge effects $\Psi_{ed,v} = \min[(0.7+0.3c_2/1.5c_1), 1.0] = 0.90$ D.7.2.6

Concrete cracking $\Psi_{c,v} = 1.20$ D.7.2.7

Member thickness $\Psi_{h,v} = \max[\sqrt{1.5c_1/h_a}, 1.0] = 1.00$ D.7.2.8

Code Reference

A23.3-04 (R2010)


Conc shear breakout

$$V_{cbgr1} = \frac{A_{vc}}{A_{vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_{br} = 21.9 \text{ [kN]} \quad \text{D.7.2.1 (D-23)}$$

Mode 1 is used for checking

$$V_{cbgr1} = V_{cbg1} \times 2.0 = 43.8 \text{ [kN]}$$

Mode 2 Failure cone at back anchors

A23.3-04 (R2010)

Bolt edge distance

$$c_{a1} = c_1 + s_1 = 305 \text{ [mm]}$$

Limiting c_{a1} when anchors are influenced by 3 or more edges

= No D.7.2.4

Bolt edge distance - adjusted

$$c_{a1} = c_{a1} \text{ needs NOT to be adjusted} = 305 \text{ [mm]} \quad \text{D.7.2.4}$$

$$c_2 = 102 \text{ [mm]}$$

$$1.5c_{a1} = 458 \text{ [mm]}$$

$$A_{vc} = [\min(c_2, 1.5c_{a1}) + s_2 + \min(c_4, 1.5c_{a1})] \times \min(1.5c_{a1}, h_a) = 3.5E+05 \text{ [mm}^2\text{]} \quad \text{D.7.2.1}$$

$$A_{vco} = 4.5c_{a1}^2 = 4.2E+05 \text{ [mm}^2\text{]} \quad \text{D.7.2.1 (D-24)}$$

$$A_{vc} = \min(A_{vc}, n_2 A_{vco}) = 3.5E+05 \text{ [mm}^2\text{]} \quad \text{D.7.2.1}$$

$$l_e = \min(8d_a, h_{ef}) = 152 \text{ [mm]} \quad \text{D.3}$$

$$V_{br} = 0.58 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \phi_c \sqrt{f_c} c_{a1}^{1.5} R_{v,c} = 70.0 \text{ [kN]} \quad \text{D.7.2.2 (D-25)}$$

Eccentricity effects

$$\Psi_{ec,v} = 1.0 \text{ shear acts through center of group} \quad \text{D.7.2.5}$$

Edge effects

$$\Psi_{ed,v} = \min[(0.7+0.3c_2/1.5c_{a1}), 1.0] = 0.77 \quad \text{D.7.2.6}$$

Concrete cracking

$$\Psi_{c,v} = 1.20 \quad \text{D.7.2.7}$$

Member thickness

$$\Psi_{h,v} = \max[\sqrt{1.5c_{a1}/h_a}, 1.0] = 1.00 \quad \text{D.7.2.8}$$

Conc shear breakout

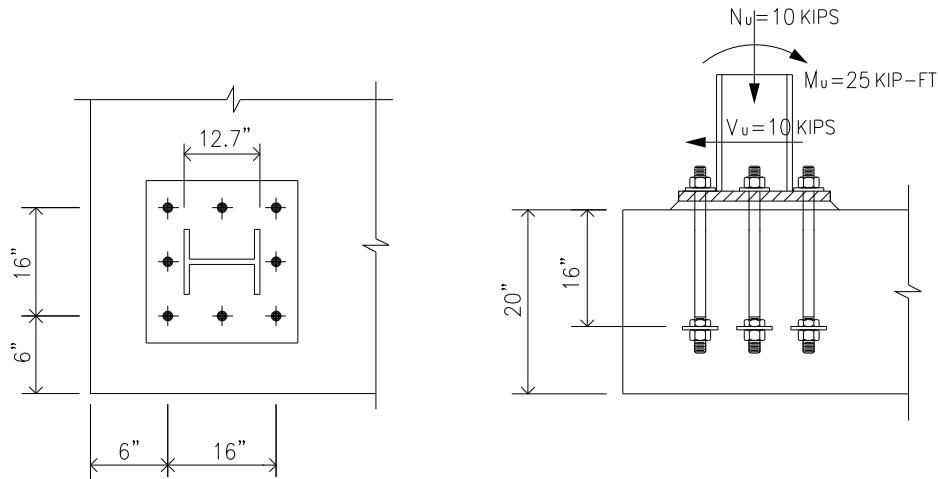
$$V_{cbgr2} = \frac{A_{vc}}{A_{vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_{br} = 53.7 \text{ [kN]} \quad \text{D.7.2.1 (D-23)}$$

Min shear breakout resistance

$$V_{cbgr} = \min(V_{cbgr1}, V_{cbgr2}) = 43.8 \text{ [kN]}$$

Seismic design strength reduction

$$= x 1.0 \text{ not applicable} = 43.8 \text{ [kN]} \quad \text{D.4.3.5}$$


ratio = 0.41

> V_u

OK

7 of 7

Code Reference				
A23.3-04 (R2010)				
Conc. Pryout Shear Resistance	$k_{cp} = 2.0$			D.7.3
Factored shear prout resistance	$V_{cpgr} = k_{cp} N_{cbgr}$	= 171.0	[kN]	D.7.3 (D-32)
	$R_{v,c} = 1.00$	prout strength is always Condition B		D.5.4(c)
Seismic design strength reduction ratio	= x 1.0 not applicable	= 171.0	[kN]	D.4.3.5
	ratio = 0.10	> V_u	OK	
CSA S16-09				
Anchor Rod on Conc Bearing	$B_r = n_s \times 1.4 \times \phi_c \times \min(8d_a, h_{ef}) \times d_a \times f_c'$	= 221.9	[kN]	25.3.3.2
	ratio = 0.08	> V_u	OK	
Govern Shear Resistance	$V_r = \min(V_{sr}, V_{cbgr}, V_{cpgr}, B_r)$	= 43.8	[kN]	A23.3-04 (R2010)
Tension Shear Interaction				
Check if $N_u > 0.2 N_r$ and $V_u > 0.2 V_r$	Yes			D.8.2 & D.8.3
	$N_u/N_r + V_u/V_r$	= 1.03		D.8.4 (D-35)
	ratio = 0.86	< 1.2	OK	
Ductility Tension				
	$N_{sr} = 303.1$ [kN]			
	> $\min(N_{cbgr}, N_{opr}, N_{sbgr})$	= 85.5	[kN]	
	Non-ductile			
Ductility Shear				
	$V_{sr} = 136.4$ [kN]			
	> $\min(V_{cbgr}, V_{cpgr}, B_r)$	= 43.8	[kN]	
	Non-ductile			

Example 13: Anchor Bolt + No Anchor Reinf + Tension Shear & Moment + ACI 318-08 Code

$M_u = 25 \text{ kip-ft}$ $N_u = 10 \text{ kips}$ (Compression) $V_u = 10 \text{ kips}$
 Concrete $f'_c = 5 \text{ ksi}$
 Anchor bolt F1554 Grade 36 1.25" dia Heavy Hex Head $h_{ef} = 16"$ $h_a = 20"$
 Oversized holes in base plate
 Seismic design category < C
 Supplementary reinforcement Tension \rightarrow Condition A
 Shear \rightarrow Condition A $\Psi_{c,V} = 1.2$
 Provide built-up grout pad

ANCHOR BOLT DESIGN

Combined Tension, Shear and Moment

Anchor bolt design based on

ACI 318-08 Building Code Requirements for Structural Concrete and Commentary Appendix D

PIP STE05121 Anchor Bolt Design Guide-2006

Code Abbreviation

ACI 318-08

PIP STE05121

Assumptions

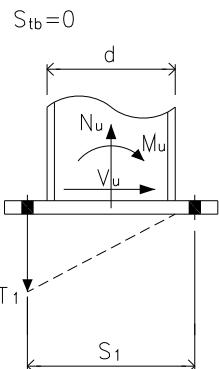
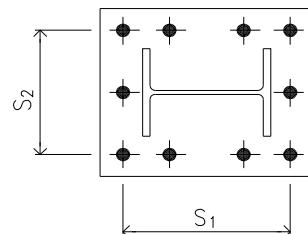
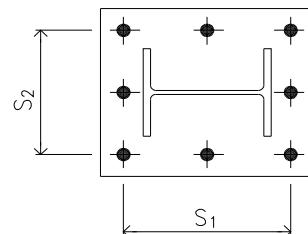
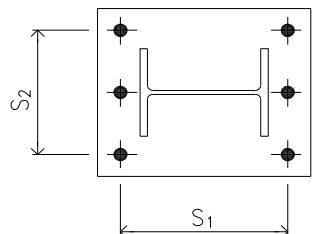
1. Concrete is cracked
2. Condition A - supplementary reinforcement provided
3. Load combinations shall be per ACI 318-08 Chapter 9 or ASCE 7-05 Chapter 2
4. Shear load acts through center of bolt group $\Psi_{ec,v} = 1.0$
5. For anchor group subject to moment, the anchor tensile load is designed using elastic analysis and there is no redistribution of the forces between highly stressed and less stressed anchors
6. For anchor tensile force calc in anchor group subject to moment, assume the compression resultant is at the outside edge of the compression flange and base plate exhibits rigid-body rotation. This simplified approach yields conservative output
7. Shear carried by only half of total anchor bolts due to oversized holes in column base plate

Code Reference

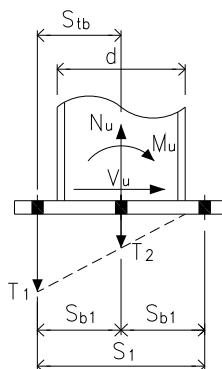
ACI 318-08

D.4.4 (c)

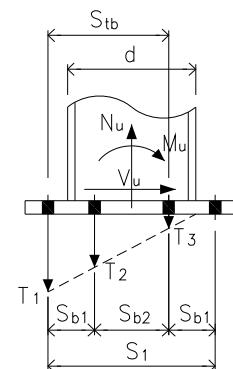
D.4.4





D.6.2.5

D.3.1


AISC Design Guide 1
section 3.5.3

Anchor Bolt Data


Factored moment	$M_u = 25.0$	[kip-ft]	$= 33.9$	[kNm]
Factored tension /compression	$N_u = -10.0$	[kips]	in compression $= -44.5$	[kN]
Factored shear	$V_u = 10.0$	[kips]	$= 44.5$	[kN]
Factored shear for bolt design	$V_u = 10.0$	[kips]	$V_u = 0$ if shear key is provided	

2 BOLT LINE

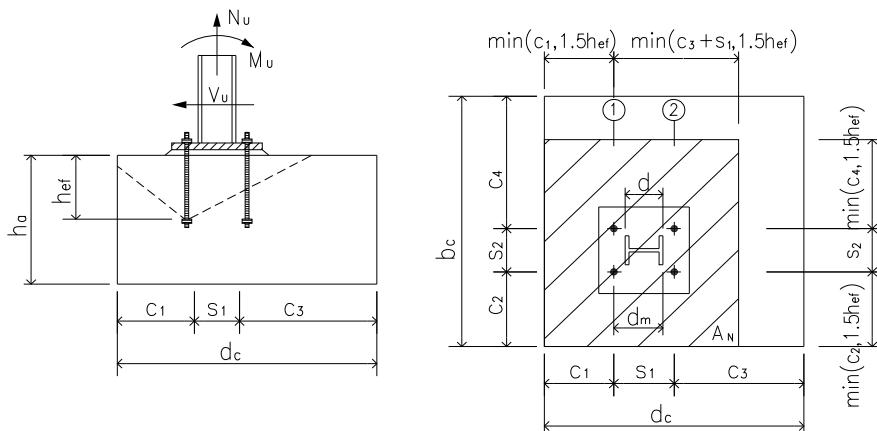
3 BOLT LINE

4 BOLT LINE

No of bolt line for resisting moment

= 3 Bolt Line

No of bolt along outermost bolt line


= 3

Code Reference

PIP STE05121

Page A -1 Table 1

Outermost bolt line spacing s_1	$s_1 = 16.0$ [in]	5.0	OK	
Outermost bolt line spacing s_2	$s_2 = 16.0$ [in]	5.0	OK	
Internal bolt line spacing s_{b1}	$s_{b1} = 8.0$ [in]	5.0	OK	
Internal bolt line spacing s_{b2}	$s_{b2} = 0.0$ [in]	5.0	OK	
Column depth	$d = 12.7$ [in]			
Concrete strength	$f_c = 5.0$ [ksi]		= 34.5 [MPa]	
Anchor bolt material	= F1554 Grade 36			
Anchor tensile strength	$f_{uta} = 58$ [ksi]		= 400 [MPa]	ACI 318-08
		Anchor is ductile steel element		D.1
Anchor bolt diameter	$d_a = 1.25$ [in]		= 31.8 [mm]	PIP STE05121
Bolt sleeve diameter	$d_s = 3.0$ [in]			Page A -1 Table 1
Bolt sleeve height	$h_s = 10.0$ [in]			
Anchor bolt embedment depth	$h_{ef} = 16.0$ [in]	15.0	OK	Page A -1 Table 1
Concrete thickness	$h_a = 20.0$ [in]	19.0	OK	
Bolt edge distance c_1	$c_1 = 6.0$ [in]	5.0	OK	Page A -1 Table 1
Bolt edge distance c_2	$c_2 = 6.0$ [in]	5.0	OK	
Bolt edge distance c_3	$c_3 = 100.0$ [in]	5.0	OK	
Bolt edge distance c_4	$c_4 = 100.0$ [in]	5.0	OK	ACI 318-08
$c_i > 1.5h_{ef}$ for at least two edges to avoid reducing of h_{ef} when $N_u > 0$			Yes	D.5.2.3
Adjusted h_{ef} for design	$h_{ef} = 16.00$ [in]	15.0	OK	D.5.2.3

			3 of 7
Number of bolt at bolt line 1	$n_1 = 3$	Code Reference	
Number of bolt at bolt line 2	$n_2 = 3$		
Number of bolt carrying tension	$n_t = 5$		
Oversized holes in base plate ?	= <input checked="" type="checkbox"/> Yes ?		
Total no of anchor bolt	$n = 8$		
Number of bolt carrying shear	$n_s = 4$		
Anchor head type	= <input checked="" type="checkbox"/> Heavy Hex	?	
Anchor effective cross sect area	$A_{se} = 0.969 \text{ [in}^2]$		
Bearing area of head	$A_{brg} = 2.237 \text{ [in}^2]$		
	A_{brg} $\text{[in}^2]$ not applicable		
Bolt 1/8" (3mm) corrosion allowance	= <input checked="" type="checkbox"/> No ?		
Provide shear key ?	= <input checked="" type="checkbox"/> No ?	ACI 318-08	
Seismic design category >= C	= <input checked="" type="checkbox"/> No ?	D.3.3.3	
Supplementary reinforcement			
For tension	= <input checked="" type="checkbox"/> Yes Condition A	D.4.4 (c)	
For shear	$\Psi_{c,V} = 1.2$ Condition A	?	
Provide built-up grout pad ?	= <input checked="" type="checkbox"/> Yes ?	D.6.1.3	
Strength reduction factors			
Anchor reinforcement	$\phi_s = 0.75$	D.5.2.9 & D.6.2.9	
Anchor rod - ductile steel	$\phi_{t,s} = 0.75$	D.4.4 (a)	
Concrete	$\phi_{t,c} = 0.75$ Cdn-A	$\phi_{v,s} = 0.65$	Cdn-A D.4.4 (c)
CONCLUSION			
Abchor Rod Embedment, Spacing and Edge Distance			OK
Overall	ratio = 0.81		OK
Tension			
Anchor Rod Tensile Resistance	ratio = 0.12		OK
Conc. Tensile Breakout Resistance	ratio = 0.39		OK
Anchor Pullout Resistance	ratio = 0.08		OK
Side Blowout Resistance	ratio = 0.13		OK
Shear			
Anchor Rod Shear Resistance	ratio = 0.14		OK
Conc. Shear Breakout Resistance	ratio = 0.58		OK
Conc. Pryout Shear Resistance	ratio = 0.11		OK
Tension Shear Interaction			
Tension Shear Interaction	ratio = 0.81		OK
Ductility			ACI 318-08
	Tension	Ductile	
	Shear	Non-ductile	
Seismic Design Requirement			OK D.3.3.4
SDC< C, ACI318-08 D.3.3 ductility requirement is NOT required			

CALCULATION				Code Reference
Anchor Tensile Force				ACI 318-08
Single bolt tensile force	$T_1 = 4.86$ [kips]	No of bolt for T_1 $n_{T1} = 3$		
	$T_2 = 2.15$ [kips]	No of bolt for T_2 $n_{T2} = 2$		
	$T_3 = 0.00$ [kips]	No of bolt for T_3 $n_{T3} = 0$		
Sum of bolt tensile force	$N_u = \sum n_i T_i$	= 18.9	[kips]	
Tensile bolts outer distance s_{tb}	$s_{tb} = 8.0$ [in]			
Eccentricity e'_N -- distance between resultant of tensile load and centroid of anchors loaded in tension				Fig. RD.5.2.4 (b)
Eccentricity modification factor	$\Psi_{ec,N} = \frac{1}{\left(1 + \frac{2e'_N}{3h_{ef}}\right)}$	= 0.95		D.5.2.4 (D-9)
Anchor Rod Tensile Resistance	$\phi_{t,s} N_{sa} = \phi_{t,s} A_{se} f_{uta}$	= 42.2	[kips]	D.5.1.2 (D-3)
	ratio = 0.12	> T_1		OK
Conc. Tensile Breakout Resistance				
Projected conc failure area	$N_b = 24 \lambda \sqrt{f_c} h_{ef}^{1.5}$ if $h_{ef} < 11"$ or $h_{ef} > 25"$	= 114.9	[kips]	D.5.2.2 (D-7)
	$16 \lambda \sqrt{f_c} h_{ef}^{5/3}$ if $11" \leq h_{ef} \leq 25"$			D.5.2.2 (D-8)
Min edge distance	$1.5h_{ef} =$	= 24.00	[in]	
Eccentricity effects	$A_{Nc} = [s_{tb} + \min(c_1, 1.5h_{ef}) + \min(c_3, 1.5h_{ef})]x$	= 1748.0	[in ²]	
Edge effects	$[s_2 + \min(c_2, 1.5h_{ef}) + \min(c_4, 1.5h_{ef})]$			
Concrete cracking	$A_{Nco} = 9 h_{ef}^2$	= 2304.0	[in ²]	D.5.2.1 (D-6)
Concrete splitting	$A_{Nc} = \min(A_{Nc}, n_t A_{Nco})$	= 1748.0	[in ²]	D.5.2.1
Concrete breakout resistance	$c_{min} = \min(c_1, c_2, c_3, c_4)$	= 6.0	[in]	
	$\Psi_{ec,N} =$	= 0.95		D.5.2.4 (D-9)
	$\Psi_{ed,N} = \min[(0.7 + 0.3c_{min}/1.5h_{ef}), 1.0]$	= 0.78		D.5.2.5
	$\Psi_{c,N} = 1.0$ for cracked concrete			D.5.2.6
	$\Psi_{cp,N} = 1.0$ for cast-in anchor			D.5.2.7
Seismic design strength reduction	$\phi_{t,c} N_{cbg} = \phi_{t,c} \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$	= 47.9	[kips]	D.5.2.1 (D-5)
	= x 1.0 not applicable	= 47.9	[kips]	D.3.3.3
	ratio = 0.39	> N_u		OK
Anchor Pullout Resistance				
Single bolt pullout resistance	$N_p = 8 A_{brg} f_c'$	= 89.5	[kips]	D.5.3.4 (D-15)
Seismic design strength reduction	$\phi_{t,c} N_{pn} = \phi_{t,c} \Psi_{c,p} N_p$	= 62.6	[kips]	D.5.3.1 (D-14)
	= x 1.0 not applicable	= 62.6	[kips]	D.3.3.3
	ratio = 0.08	> T_1		OK
	$\Psi_{c,p} = 1$ for cracked conc			D.5.3.6
	$\phi_{t,c} = 0.70$ pullout strength is always Condition B			D.4.4(c)

Side Blowout Resistance**Code Reference**

ACI 318-08

Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal width edge	$N_{buw} = n_{T1} T_1$	= 14.6	[kips]	RD.5.4.2
	$c = \min(c_1, c_3)$	= 6.0	[in]	
Check if side blowout applicable	$h_{ef} = 16.0$ [in]	> 2.5c	side blowout is applicable	D.5.4.1
Check if edge anchors work as a group or work individually	$s_{22} = 8.0$ [in]	< 6c	s = s ₂ = 16.0 [in]	D.5.4.2
Single anchor SB resistance	$\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c}$	= 76.1	[kips]	D.5.4.1 (D-17)
Multiple anchors SB resistance	$\phi_{t,c} N_{sbg,w} =$			
work as a group - applicable	= (1+s/6c) x $\phi_{t,c} N_{sb}$	= 110.0	[kips]	D.5.4.2 (D-18)
work individually - not applicable	= $n_{bw} \times \phi_{t,c} N_{sb} \times [1+(c_2 \text{ or } c_4)/c]/4$	= 0.0	[kips]	D.5.4.1
Seismic design strength reduction	= x 1.0 not applicable	= 110.0	[kips]	D.3.3.3
	ratio = 0.13	> N _{buw}	OK	

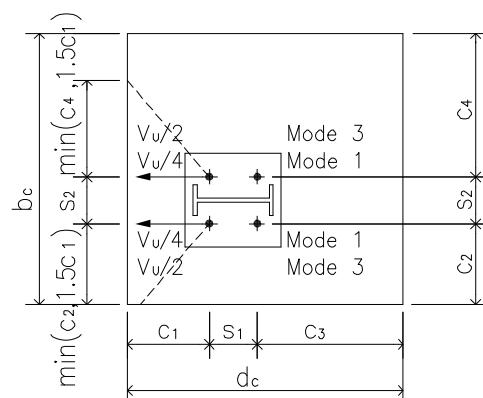
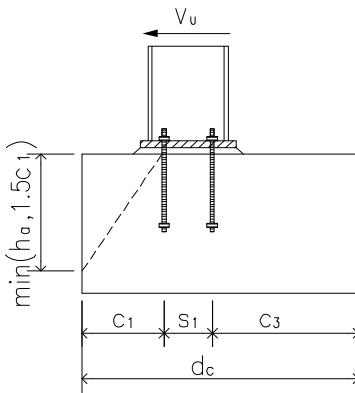
$$\text{Group side blowout resistance } \phi_{t,c} N_{sbg} = \phi_{t,c} \frac{N_{sbgr,w}}{n_{T1}} n_t = 183.3 \text{ [kips]}$$

$$\text{Govern Tensile Resistance } N_r = \min[\phi_{t,s} n_t N_{sa}, \phi_{t,c} (N_{cbg}, n_t N_{pn}, N_{sbg})] = 47.9 \text{ [kips]}$$

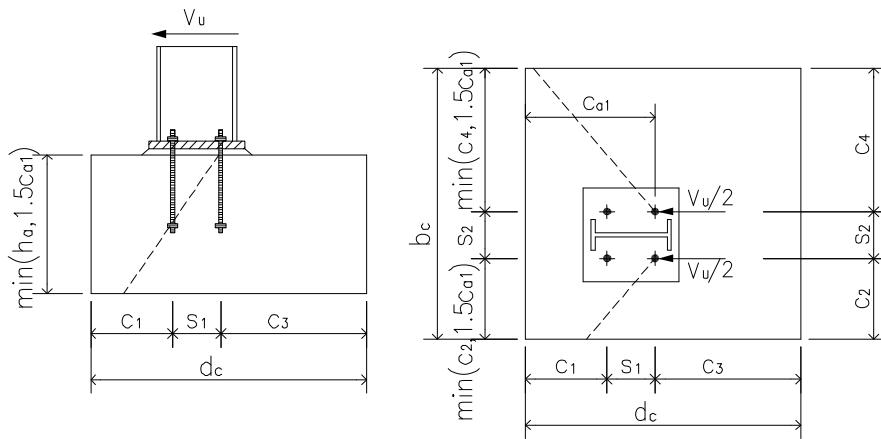
Note: Anchor bolt sleeve portion must be tape wrapped and grouted to resist shear

$$\text{Anchor Rod Shear Resistance } \phi_{v,s} V_{sa} = \phi_{v,s} n_s 0.6 A_{se} f_{uta} = 87.7 \text{ [kips]} \text{ D.6.1.2 (b) (D-20)}$$

Resistance



$$\text{Reduction due to built-up grout pads} = x 0.8, \text{ applicable} = 70.1 \text{ [kips]} \text{ D.6.1.3}$$

ratio = 0.14 > V_u OK


Conc. Shear Breakout Resistance

Mode 1 Failure cone at front anchors, strength check against $0.5 \times V_u$

Mode 3 Failure cone at front anchors, strength check against $1.0 \times V_u$, applicable when oversized holes are used in base plate

Code Reference				
Bolt edge distance	$c_{a1} =$	= 6.0	[in]	ACI 318-08
Limiting c_{a1} when anchors are influenced by 3 or more edges		= No		D.6.2.4
Bolt edge distance - adjusted	$c_{a1} = ca1$ needs NOT to be adjusted	= 6.0	[in]	D.6.2.4
	$c_2 =$	= 6.0	[in]	
	$1.5c_{a1} =$	= 9.0	[in]	
	$A_{vc} = [\min(c_2, 1.5c_{a1}) + s_2 + \min(c_4, 1.5c_{a1})] \times$	= 279.0	[in ²]	D.6.2.1
	$\min(1.5c_{a1}, h_a)$			
	$A_{vco} = 4.5c_{a1}^2$	= 162.0	[in ²]	D.6.2.1 (D-23)
	$A_{vc} = \min(A_{vc}, n_1 A_{vco})$	= 279.0	[in ²]	D.6.2.1
	$l_e = \min(8d_a, h_{ef})$	= 10.0	[in]	D.6.2.2
	$V_b = \left[7 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \right] \lambda \sqrt{f_c} c_1^{1.5}$	= 12.3	[kips]	D.6.2.2 (D-24)
Eccentricity effects	$\Psi_{ec,v} = 1.0$ shear acts through center of group			D.6.2.5
Edge effects	$\Psi_{ed,v} = \min[(0.7+0.3c_2/1.5c_1), 1.0]$	= 0.90		D.6.2.6
Concrete cracking	$\Psi_{c,v} =$	= 1.20		D.6.2.7
Member thickness	$\Psi_{h,v} = \max[(\sqrt{1.5c_1} / h_a), 1.0]$	= 1.00		D.6.2.8
Conc shear breakout resistance	$V_{cbg1} = \phi_{v,c} \frac{A_{vc}}{A_{vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_b$	= 17.2	[kips]	D.6.2.1 (D-22)
				Fig. RD.6.2.1 (b)
Mode 3 is used for checking	$V_{cbg1} = V_{cbg1} \times 1.0$	= 17.2	[kips]	note

Mode 2 Failure cone at back anchors

ACI 318-08

Bolt edge distance	$c_{a1} =$	= 22.0	[in]	
Limiting c_{a1} when anchors are influenced by 3 or more edges		= No		D.6.2.4
Bolt edge distance - adjusted	$c_{a1} = ca1$ needs NOT to be adjusted	= 22.0	[in]	D.6.2.4
	$c_2 =$	= 6.0	[in]	
	$1.5c_{a1} =$	= 33.0	[in]	

7 of 7

Code Reference

ACI 318-08

$$A_{Vc} = [\min(c_2, 1.5c_{a1}) + s_2 + \min(c_4, 1.5c_{a1})] x = 1100.0 \text{ [in}^2\text{]} \quad \text{D.6.2.1}$$

$$\min(1.5c_{a1}, h_a)$$

$$A_{Vco} = 4.5c_{a1}^2 = 2178.0 \text{ [in}^2\text{]} \quad \text{D.6.2.1 (D-23)}$$

$$A_{Vc} = \min(A_{Vc}, n_2 A_{Vco}) = 1100.0 \text{ [in}^2\text{]} \quad \text{D.6.2.1}$$

$$l_e = \min(8d_a, h_{ef}) = 10.0 \text{ [in]} \quad \text{D.6.2.2}$$

$$V_b = \left[7 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \right] \lambda \sqrt{f'_c} c_{a1}^{1.5} = 86.6 \text{ [kips]} \quad \text{D.6.2.2 (D-24)}$$

Eccentricity effects

$$\Psi_{ec,v} = 1.0 \quad \text{shear acts through center of group} \quad \text{D.6.2.5}$$

Edge effects

$$\Psi_{ed,v} = \min[(0.7 + 0.3c_2/1.5c_{a1}), 1.0] = 0.75 \quad \text{D.6.2.6}$$

Concrete cracking

$$\Psi_{c,v} = 1.20 \quad \text{D.6.2.7}$$

Member thickness

$$\Psi_{h,v} = \max[\sqrt{1.5c_{a1}/h_a}, 1.0] = 1.28 \quad \text{D.6.2.8}$$

Conc shear breakout

$$V_{cbg2} = \phi_{v,c} \frac{A_{Vc}}{A_{Vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_b = 38.1 \text{ [kips]} \quad \text{D.6.2.1 (D-22)}$$

Min shear breakout resistance

$$V_{cbg} = \min(V_{cbg1}, V_{cbg2}) = 17.2 \text{ [kips]}$$

Seismic design strength reduction

$$= x 1.0 \quad \text{not applicable} = 17.2 \text{ [kips]} \quad \text{D.3.3.3}$$

$$\text{ratio} = 0.58 > V_u \quad \text{OK}$$

Conc. Pryout Shear Resistance

$$k_{cp} = 2.0 \quad \text{D.6.3}$$

$$\text{Factored shear prayout resistance} \quad \phi_{v,c} V_{cpq} = \phi_{v,c} k_{cp} N_{cbg} = 89.5 \text{ [kips]} \quad \text{D.6.3 (D-31)}$$

$$\phi_{v,c} = 0.70 \quad \text{prayout strength is always Condition B} \quad \text{D.4.4(c)}$$

Seismic design strength reduction

$$= x 1.0 \quad \text{not applicable} = 89.5 \text{ [kips]} \quad \text{D.3.3.3}$$

$$\text{ratio} = 0.11 > V_u \quad \text{OK}$$

Govern Shear Resistance

$$V_r = \min[\phi_{v,s} V_{sa}, \phi_{v,c} (V_{cbg}, V_{cpq})] = 17.2 \text{ [kips]}$$

Tension Shear Interaction

Check if $N_u > 0.2\phi N_n$ and $V_u > 0.2\phi V_n$ Yes

$$N_u / \phi N_n + V_u / \phi V_n = 0.98 \quad \text{D.7.1 & D.7.2}$$

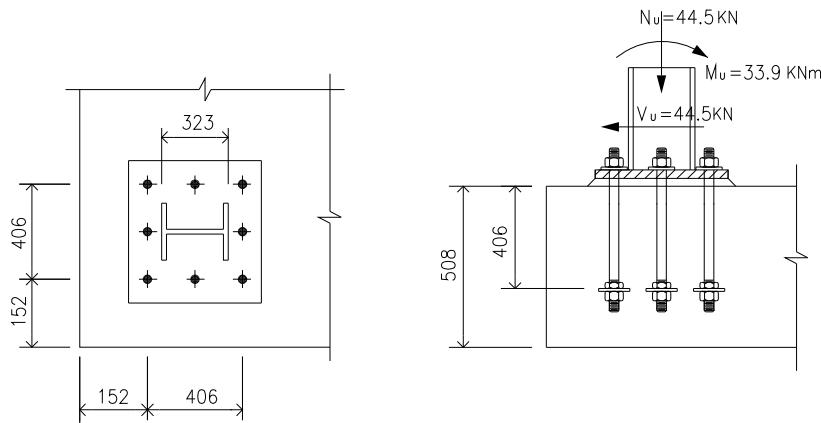
$$\text{ratio} = 0.81 < 1.2 \quad \text{OK}$$

Ductility Tension

$$\phi_{t,s} N_{sa} = 42.2 \text{ [kips]}$$

$$< \phi_{t,c} \min(N_{cbg}, N_{pn}, N_{sbq}) = 47.9 \text{ [kips]}$$

Ductile


Ductility Shear

$$\phi_{v,s} V_{sa} = 70.1 \text{ [kips]}$$

$$> \phi_{v,c} \min(V_{cbg}, V_{cpq}) = 17.2 \text{ [kips]}$$

Non-ductile

Example 14: Anchor Bolt + No Anchor Reinf + Tension Shear & Moment + CSA A23.3-04 Code

$M_u = 33.9 \text{ kNm}$ $N_u = 44.5 \text{ kN}$ (Compression)

$V_u = 44.5 \text{ kN}$

Concrete $f'_c = 34.5 \text{ MPa}$

Anchor bolt F1554 Grade 36 1.25" dia Heavy Hex Head $h_{ef} = 406\text{mm}$ $h_a = 508\text{mm}$

Oversized holes in base plate

Seismic design $I_E F_a S_a (0.2) < 0.35$

Supplementary reinforcement Tension \rightarrow Condition A

Shear \rightarrow Condition A $\Psi_{c,V} = 1.2$

Provide built-up grout pad

ANCHOR BOLT DESIGN

Combined Tension, Shear and Moment

Anchor bolt design based on

Code Abbreviation

CSA-A23.3-04 (R2010) Design of Concrete Structures Annex D

A23.3-04 (R2010)

ACI 318M-08 Metric Building Code Requirements for Structural Concrete and Commentary

ACI318 M-08

PIP STE05121 Anchor Bolt Design Guide-2006

PIP STE05121

Assumptions

1. Concrete is cracked
2. Condition A for tension - supplementary reinforcement provided
3. Shear load acts through center of bolt group $\Psi_{ec,V} = 1.0$
4. For anchor group subject to moment, the anchor tensile load is designed using elastic analysis and there is no redistribution of the forces between highly stressed and less stressed anchors
5. For anchor tensile force calc in anchor group subject to moment, assume the compression resultant is at the outside edge of the compression flange and base plate exhibits rigid-body rotation. This simplified approach yields conservative output
6. Shear carried by only half of total anchor bolts due to oversized holes in column base plate

Code Reference

A23.3-04 (R2010)

D.5.4 (c)

D.7.2.5

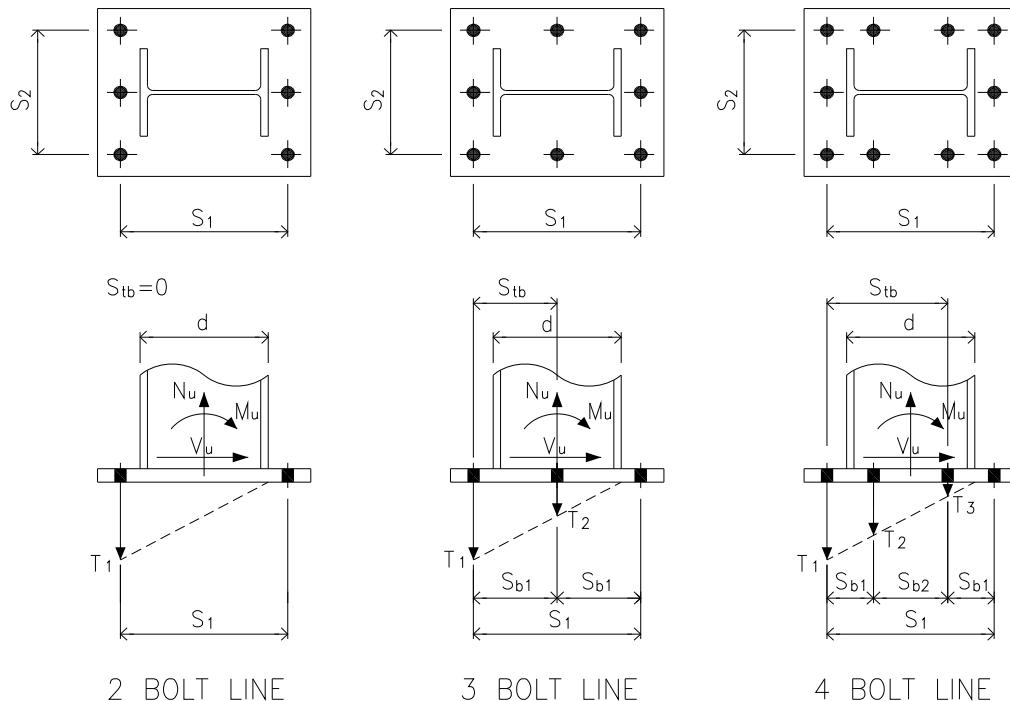
D.4.1

AISC Design Guide 1
section 3.5.3

Anchor Bolt Data

Factored moment

 $M_u = 33.9$ [kNm] = 25.0 [kip-ft]


Factored tension /compression

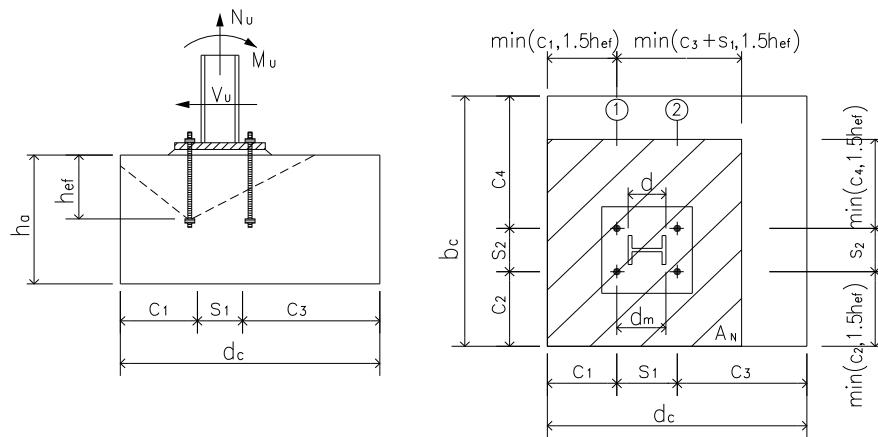
 $N_u = -44.5$ [kN] in compression = -10.0 [kips]

Factored shear

 $V_u = 44.5$ [kN] = 10.0 [kips]

Factored shear for bolt design

 $V_u = 44.5$ [kN] $V_u = 0$ if shear key is provided


No of bolt line for resisting moment

= 3 Bolt Line

No of bolt along outermost bolt line

= 3

min required				Code Reference
Outermost bolt line spacing s_1	$s_1 = 406$	[mm]	127	OK
Outermost bolt line spacing s_2	$s_2 = 406$	[mm]	127	OK
Internal bolt line spacing s_{b1}	$s_{b1} = 203$	[mm]	127	OK
Internal bolt line spacing s_{b2}	$s_{b2} = 0$	[mm]	127	OK
Column depth	$d = 323$	[mm]		
Concrete strength	$f_c = 35$	[MPa]	= 5.0 [ksi]	
Anchor bolt material	= F1554 Grade 36			
Anchor tensile strength	$f_{uta} = 58$	[ksi]	= 400 [MPa]	A23.3-04 (R2010)
	Anchor is ductile steel element			
Anchor bolt diameter	$d_a = 1.25$	[in]	= 31.8 [mm]	PIP STE05121
Bolt sleeve diameter	$d_s = 76$	[mm]		Page A -1 Table 1
Bolt sleeve height	$h_s = 254$	[mm]		
Anchor bolt embedment depth	$h_{ef} = 406$	[mm]	381	OK
Concrete thickness	$h_a = 508$	[mm]	482	OK
Bolt edge distance c_1	$c_1 = 152$	[mm]	127	OK
Bolt edge distance c_2	$c_2 = 152$	[mm]	127	OK
Bolt edge distance c_3	$c_3 = 2540$	[mm]	127	OK
Bolt edge distance c_4	$c_4 = 2540$	[mm]	127	OK
$c_i > 1.5h_{ef}$ for at least two edges to avoid reducing of h_{ef} when $N_u > 0$			Yes	A23.3-04 (R2010)
Adjusted h_{ef} for design	$h_{ef} = 406$	[mm]	381	OK

Number of bolt at bolt line 1	$n_1 = 3$	3 of 7			
Number of bolt at bolt line 2	$n_2 = 3$	Code Reference			
Total no of anchor bolt	$n = 8$				
Number of bolt carrying tension	$n_t = 5$				
Number of bolt carrying shear	$n_s = 4$				
Oversized holes in base plate ?	= Yes ?				
Anchor head type	= Heavy Hex ?				
Bearing area of head	$A_{se} = 625 \text{ [mm}^2]$				
	$A_{brg} = 1443 \text{ [mm}^2]$				
	$A_{brg} \text{ [mm}^2]$ not applicable				
Bolt 1/8" (3mm) corrosion allowance	= No ?				
Provide shear key ?	= No ?	A23.3-04 (R2010)			
Seismic region where $I_E F_a S_a(0.2) >= 0.35$	= No ?	D.4.3.5			
Supplementary reinforcement					
For tension	= Yes Condition A	D.5.4 (c)			
For shear	$\Psi_{c,V} = 1.2$ Condition A	D.7.2.7			
Provide built-up grout pad ?	= Yes ?	D.7.1.3			
Strength reduction factors					
Anchor reinforcement factor	$\phi_{as} = 0.75$	D.7.2.9			
Steel anchor resistance factor	$\phi_s = 0.85$	8.4.3 (a)			
Concrete resistance factor	$\phi_c = 0.65$	8.4.2			
Resistance modification factors					
Anchor rod - ductile steel	$R_{t,s} = 0.80$	$R_{v,s} = 0.75$	D.5.4(a)		
Concrete	$R_{t,c} = 1.15$	Cdn-A	$R_{v,c} = 1.15$	Cdn-A	D.5.4(c)
CONCLUSION					
Abchor Rod Embedment, Spacing and Edge Distance					
Overall	ratio = 0.81	OK			
Tension		OK			
Anchor Rod Tensile Resistance	ratio = 0.13	OK			
Conc. Tensile Breakout Resistance	ratio = 0.39	OK			
Anchor Pullout Resistance	ratio = 0.08	OK			
Side Blowout Resistance	ratio = 0.13	OK			
Shear					
Anchor Rod Shear Resistance	ratio = 0.15	OK			
Conc. Shear Breakout Resistance	ratio = 0.58	OK			
Conc. Pryout Shear Resistance	ratio = 0.12	OK			
Anchor Rod on Conc Bearing	ratio = 0.04	OK			
Tension Shear Interaction					
Tension Shear Interaction	ratio = 0.81	OK			
Ductility		A23.3-04 (R2010)			
Tension	Ductile				
Seismic Design Requirement		OK D.4.3.6			
IeFaSa(0.2)<0.35, A23.3-04 D.4.3.3 ductility requirement is NOT required					

CALCULATION				Code Reference
Anchor Tensile Force				A23.3-04 (R2010)
Single bolt tensile force	$T_1 = 21.6$ [kN]	No of bolt for T_1 $n_{T1} = 3$		
	$T_2 = 9.6$ [kN]	No of bolt for T_2 $n_{T2} = 2$		
	$T_3 = 0.0$ [kN]	No of bolt for T_3 $n_{T3} = 0$		
Sum of bolt tensile force	$N_u = \sum n_i T_i$	= 83.9	[kN]	
Tensile bolts outer distance s_{tb}	$s_{tb} = 203$ [mm]			
Eccentricity e'_N -- distance between resultant of tensile load and centroid of anchors loaded in tension	$e'_N = 35$ [mm]			Figure D.8 (b)
Eccentricity modification factor	$\Psi_{ec,N} = \frac{1}{\left(1 + \frac{2e'_N}{3h_{ef}}\right)}$	= 0.95		D.6.2.4 (D-9)
Anchor Rod Tensile Resistance	$N_{sr} = A_{se} \phi_s f_{uta} R_{t,s}$	= 170.0	[kN]	D.6.1.2 (D-3)
	ratio = 0.13	> T_1		OK
Conc. Tensile Breakout Resistance				
Projected conc failure area	$N_{br} = 10 \phi_c \sqrt{f_c} h_{ef}^{1.5} R_{t,c}$ if $h_{ef} \leq 275$ or $h_{ef} \geq 625$			D.6.2.2 (D-7)
	$3.9 \phi_c \sqrt{f_c} h_{ef}^{5/3} R_{t,c}$ if $275 < h_{ef} < 625$			D.6.2.2 (D-8)
		= 382.8	[kN]	
	$1.5h_{ef} =$	= 609	[mm]	
	$A_{Nc} = [s_{tb} + \min(c_1, 1.5h_{ef}) + \min(c_3, 1.5h_{ef})]x$	= 1.1E+06	[mm ²]	
	$[s_2 + \min(c_2, 1.5h_{ef}) + \min(c_4, 1.5h_{ef})]$			
	$A_{Nco} = 9 h_{ef}^2$	= 1.5E+06	[mm ²]	D.6.2.1 (D-6)
	$A_{Nc} = \min(A_{Nc}, n_t A_{Nco})$	= 1.1E+06	[mm ²]	D.6.2.1
Min edge distance	$c_{min} = \min(c_1, c_2, c_3, c_4)$	= 152	[mm]	
Eccentricity effects	$\Psi_{ec,N} =$	= 0.95		D.6.2.4 (D-9)
Edge effects	$\Psi_{ed,N} = \min[(0.7 + 0.3c_{min}/1.5h_{ef}), 1.0]$	= 0.78		D.6.2.5
Concrete cracking	$\Psi_{c,N} = 1.0$ for cracked concrete			D.6.2.6
Concrete splitting	$\Psi_{cp,N} = 1.0$ for cast-in anchor			D.6.2.7
Concrete breakout resistance	$N_{cbgr} = \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{br}$	= 213.0	[kN]	D.6.2.1 (D-5)
Seismic design strength reduction	= x 1.0 not applicable	= 213.0	[kN]	D.4.3.5
	ratio = 0.39	> N_u		OK
Anchor Pullout Resistance				
Single bolt pullout resistance	$N_{pr} = 8 A_{brg} \phi_c f_c' R_{t,c}$	= 261.2	[kN]	D.6.3.4 (D-16)
	$N_{cpr} = \Psi_{c,p} N_{pr}$	= 261.2	[kN]	D.6.3.1 (D-15)
Seismic design strength reduction	= x 1.0 not applicable	= 261.2	[kN]	D.4.3.5
	ratio = 0.08	> T_1		OK
	$\Psi_{c,p} = 1$ for cracked conc			D.6.3.6
	$R_{t,c} = 1.00$ pullout strength is always Condition B			D.5.4(c)

Side Blowout Resistance Code Reference
Failure Along Pedestal Width Edge

Tensile load carried by anchors close to edge which may cause side-face blowout ACI 318 M-08

along pedestal width edge $N_{buw} = n_{T1} T_1$ = 64.8 [kN] RD.5.4.2
 $c = \min(c_1, c_3)$ = 152 [mm]

Check if side blowout applicable $h_{ef} = 406$ [mm] A23.3-04 (R2010)
 $> 2.5c$ side blowout is applicable D.6.4.1

Check if edge anchors work as a group or work individually $s_{22} = 203$ [mm] $s = s_2 = 406$ [mm] D.6.4.2
 $< 6c$ edge anchors work as a group D.6.4.2

Single anchor SB resistance $N_{sbr,w} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$ = 339.6 [kN] D.6.4.1 (D-18)

Multiple anchors SB resistance $N_{sbgr,w} =$
 work as a group - applicable $= (1+s/6c) \times N_{sbr,w}$ = 490.3 [kN] D.6.4.2 (D-19)
 work individually - not applicable $= n_{bw} \times N_{sbr,w} \times [1+(c_2 \text{ or } c_4)/c]/4$ = 0.0 [kN] D.6.4.1

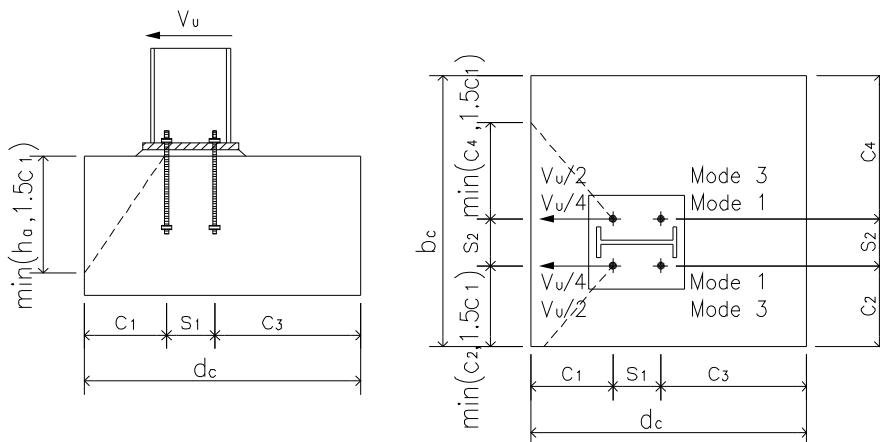
Seismic design strength reduction $= x 1.0$ not applicable = 490.3 [kN] D.4.3.5
 ratio = 0.13 > N_{buw} OK

Group side blowout resistance $N_{sbgr} = \frac{N_{sbgr,w}}{n_{T1}} n_t$ = 817.2 [kN]

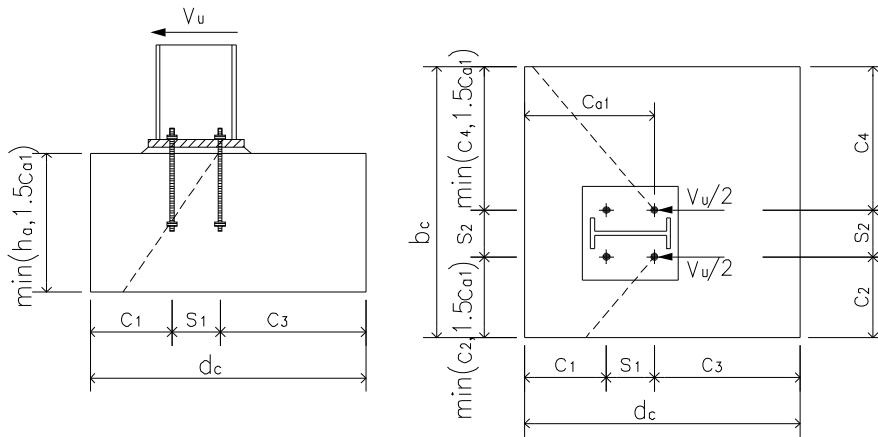
Govern Tensile Resistance $N_r = \min(n_t N_{sr}, N_{rbr}, n_t N_{cpr}, N_{sbgr})$ = **213.0** [kN]

Note: Anchor bolt sleeve portion must be tape wrapped and grouted to resist shear

Anchor Rod Shear Resistance $V_{sr} = n_s A_{se} \phi_s 0.6 f_{uta} R_{v,s}$ = 382.5 [kN] D.7.1.2 (b) (D-21)

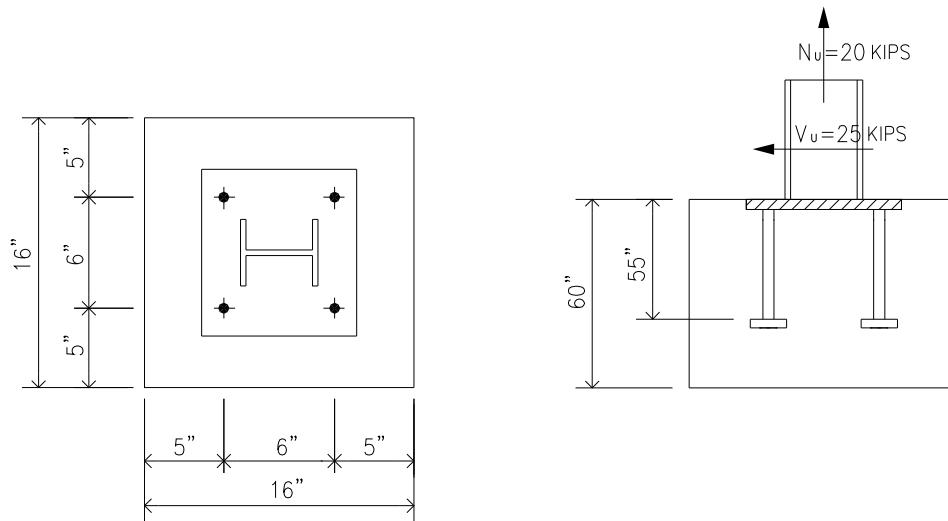

Resistance

Reduction due to built-up grout pads = $x 0.8$, applicable = 306.0 [kN] D.7.1.3
 ratio = 0.15 > V_u OK


Conc. Shear Breakout Resistance

Mode 1 Failure cone at front anchors, strength check against $0.5 \times V_u$

Mode 3 Failure cone at front anchors, strength check against $1.0 \times V_u$, applicable when oversized holes are used in base plate


Code Reference				
Bolt edge distance	$c_1 =$	= 152	[mm]	A23.3-04 (R2010)
Limiting c_{a1} when anchors are influenced by 3 or more edges		= No		D.7.2.4
Bolt edge distance - adjusted	$c_{a1} = ca1$ needs NOT to be adjusted	= 152	[mm]	D.7.2.4
	$c_2 =$	= 152	[mm]	
	$1.5c_1 =$	= 229	[mm]	
	$A_{vc} = [\min(c_2, 1.5c_1) + s_2 + \min(c_4, 1.5c_1)] \times \min(1.5c_1, h_a)$	= 1.8E+05	[mm ²]	D.7.2.1
	$A_{vco} = 4.5c_1^2$	= 1.0E+05	[mm ²]	D.7.2.1 (D-24)
	$A_{vc} = \min(A_{vc}, n_1 A_{vco})$	= 1.8E+05	[mm ²]	D.7.2.1
	$l_e = \min(8d_a, h_{ef})$	= 254	[mm]	D.3
	$V_{br} = 0.58 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \phi_c \sqrt{f_c} c_{a1}^{1.5} R_{v,c}$	= 41.1	[kN]	D.7.2.2 (D-25)
Eccentricity effects	$\Psi_{ec,v} = 1.0$ shear acts through center of group			D.7.2.5
Edge effects	$\Psi_{ed,v} = \min[(0.7+0.3c_2/1.5c_1), 1.0]$	= 0.90		D.7.2.6
Concrete cracking	$\Psi_{c,v} =$	= 1.20		D.7.2.7
Member thickness	$\Psi_{h,v} = \max[\sqrt{1.5c_1 / h_a}, 1.0]$	= 1.00		D.7.2.8
Conc shear breakout resistance	$V_{cbgr1} = \frac{A_{vc}}{A_{vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_{br}$	= 76.4	[kN]	D.7.2.1 (D-23)
Mode 3 is used for checking	$V_{cbgr1} = V_{cbg1} \times 1.0$	= 76.4	[kN]	

Mode 2 Failure cone at back anchors

A23.3-04 (R2010)

Bolt edge distance	$c_{a1} = c_1 + s_1$	= 558	[mm]
Limiting c_{a1} when anchors are influenced by 3 or more edges		= No	
Bolt edge distance - adjusted	$c_{a1} = ca1$ needs NOT to be adjusted	= 558	[mm]
	$c_2 =$	= 152	[mm]
	$1.5c_{a1} =$	= 838	[mm]

Code Reference					
$A_{vc} = [\min(c_2, 1.5c_{a1}) + s_2 + \min(c_4, 1.5c_{a1})] \times \min(1.5c_{a1}, h_a)$	= 7.1E+05	[mm ²]	A23.3-04 (R2010)		D.7.2.1
$A_{vco} = 4.5c_{a1}^2$	= 1.4E+06	[mm ²]	D.7.2.1 (D-24)		
$A_{vc} = \min(A_{vc}, n_2 A_{vco})$	= 7.1E+05	[mm ²]	D.7.2.1		
$l_e = \min(8d_a, h_{ef})$	= 254	[mm]	D.3		
$V_{br} = 0.58 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \phi_c \sqrt{f'_c} c_{a1}^{1.5} R_{v,c}$	= 288.2	[kN]	D.7.2.2 (D-25)		
Eccentricity effects	$\Psi_{ec,v} = 1.0$ shear acts through center of group				D.7.2.5
Edge effects	$\Psi_{ed,v} = \min[(0.7+0.3c_2/1.5c_{a1}), 1.0]$	= 0.75			D.7.2.6
Concrete cracking	$\Psi_{c,v} =$	= 1.20			D.7.2.7
Member thickness	$\Psi_{h,v} = \max[(\sqrt{1.5c_{a1}/h_a}), 1.0]$	= 1.28			D.7.2.8
Conc shear breakout resistance	$V_{cbgr2} = \frac{A_{vc}}{A_{vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_{br}$	= 169.4	[kN]		D.7.2.1 (D-23)
Min shear breakout resistance	$V_{cbgr} = \min(V_{cbgr1}, V_{cbgr2})$	= 76.4	[kN]		
Seismic design strength reduction ratio	= x 1.0 not applicable	= 76.4	[kN]		D.4.3.5
	ratio = 0.58	> V _u		OK	
Conc. Pryout Shear Resistance					
	$k_{cp} = 2.0$				D.7.3
Factored shear prayout resistance	$V_{cpgr} = k_{cp} N_{cbgr}$	= 370.4	[kN]		D.7.3 (D-32)
	$R_{v,c} = 1.00$ prayout strength is always Condition B				D.5.4(c)
Seismic design strength reduction ratio	= x 1.0 not applicable	= 370.4	[kN]		D.4.3.5
	ratio = 0.12	> V _u		OK	CSA S16-09
Anchor Rod on Conc Bearing					
	$B_r = n_s \times 1.4 \times \phi_c \times \min(8d_a, h_{ef}) \times d_a \times f'_c$	= 1021.5	[kN]		25.3.3.2
	ratio = 0.04	> V _u		OK	
Govern Shear Resistance					
	$V_r = \min(V_{sr}, V_{cbgr}, V_{cpgr}, B_r)$	= 76.4	[kN]		
Tension Shear Interaction					
Check if $N_u > 0.2 N_r$ and $V_u > 0.2 V_r$	Yes				A23.3-04 (R2010)
	$N_u/N_r + V_u/V_r$	= 0.98			D.8.2 & D.8.3
	ratio = 0.81	< 1.2		OK	D.8.4 (D-35)
Ductility Tension					
	$N_{sr} = 170.0$ [kN]				
	< min(N _{cbgr} , N _{cpr} , N _{sbgr})	= 213.0	[kN]		
		Ductile			
Ductility Shear					
	$V_{sr} = 306.0$ [kN]				
	> min(V _{cbgr} , V _{cpgr} , B _r)	= 76.4	[kN]		
		Non-ductile			

Example 21: Welded Stud + Anchor Reinf + Tension & Shear + ACI 318-08 Code $N_u = 20$ kips (Tension) $V_u = 25$ kipsConcrete $f_c' = 4$ ksiRebar $f_y = 60$ ksi

Pedestal size 16" x 16"

Anchor stud AWS D1.1 Grade B 1.0" dia $h_{ef} = 55"$ $h_a = 60"$ Seismic design category $\geq C$ Anchor reinforcement Tension \rightarrow 8-No 8 ver. barShear \rightarrow 2-layer, 4-leg No 4 hor. bar

No built-up grout pad for embedded plate.

Note: The stud length used in this example may not be commercially available and it's for illustration purpose only.Deep anchor stud embedment h_{ef} is required for anchor reinforcement to develop resistance on both sides of the failure plane.

STUD ANCHOR DESIGN

Combined Tension and Shear

Anchor bolt design based on

ACI 318-08 Building Code Requirements for Structural Concrete and Commentary Appendix D

PIP STE05121 Anchor Bolt Design Guide-2006

Code Abbreviation

ACI 318-08

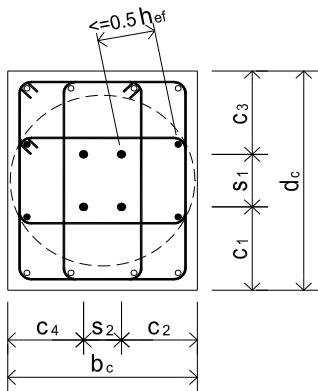
PIP STE05121

Code Reference

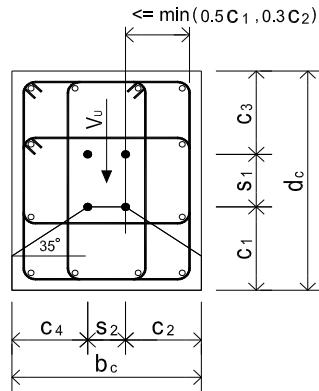
ACI 318-08

Assumptions

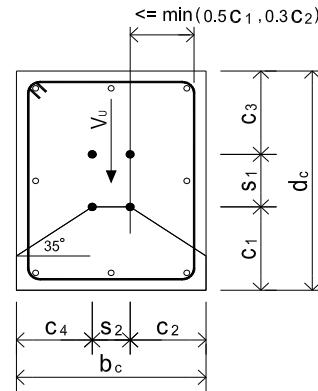
1. Concrete is cracked
2. Condition A - supplementary reinforcement is provided
3. Load combinations shall be as per ACI 318-08 Chapter 9 or ASCE 7-05 Chapter 2
4. Anchor reinf strength is used to replace concrete tension / shear breakout strength as per ACI318-08 Appendix D clause D.5.2.9 and D.6.2.9
5. For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
6. Strut-and-Tie model is used to anlyze the shear transfer and to design the required tie reinf


Input Data

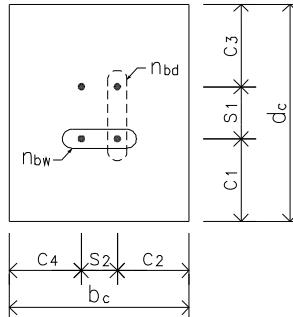
set $N_u = 0$ if it's compressionFactored tension $N_u = 20.0$ [kips] = 89.0 [kN]Factored shear $V_u = 25.0$ [kips] = 111.2 [kN]Concrete strength $f'_c = 4.0$ [ksi] = 27.6 [MPa]

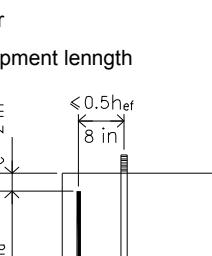

Stud material = AWS D1.1 Grade B

Stud tensile strength $f_{utu} = 65$ [ksi] = 448 [MPa] ACI 318-08


Stud is ductile steel element

Stud diameter $d_a = 1$ [in] = 25.4 [mm]Stud shank area $A_{se} = 0.79$ [in²] = 507 [mm²]Stud head bearing area $A_{brg} = 1.29$ [in²] = 831 [mm²]Stud embedment depth $h_{ef} = 55.0$ [in] 12.0 min required OK Page A -1 Table 1Pedestal height $h = 60.0$ [in] 58.0 OKPedestal width $b_c = 16.0$ [in]Pedestal depth $d_c = 16.0$ [in]


Ver. Reinf For Tension



Hor. Ties For Shear - 4 Legs

Hor. Ties For Shear - 2 Legs

min required					2 of 6
Stud edge distance c_1	$c_1 = 5.0$	[in]	4.5	OK	Code Reference
Stud edge distance c_2	$c_2 = 5.0$	[in]	4.5	OK	PIP STE05121
Stud edge distance c_3	$c_3 = 5.0$	[in]	4.5	OK	Page A -1 Table 1
Stud edge distance c_4	$c_4 = 5.0$	[in]	4.5	OK	
Outermost stud line spacing s_1	$s_1 = 6.0$	[in]	4.0	OK	Page A -1 Table 1
Outermost stud line spacing s_2	$s_2 = 6.0$	[in]	4.0	OK	ACI 318-08
To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost stud's centerline. In this design $0.5h_{ef}$ value is limited to 8 in.					RD.5.2.9
$0.5h_{ef} = 8.0$ [in]					
No of ver. rebar that are effective for resisting anchor tension	$n_v = 8$				
Ver. bar size No.	8	: 1.000 [in] dia	single bar area $A_s = 0.79$	[in ²]	
To be considered effective for resisting anchor shear, hor. reinf shall be located within $\min(0.5c_1, 0.3c_2)$ from the outmost stud's centerline					RD.6.2.9
$\min(0.5c_1, 0.3c_2) = 1.5$ [in]					
No of tie <u>leg</u> that are effective to resist anchor shear	$n_{leg} = 4$?				
No of tie <u>layer</u> that are effective to resist anchor shear	$n_{lay} = 2$?				
Hor. tie bar size No.	4	: 0.500 [in] dia	single bar area $A_s = 0.20$	[in ²]	
For anchor reinf shear breakout strength calc	100% hor. tie bars develop full yield strength				
suggest					
Rebar yield strength	$f_y = 60$	[ksi]	60	= 414	[MPa]
Total no of welded stud	$n = 4$				
Number of stud carrying tension	$n_t = 4$				
Number of stud carrying shear	$n_s = 4$				
For side-face blowout check use					
No of stud along width edge	$n_{bw} = 2$				
No of stud along depth edge	$n_{bd} = 2$				
Bolt No Input for Side-Face Blowout Check Use					
Seismic design category >= C	= Yes	?			ACI 318-08
Provide built-up grout pad ?	= No	?			D.3.3.3
Strength reduction factors					D.6.1.3
Anchor reinforcement	$\phi_s = 0.75$				D.5.2.9 & D.6.2.9
Anchor rod - ductile steel	$\phi_{t,s} = 0.75$		$\phi_{v,s} = 0.65$		D.4.4(a)
Concrete - condition A	$\phi_{t,c} = 0.75$		$\phi_{v,c} = 0.75$		D.4.4(c)

CONCLUSION				Code Reference
Abchor Rod Embedment, Spacing and Edge Distance				OK ACI 318-08
Min Rquired Anchor Reinft. Development Length		ratio = 0.25		OK 12.2.1
Overall		ratio = 0.60		OK
Tension				
Stud Tensile Resistance		ratio = 0.13		OK
Anchor Reinft Tensile Breakout Resistance		ratio = 0.09		OK
Stud Pullout Resistance		ratio = 0.23		OK
Side Blowout Resistance		ratio = 0.26		OK
Shear				
Stud Shear Resistance		ratio = 0.19		OK
Anchor Reinft Shear Breakout Resistance				
Strut Bearing Strength		ratio = 0.59		OK
Tie Reinforcement		ratio = 0.46		OK
Conc. Pryout Not Govern When $h_{ef} \geq 12d_a$				OK
Tension Shear Interaction				
Tension Shear Interaction		ratio = 0.60		OK
Ductility	Tension	Non-ductile	Shear	Non-ductile ACI 318-08
Seismic Design Requirement				NG D.3.3.4
SDC=> C, ACI318-08 D.3.3.5 or D.3.3.6 must be satisfied for non-ductile design				
CACULATION	Code Reference			
	ACI 318-08			
Stud Tensile Resistance	$\phi_{ts} N_{sa} = \phi_{ts} n_t A_{se} f_{uta}$		= 153.2 [kips]	D.5.1.2 (D-3)
	ratio = 0.13		> N_u	OK
Anchor Reinft Tensile Breakout Resistance				
Min tension development length	$l_d =$		= 47.4	[in] 12.2.1, 12.2.2, 12.2.4
for ver. #8 bar				
Actual development lenngth	$l_a = h_{ef} - c (2 \text{ in}) - 8 \text{ in} \times \tan 35^\circ$		= 47.4	[in]
			> 12.0	OK 12.2.1
Seismic design strength reduction	$N_{rb} = \phi_s \times f_y \times n_v \times A_s \times (l_a / l_d, \text{ if } l_a < l_d)$		= 284.2 [kips]	12.2.5
	= $\times 0.75$ applicable		= 213.1 [kips]	D.3.3.3
	ratio = 0.09		> N_u	OK
				ACI 318-08

Code Reference

ACI 318-08

Stud Pullout Resistance

Single bolt pullout resistance	$N_p = 8 A_{brg} f_c'$	= 41.2	[kips]	D.5.3.4 (D-15)
	$N_{cpr} = \phi_{t,c} N_{pn} = \phi_{t,c} n_t \Psi_{c,p} N_p$	= 115.5	[kips]	D.5.3.1 (D-14)
Seismic design strength reduction	= $x 0.75$ applicable	= 86.6	[kips]	D.3.3.3
	ratio = 0.23	> N_u	OK	
	$\Psi_{c,p} = 1$ for cracked conc			D.5.3.6
	$\phi_{t,c} = 0.70$ pullout strength is always Condition B			D.4.4(c)

Side Blowout Resistance

Failure Along Pedestal Width Edge

Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal width edge	$N_{buw} = N_u \times n_{bw} / n_t$	= 10.0	[kips]	RD.5.4.2
	$c = \min(c_1, c_3)$	= 5.0	[in]	
Check if side blowout applicable	$h_{ef} = 55.0$ [in]			D.5.4.1
	> $2.5c$ side bowout is applicable			
Check if edge anchors work as a group or work individually	$s_{22} = 6.0$ [in]	$s = s_2 = 6.0$	[in]	D.5.4.2
Single anchor SB resistance	$\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c}$	= 43.1	[kips]	D.5.4.1 (D-17)
Multiple anchors SB resistance	$\phi_{t,c} N_{sbg,w} =$			
work as a group - applicable	= $(1+s/6c) \times \phi_{t,c} N_{sb}$	= 51.7	[kips]	D.5.4.2 (D-18)
work individually - not applicable	= $n_{bw} \times \phi_{t,c} N_{sb} \times [1+(c_2 \text{ or } c_4)/c] / 4$	= 0.0	[kips]	D.5.4.1
Seismic design strength reduction	= $x 0.75$ applicable	= 38.8	[kips]	D.3.3.3
	ratio = 0.26	> N_{buw}	OK	

Failure Along Pedestal Depth Edge

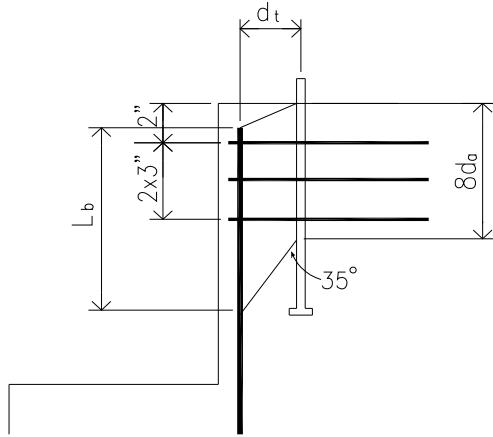
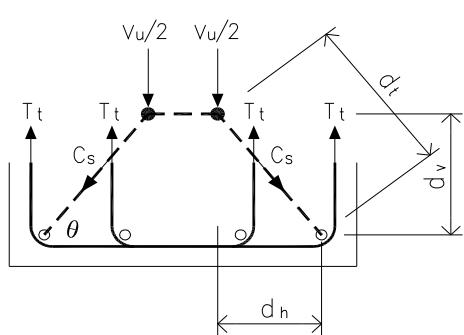
Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal depth edge	$N_{bd} = N_u \times n_{bd} / n_t$	= 10.0	[kips]	RD.5.4.2
	$c = \min(c_2, c_4)$	= 5.0	[in]	
Check if side blowout applicable	$h_{ef} = 55.0$ [in]			D.5.4.1
	> $2.5c$ side bowout is applicable			
Check if edge anchors work as a group or work individually	$s_{11} = 6.0$ [in]	$s = s_1 = 6.0$	[in]	D.5.4.2
Single anchor SB resistance	$\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c}$	= 43.1	[kips]	D.5.4.1 (D-17)
Multiple anchors SB resistance	$\phi_{t,c} N_{sbg,d} =$			
work as a group - applicable	= $(1+s/6c) \times \phi_{t,c} N_{sb}$	= 51.7	[kips]	D.5.4.2 (D-18)
work individually - not applicable	= $n_{bd} \times \phi_{t,c} N_{sb} \times [1+(c_1 \text{ or } c_3)/c] / 4$	= 0.0	[kips]	D.5.4.1
Seismic design strength reduction	= $x 0.75$ applicable	= 38.8	[kips]	D.3.3.3
	ratio = 0.26	> N_{bd}	OK	
Group side blowout resistance	$\phi_{t,c} N_{sbg} = \phi_{t,c} \min \left(\frac{N_{sbg,w}}{n_{bw}} n_t, \frac{N_{sbg,d}}{n_{bd}} n_t \right)$	= 77.5	[kips]	
Govern Tensile Resistance	$N_r = \phi_{t,c} \min(N_s, N_{rb}, N_{cp}, N_{sbg})$	= 77.5	[kips]	

5 of 6

Code Reference

ACI 318-08



Stud Shear Resistance $\phi_{v,s} V_{sa} = \phi_{v,s} n_s A_{se} f_{uta}$ = 132.7 [kips] D.6.1.2 (a) (D-19)

Reduction due to built-up grout pads = x 1.0, not applicable
ratio = 0.19 = 132.7 [kips] D.6.1.3
> V_u OK

Anchor Reinf Shear Breakout Resistance

Strut-and-Tie model is used to analyze the shear transfer and to design the required tie reinf

STM strength reduction factor $\phi_{st} = 0.75$ 9.3.2.6

Strut-and-Tie model geometry $d_v = 2.250$ [in]

$\theta = 45$

Strut compression force $C_s = 0.5 V_u / \sin\theta$

$d_h = 2.250$ [in]

$d_t = 3.182$ [in]

= 17.7 [kips]

ACI 318-08

Strut Bearing Strength

Strut compressive strength $f_{ce} = 0.85 f_c$ = 3.4 [ksi] A.3.2 (A-3)

* Bearing of anchor bolt

Anchor bearing length $l_e = \min(8d_a, h_{ef})$ = 8.0 [in] D.6.2.2

Anchor bearing area $A_{brg} = l_e \times d_a$ = 8.0 [in²]

Anchor bearing resistance $C_r = n_s \times \phi_{st} \times f_{ce} \times A_{brg}$ = 81.6 [kips]

> V_u OK

* Bearing of ver reinf bar

Ver bar bearing area $A_{brg} = (l_e + 1.5 \times d_t - d_a/2 - d_b/2) \times d_b$ = 11.8 [in²]

Ver bar bearing resistance $C_r = \phi_{st} \times f_{ce} \times A_{brg}$ = 30.0 [kips]

ratio = 0.59 > C_s OK

Tie Reinforcement

Code Reference

- * For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
- * For enclosed tie, at hook location the tie cannot develop full yield strength f_y . Use the pullout resistance in tension of a single hooked bolt as per ACI318-08 Eq. (D-16) as the max force can be developed at hook T_h
- * Assume 100% of hor. tie bars can develop full yield strength.

Total number of hor tie bar $n = n_{leg} (\text{leg}) \times n_{lay} (\text{layer})$ = 8

ACI 318-08

Pull out resistance at hook $T_h = \phi_{t,c} 0.9 f_c' e_h d_a$ = 3.0 [kips] D.5.3.5 (D-16)
 $e_h = 4.5 d_b$ = 2.250 [in]

Single tie bar tension resistance $T_r = \phi_s \times f_y \times A_s$ = 9.0 [kips]

Total tie bar tension resistance $V_{rb} = 1.0 \times n \times T_r$ = 72.0 [kips]
 Seismic design strength reduction = x 0.75 applicable = 54.0 [kips] D.3.3.3
 ratio = 0.46 > V_u OK

Conc. Pryout Shear Resistance

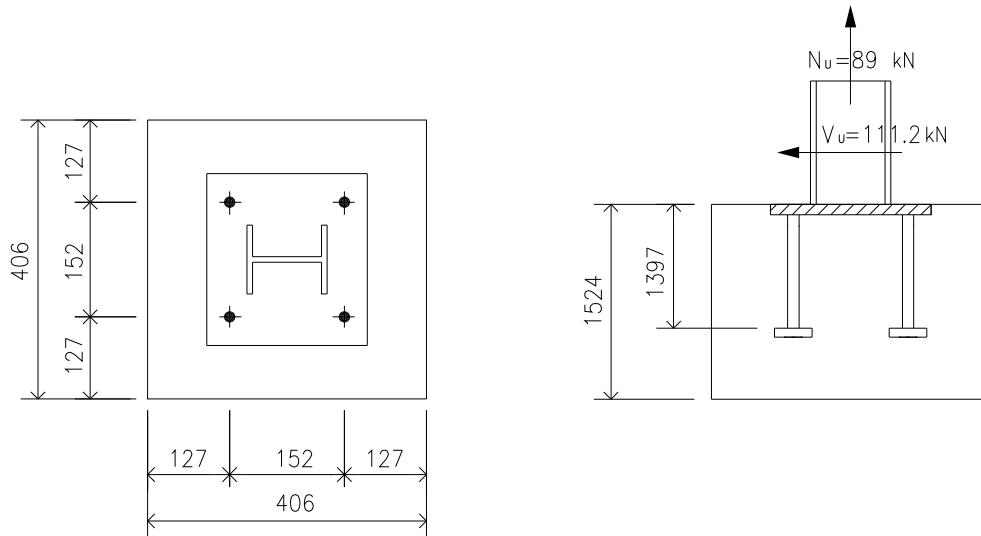
The prout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with $h_{ef} \geq 12d_a$, the prout failure will not govern

$12d_a = 12.0$ [in] $h_{ef} = 55.0$ [in]
 $> 12d_a$ OK

Govern Shear Resistance $V_r = \min (\phi_{v,s} V_{sa}, V_{rb})$ = 54.0 [kips]

Tension Shear Interaction

Check if $N_u > 0.2\phi N_n$ and $V_u > 0.2\phi V_n$ Yes D.7.1 & D.7.2
 $N_u/N_r + V_u/V_r$ = 0.72 D.7.3 (D-32)
 ratio = 0.60 < 1.2 OK


Ductility Tension

$\phi_{t,s} N_{sa} = 153.2$ [kips]
 $> \min [N_{rb}, \phi_{t,c} (N_{pn}, N_{sbq})]$ = 77.5 [kips]
Non-ductile

Ductility Shear

$\phi_{t,s} N_{sa} = 132.7$ [kips]
 $> V_{rb}$ = 54.0 [kips]
Non-ductile

Example 22: Welded Stud + Anchor Reinf + Tension & Shear + CSA A23.3-04 Code

 $N_u = 89 \text{ kN}$ (Tension) $V_u = 111.2 \text{ kN}$ Concrete $f_c' = 27.6 \text{ MPa}$ Rebar $f_y = 414 \text{ MPa}$ Pedestal size $406\text{mm} \times 406\text{mm}$ Anchor stud AWS D1.1 Grade B $1.0'' \text{ dia}$ $h_{ef} = 1397\text{mm}$ $h_a = 1524\text{mm}$ Seismic design $I_E F_a S_a(0.2) \geq 0.35$ Anchor reinforcement Tension \rightarrow 8-25M ver. barShear \rightarrow 2-layer, 4-leg 15M hor. bar

No built-up grout pad for embedded plate.

Note: The stud length used in this example may not be commercially available and it's for illustration purpose only.Deep anchor stud embedment h_{ef} is required for anchor reinforcement to develop resistance on both sides of the failure plane.

STUD ANCHOR DESIGN

Combined Tension and Shear

Anchor bolt design based on

CSA-A23.3-04 (R2010) Design of Concrete Structures Annex D

ACI 318M-08 Metric Building Code Requirements for Structural Concrete and Commentary

PIP STE05121 Anchor Bolt Design Guide-2006

Code Abbreviation

A23.3-04 (R2010)

ACI318 M-08

PIP STE05121

Assumptions

1. Concrete is cracked
2. Condition A - supplementary reinforcement is provided
3. Anchor reinf strength is used to replace concrete tension / shear breakout strength as per ACI318 M-08 Appendix D clause D.5.2.9 and D.6.2.9
4. For tie reinf, only the top most 2 or 3 layers of ties (50mm from TOC and 2x75mm after) are effective
5. Strut-and-Tie model is used to anlyze the shear transfer and to design the required tie reinf

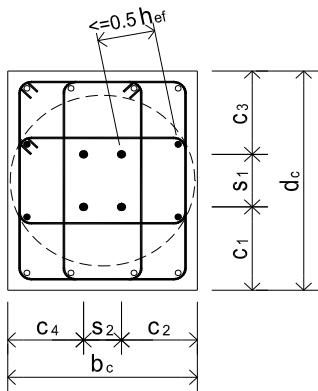
Code Reference

A23.3-04 (R2010)

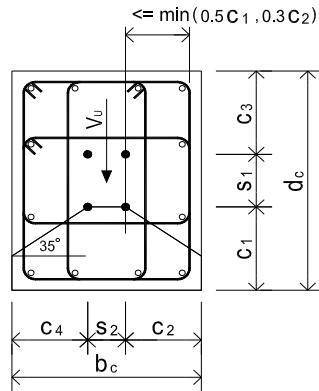
D.5.4 (c)

ACI318 M-08

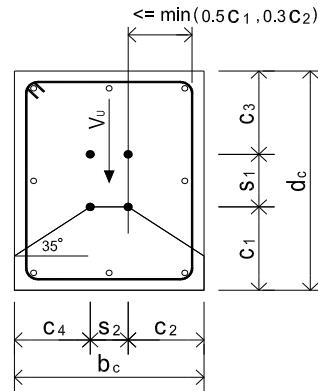
D.5.2.9 & D.6.2.9


Input Data

set $N_u = 0$ if it's compressionFactored tension $N_u = 89.0$ [kN] = 20.0 [kips]Factored shear $V_u = 111.2$ [kN] = 25.0 [kips]Concrete strength $f_c = 28$ [MPa] = 4.0 [ksi]


Stud material = AWS D1.1 Grade B

Stud tensile strength $f_{utu} = 65$ [ksi] = 448 [MPa] A23.3-04 (R2010)


Stud is ductile steel element

Stud diameter $d_a = 1$ [in] = 25.4 [mm]Stud shank area $A_{se} = 0.79$ [in^2] = 507 [mm^2]Stud head bearing area $A_{brg} = 1.29$ [in^2] = 831 [mm^2]min required OK PIP STE05121Anchor bolt embedment depth $h_{ef} = 1397$ [mm] 305 OK Page A -1 Table 1Pedestal height $h = 1524$ [mm] 1473 OKPedestal width $b_c = 406$ [mm]Pedestal depth $d_c = 406$ [mm]

Ver. Reinf For Tension

Hor. Ties For Shear - 4 Legs

Hor. Ties For Shear - 2 Legs

min required					2 of 6
Stud edge distance c_1	$c_1 = 127$	[mm]	115	OK	Code Reference
Stud edge distance c_2	$c_2 = 127$	[mm]	115	OK	PIP STE05121
Stud edge distance c_3	$c_3 = 127$	[mm]	115	OK	Page A -1 Table 1
Stud edge distance c_4	$c_4 = 127$	[mm]	115	OK	
Outermost stud line spacing s_1	$s_1 = 152$	[mm]	102	OK	Page A -1 Table 1
Outermost stud line spacing s_2	$s_2 = 152$	[mm]	102	OK	ACI318 M-08
To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost anchor's centerline. In this design $0.5h_{ef}$ value is limited to 200mm.					RD.5.2.9
			$0.5h_{ef} = 200$	[mm]	
No of ver. rebar that are effective for resisting anchor tension			$n_v = 8$		
Ver. bar size	$d_b = 25$		single bar area $A_s = 500$	[mm ²]	
To be considered effective for resisting anchor shear, hor. reinf shall be located within $\min(0.5c_1, 0.3c_2)$ from the outmost anchor's centerline					RD.6.2.9
			$\min(0.5c_1, 0.3c_2) = 38$	[mm]	
No of tie <u>leg</u> that are effective to resist anchor shear			$n_{leg} = 4$?	
No of tie <u>layer</u> that are effective to resist anchor shear			$n_{lay} = 2$?	
Hor. bar size	$d_b = 15$		single bar area $A_s = 200$	[mm ²]	
For anchor reinf shear breakout strength calc			100% hor. tie bars develop full yield strength	?	
suggest					
Rebar yield strength	$f_y = 414$	[MPa]	400	= 60.0	[ksi]
Total no of welded stud	$n = 4$				
No of stud carrying tension	$n_t = 4$				
No of stud carrying shear	$n_s = 4$				
For side-face blowout check use					
No of stud along width edge	$n_{bw} = 2$				
No of stud along depth edge	$n_{bd} = 2$				
Seismic region where $I_E F_a S_a(0.2) \geq 0.35$	= Yes	?			A23.3-04 (R2010)
Provide built-up grout pad ?	= No	?			D.4.3.5
Strength reduction factors					D.7.1.3
Anchor reinforcement factor	$\phi_{as} = 0.75$				
Steel anchor resistance factor	$\phi_s = 0.85$				
Concrete resistance factor	$\phi_c = 0.65$				
Resistance modification factors					
Anchor rod - ductile steel	$R_{t,s} = 0.80$		$R_{v,s} = 0.75$		D.5.4(a)
Concrete - condition A	$R_{t,c} = 1.15$		$R_{v,c} = 1.15$		D.5.4(c)

CONCLUSION

Abchor Rod Embedment, Spacing and Edge Distance

Code Reference

OK A23.3-04 (R2010)

Min Rquired Anchor Reinft. Development Length

ratio = 0.25

OK 12.2.1

Overallratio = **0.60**

OK

Tension

Stud Tensile Resistance

ratio = 0.14

OK

Anchor Reinft Tensile Breakout Resistance

ratio = 0.10

OK

Stud Pullout Resistance

ratio = 0.25

OK

Side Blowout Resistance

ratio = 0.26

OK

Shear

Stud Shear Resistance

ratio = 0.19

OK

Anchor Reinft Shear Breakout Resistance

Strut Bearing Strength

ratio = 0.60

OK

Tie Reinforcement

ratio = 0.30

OK

Conc. Pryout Not Govern When $h_{ef} \geq 12d_a$

OK

Stud on Conc Bearing

ratio = 0.21

OK

Tension Shear Interaction

Tension Shear Interaction

ratio = 0.46

OK

Ductility**Tension****Non-ductile****Shear****Non-ductile**

A23.3-04 (R2010)

Seismic Design Requirement**NG** D.4.3.6

IeFaSa(0.2)>=0.35, A23.3-04 D.4.3.7 or D.4.3.8 must be satisfied for non-ductile design

CACULATION**Code Reference**

A23.3-04 (R2010)

Stud Tensile Resistance

$$N_{sr} = n_t A_{se} \phi f_{uta} R_{t,s}$$

= 617.7

[kN]

D.6.1.2 (D-3)

ratio = 0.14

> N_u

OK

Anchor Reinft Tensile Breakout Resistance

Min tension development length

$$l_d =$$

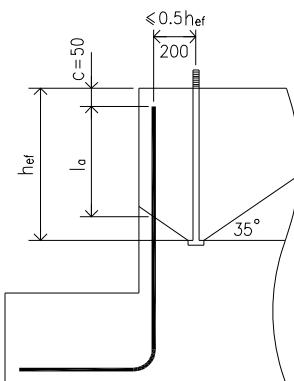
= 887

[mm]

12.2.3

for ver. 25M bar

Actual development lenngth


$$l_a = h_{ef} - c (50mm) - 200mm \times \tan 35^\circ$$

= 1207

[mm]

12.2.1

> 300

$$N_{rbr} = \phi_{as} \times f_y \times n_v \times A_s \times (l_a / l_d, \text{ if } l_a < l_d) = 1242.0 \quad [kN] \quad 12.2.5$$

= x 0.75 applicable

= 931.5

[kN]

D.4.3.5

ratio = 0.10

> N_u

OK

Seismic design strength reduction

Stud Pullout Resistance**Code Reference**

A23.3-04 (R2010)

Single bolt pullout resistance	$N_{pr} = 8 A_{brg} \phi_c f_c' R_{t,c}$	= 119.3	[kN]	D.6.3.4 (D-16)
	$N_{cpr} = n_t \Psi_{c,p} N_{pr}$	= 477.2	[kN]	D.6.3.1 (D-15)
Seismic design strength reduction	= x 0.75 applicable	= 357.9	[kN]	D.4.3.5
	ratio = 0.25	> N_u		OK
	$\Psi_{c,p} = 1$ for cracked conc			D.6.3.6
	$R_{t,c} = 1.00$ pullout strength is always Condition B			D.5.4(c)

Side Blowout ResistanceFailure Along Pedestal Width Edge

Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal width edge	$N_{buw} = N_u \times n_{bw} / n_t$	= 44.5	[kN]	ACI318 M-08 RD.5.4.2
	$c = \min (c_1, c_3)$	= 127	[mm]	
Check if side blowout applicable	$h_{ef} = 1397$ [mm]			A23.3-04 (R2010)
	> 2.5c	side bowout is applicable		D.6.4.1
Check if edge anchors work as a group or work individually	$s_{22} = 152$ [mm]	$s = s_2 = 152$	[mm]	
	< 6c	edge anchors work as a group		D.6.4.2
Single anchor SB resistance	$N_{sbr,w} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f_c'} R_{t,c}$	= 191.3	[kN]	D.6.4.1 (D-18)
Multiple anchors SB resistance	$N_{sbgr,w} =$			
work as a group - applicable	= (1+s/6c) x $N_{sbr,w}$	= 229.4	[kN]	D.6.4.2 (D-19)
work individually - not applicable	= $n_{bw} \times N_{sbr,w} \times [1+(c_2 \text{ or } c_4) / c] / 4$	= 0.0	[kN]	D.6.4.1
Seismic design strength reduction	= x 0.75 applicable	= 172.1	[kN]	D.4.3.5
	ratio = 0.26	> N_{buw}		OK

Failure Along Pedestal Depth Edge

Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal depth edge	$N_{bd} = N_u \times n_{bd} / n_t$	= 44.5	[kN]	ACI318 M-08 RD.5.4.2
	$c = \min (c_2, c_4)$	= 127	[mm]	
Check if side blowout applicable	$h_{ef} = 1397$ [mm]			A23.3-04 (R2010)
	> 2.5c	side bowout is applicable		D.6.4.1
Check if edge anchors work as a group or work individually	$s_{11} = 152$ [mm]	$s = s_1 = 152$	[mm]	
	< 6c	edge anchors work as a group		D.6.4.2
Single anchor SB resistance	$N_{sbr,d} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f_c'} R_{t,c}$	= 191.3	[kN]	D.6.4.1 (D-18)
Multiple anchors SB resistance	$N_{sbgr,d} =$			
work as a group - applicable	= (1+s/6c) x $\phi_{t,c} N_{sbr,d}$	= 229.4	[kN]	D.6.4.2 (D-19)
work individually - not applicable	= $n_{bd} \times N_{sbr,d} \times [1+(c_1 \text{ or } c_3) / c] / 4$	= 0.0	[kN]	D.6.4.1
Seismic design strength reduction	= x 0.75 applicable	= 172.1	[kN]	D.4.3.5
	ratio = 0.26	> N_{bd}		OK

$$N_{sbgr} = \min \left(\frac{N_{sbgr,w}}{n_{bw}} n_t, \frac{N_{sbgr,d}}{n_{bd}} n_t \right) = 344.1 \text{ [kN]}$$

$$\mathbf{Govern Tensile Resistance} \quad N_r = \min (N_{sr}, N_{rbr}, N_{cpr}, N_{sbgr}) = 344.1 \text{ [kN]}$$

5 of 6

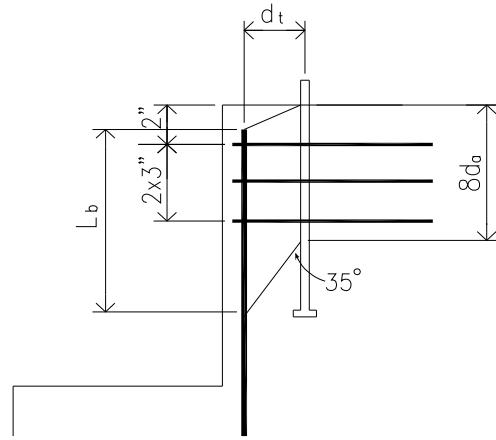
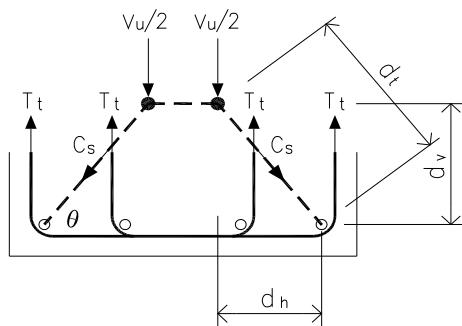
Code Reference

A23.3-04 (R2010)

Stud Shear Resistance

$$V_{sr} = n_s A_{se} \phi_s f_{uta} R_{v,s}$$

= 579.1 [kN] D.7.1.2 (a) (D-20)



Reduction due to built-up grout pads
ratio = 0.19= 579.1 [kN] D.7.1.3
> V_u **OK****Anchor Reinf Shear Breakout Resistance**

ACI318 M-08

Strut-and-Tie model is used to analyze the shear transfer and to design the required tie reinf

STM strength reduction factor $\phi_{st} = 0.75$

9.3.2.6

Strut-and-Tie model geometry

$$d_v = 57 \text{ [mm]}$$

$$d_h = 57 \text{ [mm]}$$

$$\theta = 45^\circ$$

$$d_t = 81 \text{ [mm]}$$

Strut compression force

$$C_s = 0.5 V_u / \sin\theta$$

$$= 78.6 \text{ [kN]}$$

ACI318 M-08

Strut Bearing Strength

Strut compressive strength

$$f_{ce} = 0.85 f_c$$

$$= 23.5 \text{ [MPa]} \quad \text{A.3.2 (A-3)}$$

* Bearing of anchor bolt

Anchor bearing length

$$l_e = \min(8d_a, h_{ef})$$

$$= 203 \text{ [mm]} \quad \text{D.6.2.2}$$

Anchor bearing area

$$A_{brg} = l_e \times d_a$$

$$= 5161 \text{ [mm}^2\text{]}$$

Anchor bearing resistance

$$C_r = n_s \times \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 363.3 \text{ [kN]}$$

> V_u **OK**

* Bearing of ver reinf bar

Ver bar bearing area

$$A_{brg} = (l_e + 1.5 \times d_t - d_a/2 - d_b/2) \times d_b$$

$$= 7473 \text{ [mm}^2\text{]}$$

Ver bar bearing resistance

$$C_r = \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 131.5 \text{ [kN]}$$

$$\text{ratio} = 0.60$$

> C_s **OK**

Tie Reinforcement

Code Reference

- * For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
- * For enclosed tie, at hook location the tie cannot develop full yield strength f_y . Use the pullout resistance in tension of a single J-bolt as per A23.3-04 Annex D Eq. (D-17) as the max force can be developed at hook T_h
- * Assume 100% of hor. tie bars can develop full yield strength.

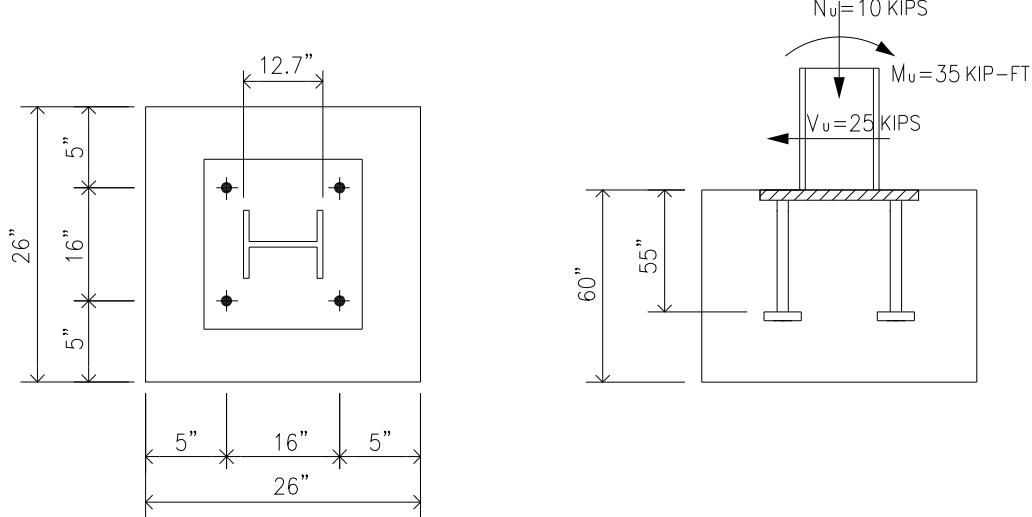
Total number of hor tie bar	$n = n_{leg} (leg) \times n_{lay} (layer)$	= 8	A23.3-04 (R2010)	
Pull out resistance at hook	$T_h = 0.9 \phi_c f_c' e_h d_b R_{tc}$	= 16.3	[kN]	D.6.3.5 (D-17)
	$e_h = 4.5 d_b$	= 68	[mm]	
Single tie bar tension resistance	$T_r = \phi_{as} x f_y x A_s$	= 62.1	[kN]	
Total tie bar tension resistance	$V_{rbr} = 1.0 \times n \times T_r$	= 496.8	[kN]	
Seismic design strength reduction ratio	= 0.75 applicable	= 372.6	[kN]	D.4.3.5
	ratio = 0.30	> V_u	OK	

Conc. Payout Shear Resistance

The payout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with $h_{ef} \geq 12d_a$, the payout failure will not govern

12d _a = 305	[mm]	$h_{ef} = 1397$	[mm]	
		> 12d _a	OK	CSA S16-09
Stud on Conc Bearing	$B_r = n_s \times 1.4 \times \phi_c \times \min(8d_a, h_{ef}) \times d_a \times f_c'$	= 518.5	[kN]	25.3.3.2
	ratio = 0.21	> V_u	OK	
Govern Shear Resistance	$V_r = \min(V_{sr}, V_{rbr}, B_r)$	= 372.6	[kN]	A23.3-04 (R2010)

Tension Shear Interaction


Check if $N_u > 0.2 N_r$ and $V_u > 0.2 V_r$	Yes		D.8.2 & D.8.3
	$N_u/N_r + V_u/V_r$	= 0.56	D.8.4 (D-35)
	ratio = 0.46	< 1.2	OK

Ductility Tension

$N_{sr} = 617.7$	[kN]		
> $\min(N_{rbr}, N_{cpr}, N_{sbgr})$		= 344.1	[kN]
	Non-ductile		

Ductility Shear

$V_{sr} = 579.1$	[kN]		
> $\min(V_{rbr}, B_r)$		= 372.6	[kN]
	Non-ductile		

Example 23: Welded Stud + Anchor Reinf + Tension Shear & Moment + ACI 318-08 Code

$M_u = 35 \text{ kip-ft}$ $N_u = 10 \text{ kips}$ (Compression) $V_u = 25 \text{ kips}$

Concrete $f'_c = 4 \text{ ksi}$ Rebar $f_y = 60 \text{ ksi}$

Pedestal size 26" x 26"

Anchor stud AWS D1.1 Grade B 1.0" dia $h_{ef} = 55"$ $h_a = 60"$

Seismic design category < C

Anchor reinforcement Tension \rightarrow 2-No 8 ver. bar

Shear \rightarrow 2-layer, 2-leg No 4 hor. bar

No built-up grout pad for embedded plate.

Note: The stud length used in this example may not be commercially available and it's for illustration purpose only.

Deep anchor stud embedment h_{ef} is required for anchor reinforcement to develop resistance on both sides of the failure plane.

STUD ANCHOR DESIGN**Combined Tension, Shear and Moment**

Anchor bolt design based on

ACI 318-08 Building Code Requirements for Structural Concrete and Commentary Appendix D

PIP STE05121 Anchor Bolt Design Guide-2006

Code Abbreviation

ACI 318-08

PIP STE05121

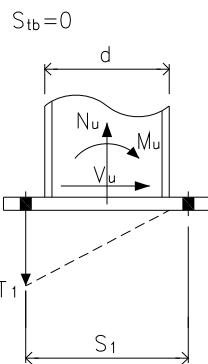
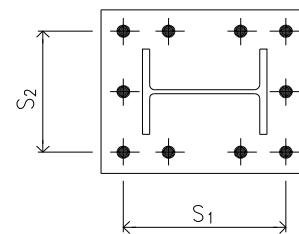
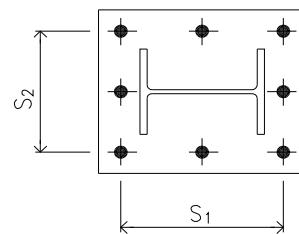
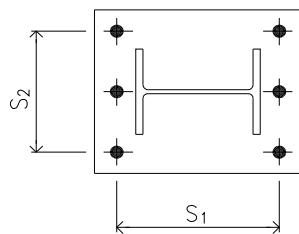
Code Reference

ACI 318-08

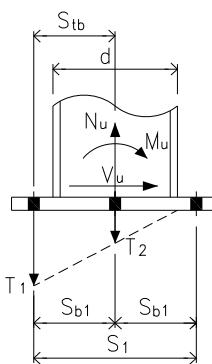
Assumptions

1. Concrete is cracked
2. Condition A - supplementary reinforcement is provided
3. Load combinations shall be as per ACI 318-08 Chapter 9 or ASCE 7-05 Chapter 2
4. Anchor reinf strength is used to replace concrete tension / shear breakout strength as per ACI318-08 Appendix D clause D.5.2.9 and D.6.2.9
5. For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
6. Strut-and-Tie model is used to anlyze the shear transfer and to design the required tie reinf
7. For anchor group subject to moment, the anchor tensile load is designed using elastic analysis and there is no redistribution of the forces between highly stressed and less stressed anchors
8. For anchor tensile force calc in anchor group subject to moment, assume the compression resultant is at the outside edge of the compression flange and base plate exhibits rigid-body rotation. This simplified approach yields conservative output

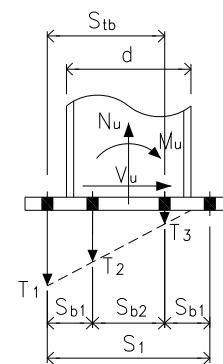
Anchor Stud Data





Factored moment

 $M_u = 35.0$ [kip-ft] $= 47.5$ [kNm]

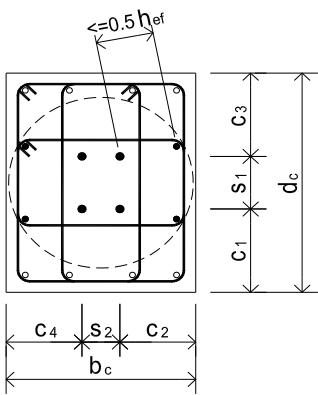

Factored tension /compression

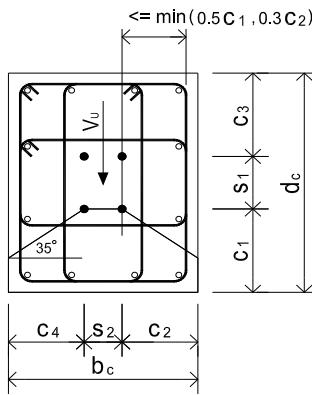
 $N_u = -10.0$ [kips] in compression $= -44.5$ [kN]


Factored shear

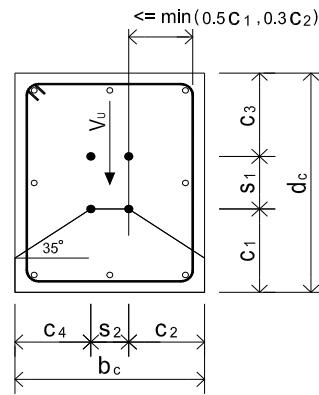
 $V_u = 25.0$ [kips] $= 111.2$ [kN]

2 BOLT LINE

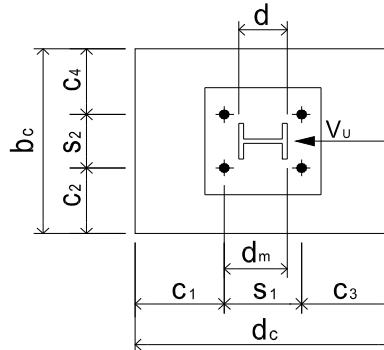

3 BOLT LINE


4 BOLT LINE

2 of 7


No of bolt line for resisting moment	= 2 Bolt Line		Code Reference
No of bolt along outermost bolt line	= 2	min required	PIP STE05121
Outermost stud line spacing s_1	$s_1 = 16.0$ [in]	4.0	OK
Outermost stud line spacing s_2	$s_2 = 16.0$ [in]	4.0	OK
Internal stud line spacing s_{b1}	$s_{b1} = 10.5$ [in]	4.0	OK
Internal stud line spacing s_{b2}	$s_{b2} = 0.0$ [in]	4.0	OK
Column depth	$d = 12.7$ [in]		
Concrete strength	$f_c = 4.0$ [ksi]	= 27.6	[MPa]
Stud material	= AWS D1.1 Grade B		
Stud tensile strength	$f_{uta} = 65$ [ksi]	= 448	[MPa] ACI 318-08
	Stud is ductile steel element		D.1
Stud diameter	$d_a = 1$ [in]	= 25.4	[mm]
Stud shank area	$A_{se} = 0.79$ [in^2]	= 507	[mm^2]
Stud head bearing area	$A_{brg} = 1.29$ [in^2]	= 831	[mm^2]
Stud embedment depth	$h_{ef} = 55.0$ [in]	12.0	min required
Pedestal height	$h = 60.0$ [in]	58.0	OK
Pedestal width	$b_c = 26.0$ [in]		
Pedestal depth	$d_c = 26.0$ [in]		
Stud edge distance c_1	$c_1 = 5.0$ [in]	4.5	OK
Stud edge distance c_2	$c_2 = 5.0$ [in]	4.5	OK
Stud edge distance c_3	$c_3 = 5.0$ [in]	4.5	OK
Stud edge distance c_4	$c_4 = 5.0$ [in]	4.5	OK

Ver. Reinf For Tension




Hor. Ties For Shear - 4 Legs

Hor. Ties For Shear - 2 Legs

Code Reference

ACI 318-08

To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost anchor's centerline. In this design $0.5h_{ef}$ value is limited to 8 in.

RD.5.2.9

$$0.5h_{ef} = 8.0 \text{ [in]}$$

No of ver. rebar that are effective for resisting anchor tension

$$n_v = 2$$

Ver. bar size No.

$$8 \text{ [in] dia} \quad \text{single bar area } A_s = 0.79 \text{ [in}^2]$$

To be considered effective for resisting anchor shear, hor. reinf shall be located

RD.6.2.9

within $\min(0.5c_1, 0.3c_2)$ from the outmost anchor's centerline

$$\min(0.5c_1, 0.3c_2) = 1.5 \text{ [in]}$$

No of tie leg that are effective to resist anchor shear

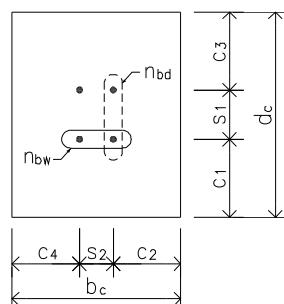
$$n_{leg} = 2 \text{ ?}$$

No of tie layer that are effective to resist anchor shear

$$n_{lay} = 2 \text{ ?}$$

Hor. tie bar size No.

$$4 \text{ [in] dia} \quad \text{single bar area } A_s = 0.20 \text{ [in}^2]$$


For anchor reinf shear breakout strength calc

100% hor. tie bars develop full yield strength ?

suggest

Rebar yield strength

$$f_y = 60 \text{ [ksi]} \quad 60 = 414 \text{ [MPa]}$$

Total no of welded stud

$$n = 4$$

Number of stud carrying tension

$$n_t = 2$$

Number of stud carrying shear

$$n_s = 2$$

For side-face blowout check use

Bolt No Input for Side-Face
Blowout Check Use

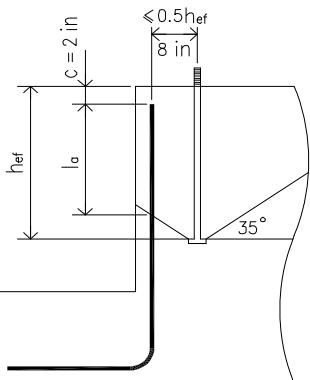
ACI 318-08

No of stud along width edge

$$n_{bw} = 2$$

Seismic design category >= C

$$= \text{No } \text{ ?}$$


D.3.3.3

Provide built-up grout pad ?

$$= \text{No } \text{ ?}$$

D.6.1.3

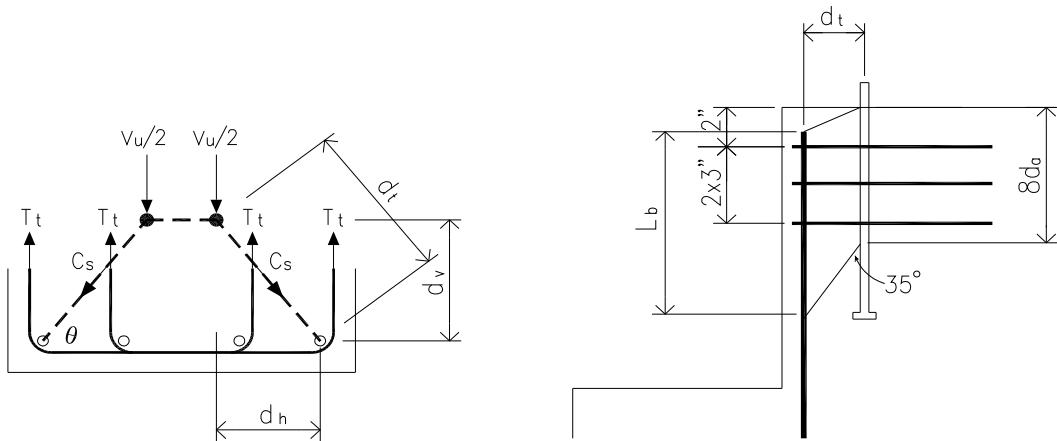
Code Reference			
Strength reduction factors		ACI 318-08	
Anchor reinforcement	$\phi_s = 0.75$	D.5.2.9 & D.6.2.9	
Anchor rod - ductile steel	$\phi_{t,s} = 0.75$	D.4.4(a)	
Concrete - condition A	$\phi_{t,c} = 0.75$	D.4.4(c)	
CONCLUSION			
Abchor Rod Embedment, Spacing and Edge Distance		OK	
Min Rquired Anchor Reinfnt. Development Length	ratio = 0.25	OK	12.2.1
Overall	ratio = 0.94	OK	
Tension			
Stud Tensile Resistance	ratio = 0.32	OK	
Anchor Reinfnt Tensile Breakout Resistance	ratio = 0.35	OK	
Stud Pullout Resistance	ratio = 0.43	OK	
Side Blowout Resistance	ratio = 0.38	OK	
Shear			
Stud Shear Resistance	ratio = 0.38	OK	
Anchor Reinfnt Shear Breakout Resistance			
Strut Bearing Strength	ratio = 0.59	OK	
Tie Reinforcement	ratio = 0.69	OK	
Conc. Pryout Not Govern When $h_{ef} \geq 12d_a$		OK	
Tension Shear Interaction			
Tension Shear Interaction	ratio = 0.94	OK	
Ductility			
Tension	Non-ductile	Shear	Non-ductile
Seismic Design Requirement			
SDC< C, ACI318-08 D.3.3 ductility requirement is NOT required			D.3.3.4
CACULATION			
Stud Tensile Force			
Single stud tensile force	$T_1 = 12.42$ [kips]	No of stud for $T_1 n_{T1} = 2$	ACI 318-08
	$T_2 = 0.00$ [kips]	No of stud for $T_2 n_{T2} = 0$	
	$T_3 = 0.00$ [kips]	No of stud for $T_3 n_{T3} = 0$	
Sum of bolt tensile force	$N_u = \sum n_i T_i = 24.8$ [kips]		
Stud Tensile Resistance			
	$\phi_{t,s} N_{sa} = \phi_{t,s} A_{se} f_{uta}$	= 38.3 [kips]	D.5.1.2 (D-3)
	ratio = 0.32	> T_1	OK
Anchor Reinfnt Tensile Breakout Resistance			
Min tension development length for ver. #8 bar	$l_d =$	= 47.4 [in]	12.2.1, 12.2.2, 12.2.4
Actual development lenngth	$l_a = h_{ef} - c (2 \text{ in}) - 8 \text{ in} \times \tan 35^\circ$	= 47.4 [in]	
		> 12.0	OK 12.2.1

Code Reference					
5 of 7					
ACI 318-08					
Seismic design strength reduction	$N_{rbr} = \phi_s \times f_y \times n_v \times A_s \times (l_a / l_d, \text{ if } l_a < l_d)$ = x 1.0 not applicable ratio = 0.35	= 71.0 = 71.0 > N_u	[kips]	12.2.5 [kips]	D.3.3.3 OK
Stud Pullout Resistance					
Single bolt pullout resistance	$N_p = 8 A_{brg} f_c'$ $N_{cpr} = \phi_{t,c} N_{pn} = \phi_{t,c} \Psi_{c,p} N_p$	= 41.2 = 28.9	[kips]	D.5.3.4 (D-15) [kips]	D.5.3.1 (D-14)
Seismic design strength reduction	= x 1.0 not applicable ratio = 0.43	= 28.9 > T_1	[kips]	D.3.3.3 OK	D.5.3.6
	$\Psi_{c,p} = 1$ for cracked conc $\phi_{t,c} = 0.70$ pullout strength is always Condition B				D.4.4(c)
Side Blowout Resistance					
<u>Failure Along Pedestal Width Edge</u>					
Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal width edge	$N_{buw} = n_{T1} T_1$ $c = \min(c_1, c_3)$	= 24.8 = 5.0	[kips]	RD.5.4.2 [in]	
Check if side blowout applicable	$h_{ef} = 55.0$ [in] > 2.5c	side blowout is applicable			D.5.4.1
Check if edge anchors work as a group or work individually	$s_{22} = 16.0$ [in] < 6c	$s = s_2 = 16.0$	[in]		D.5.4.2
Single anchor SB resistance	$\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f_c'}$	= 43.1	[kips]	D.5.4.1 (D-17)	
Multiple anchors SB resistance	$\phi_{t,c} N_{sbg,w} =$ work as a group - applicable work individually - not applicable	= (1+s/6c) x $\phi_{t,c} N_{sb}$ = $n_{bw} \times \phi_{t,c} N_{sb} \times [1 + (c_2 \text{ or } c_4) / c]$ / 4	[kips]	D.5.4.2 (D-18) [kips]	D.5.4.1
Seismic design strength reduction	= x 1.0 not applicable ratio = 0.38	= 66.0 > N_{buw}	[kips]	66.0 OK	D.3.3.3
Group side blowout resistance	$\phi_{t,c} N_{sbg} = \phi_{t,c} \frac{N_{sbgr,w}}{n_{T1}} n_t$	= 66.0	[kips]		
Govern Tensile Resistance	$N_r = \phi_{t,c} \min(n_t N_s, N_{rb}, n_t N_{cp}, N_{sbg})$	= 57.7	[kips]		

6 of 7

Code Reference

ACI 318-08


Stud Shear Resistance $\phi_{v,s} V_{sa} = \phi_{v,s} n_s A_{se} f_{uta}$ = 66.4 [kips] D.6.1.2 (a) (D-19)

Reduction due to built-up grout pads = x 1.0, not applicable
ratio = 0.38 = 66.4 [kips] D.6.1.3
> V_u **OK**

Anchor Reinf Shear Breakout Resistance

Strut-and-Tie model is used to analyze the shear transfer and to design the required tie reinf

STM strength reduction factor $\phi_{st} = 0.75$ 9.3.2.6

Strut-and-Tie model geometry $d_v = 2.250$ [in] $d_h = 2.250$ [in]
 $\theta = 45$ $d_t = 3.182$ [in]
 Strut compression force $C_s = 0.5 V_u / \sin\theta$ = 17.7 [kips]

ACI 318-08

Strut Bearing Strength

Strut compressive strength $f_{ce} = 0.85 f_c$ = 3.4 [ksi] A.3.2 (A-3)

* Bearing of anchor bolt

Anchor bearing length $l_e = \min(8d_a, h_{ef})$ = 8.0 [in] D.6.2.2

Anchor bearing area $A_{brg} = l_e \times d_a$ = 8.0 [in²]

Anchor bearing resistance $C_r = n_s \times \phi_{st} \times f_{ce} \times A_{brg}$ = 40.8 [kips]
 $> V_u$ **OK**

* Bearing of ver reinf bar

Ver bar bearing area $A_{brg} = (l_e + 1.5 \times d_t - d_a/2 - d_b/2) \times d_b$ = 11.8 [in²]

Ver bar bearing resistance $C_r = \phi_{st} \times f_{ce} \times A_{brg}$ = 30.0 [kips]
 $\text{ratio} = 0.59 > C_s$ **OK**

Code Reference

ACI 318-08

Tie Reinforcement

- * For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
- * For enclosed tie, at hook location the tie cannot develop full yield strength f_y . Use the pullout resistance in tension of a single hooked bolt as per ACI318-08 Eq. (D-16) as the max force can be developed at hook T_h
- * Assume 100% of hor. tie bars can develop full yield strength.

$$\text{Total number of hor tie bar} \quad n = n_{\text{leg}} (\text{leg}) \times n_{\text{lay}} (\text{layer}) = 4$$

$$\text{Pull out resistance at hook} \quad T_h = \phi_{t,c} 0.9 f_c' e_h d_a = 3.0 \quad [\text{kips}] \quad \text{D.5.3.5 (D-16)}$$

$$e_h = 4.5 d_b = 2.250 \quad [\text{in}]$$

$$\text{Single tie bar tension resistance} \quad T_r = \phi_s \times f_y \times A_s = 9.0 \quad [\text{kips}]$$

$$\text{Total tie bar tension resistance} \quad V_{rb} = 1.0 \times n \times T_r = 36.0 \quad [\text{kips}]$$

$$\text{Seismic design strength reduction ratio} = x 1.0 \quad \text{not applicable} = 36.0 \quad [\text{kips}] \quad \text{D.3.3.3}$$

$$\text{ratio} = 0.69 > V_u \quad \text{OK}$$

Conc. Pryout Shear Resistance

The prout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with $h_{\text{ef}} >= 12d_a$, the prout failure will not govern

$$12d_a = 12.0 \quad [\text{in}] \quad h_{\text{ef}} = 55.0 \quad [\text{in}]$$

$$> 12d_a \quad \text{OK}$$

$$\text{Govern Shear Resistance} \quad V_r = \min (\phi_{v,s} V_{sa}, V_{rb}) = 36.0 \quad [\text{kips}]$$

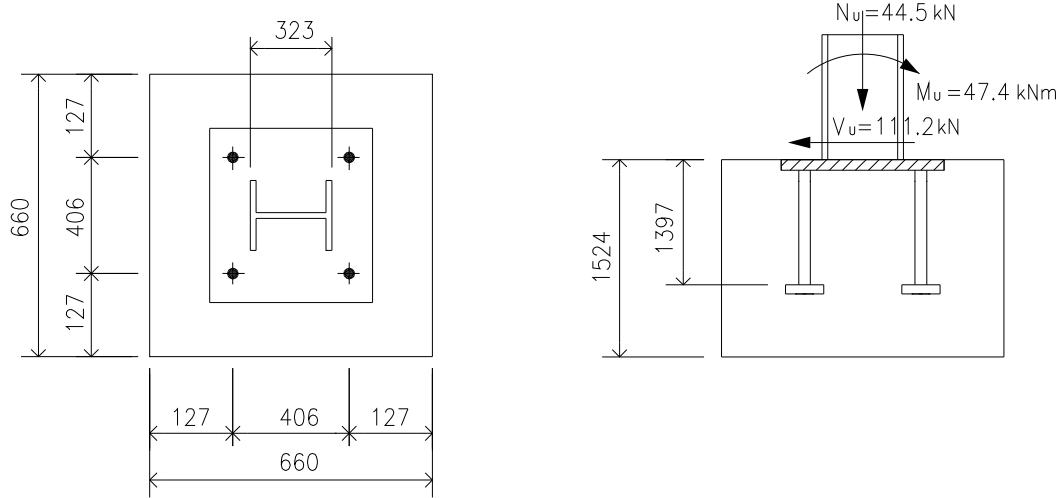
Tension Shear Interaction

$$\text{Check if } N_u > 0.2\phi N_n \text{ and } V_u > 0.2\phi V_n \quad \text{Yes} \quad \text{D.7.1 & D.7.2}$$

$$N_u/N_r + V_u/V_r = 1.12 \quad \text{D.7.3 (D-32)}$$

$$\text{ratio} = 0.94 < 1.2 \quad \text{OK}$$

$$\text{Ductility Tension} \quad \phi_{t,s} N_{sa} = 38.3 \quad [\text{kips}]$$


$$> \phi_{t,c} \min (N_{rb}, N_{pn}, N_{sbg}) = 28.9 \quad [\text{kips}]$$

Non-ductile

$$\text{Ductility Shear} \quad \phi_{t,s} N_{sa} = 66.4 \quad [\text{kips}]$$

$$> V_{rb} = 36.0 \quad [\text{kips}]$$

Non-ductile

Example 24: Welded Stud + Anchor Reinf + Tension Shear & Moment + CSA A23.3-04 Code $M_u = 47.4 \text{ kNm}$ $N_u = 44.5 \text{ kN}$ (Compression)Concrete $f_c' = 27.6 \text{ MPa}$

Pedestal size 660mm x 660mm

Anchor stud AWS D1.1 Grade B 1.0" dia $h_{ef} = 1397\text{mm}$ $h_a = 1524\text{mm}$ Seismic design $I_E F_a S_a(0.2) < 0.35$ Anchor reinforcement Tension \rightarrow 2-25M ver. barShear \rightarrow 2-layer, 2-leg 15M hor. bar $V_u = 111.2 \text{ kN}$

No built-up grout pad for embedded plate.

Note: The stud length used in this example may not be commercially available and it's for illustration purpose only.Deep anchor stud embedment h_{ef} is required for anchor reinforcement to develop resistance on both sides of the failure plane.

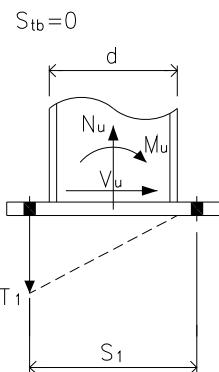
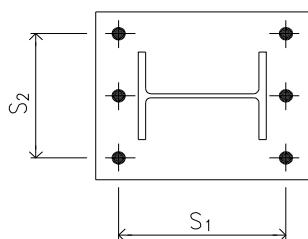
STUD ANCHOR DESIGN**Combined Tension, Shear and Moment**

Anchor bolt design based on

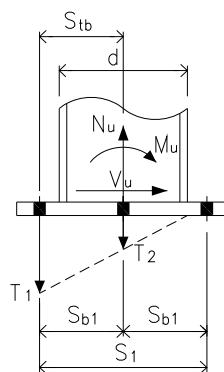
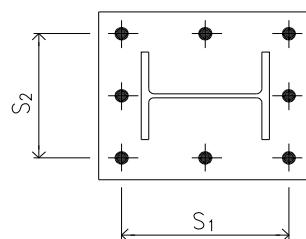
Code AbbreviationCSA-A23.3-04 (R2010) *Design of Concrete Structures Annex D*

A23.3-04 (R2010)

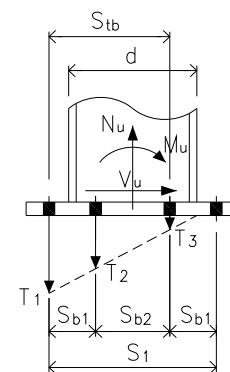
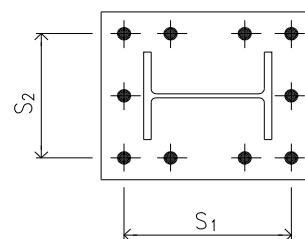
ACI 318M-08 *Metric Building Code Requirements for Structural Concrete and Commentary*



ACI318 M-08

PIP STE05121 *Anchor Bolt Design Guide-2006*

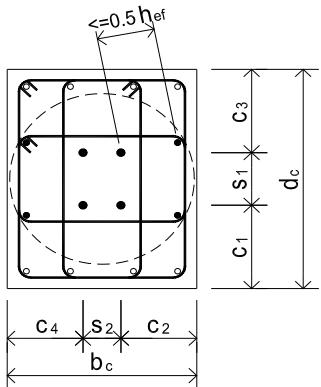


PIP STE05121

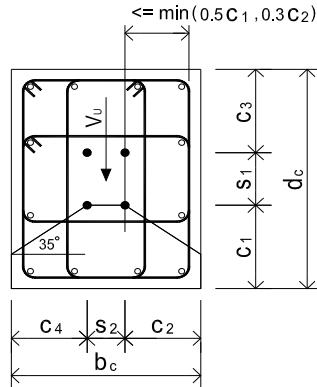
Assumptions



1. Concrete is cracked
2. Condition A - supplementary reinforcement is provided
3. Anchor reinf strength is used to replace concrete tension / shear breakout strength as per ACI318 M-08 Appendix D clause D.5.2.9 and D.6.2.9
4. For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
5. Strut-and-Tie model is used to analyze the shear transfer and to design the required tie reinf
6. For anchor group subject to moment, the anchor tensile load is designed using elastic analysis and there is no redistribution of the forces between highly stressed and less stressed anchors
7. For anchor tensile force calc in anchor group subject to moment, assume the compression resultant is at the outside edge of the compression flange and base plate exhibits rigid-body rotation. This simplified approach yields conservative output

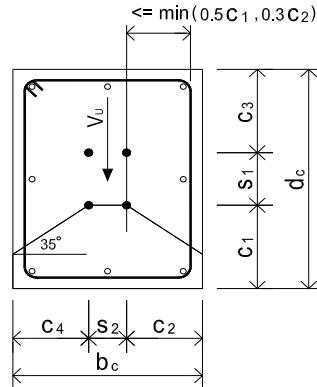
Anchor Stud DataFactored moment $M_u = 47.4$ [kNm] = 35.0 [kip-ft]Factored tension /compression $N_u = -44.5$ [kN] in compression = -10.0 [kips]Factored shear $V_u = 111.2$ [kN] = 25.0 [kips]

2 BOLT LINE

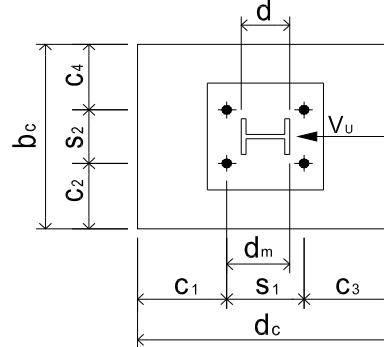
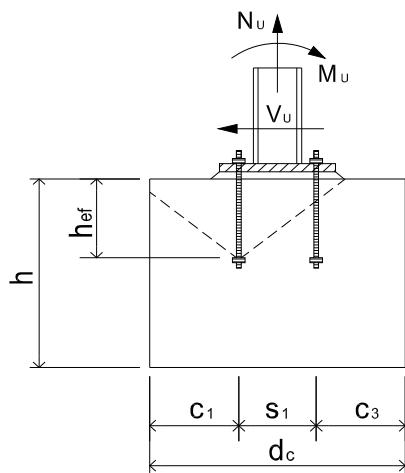

3 BOLT LINE


4 BOLT LINE

2 of 7


No of bolt line for resisting moment	= 2 Bolt Line	Code Reference
No of bolt along outermost bolt line	= 2	
Outermost stud line spacing s_1	$s_1 = 406$ [mm]	102
Outermost stud line spacing s_2	$s_2 = 406$ [mm]	102
Internal stud line spacing s_{b1}	$s_{b1} = 267$ [mm]	102
Internal stud line spacing s_{b2}	$s_{b2} = 0$ [mm]	102
Column depth	$d = 323$ [mm]	
Concrete strength	$f_c = 28$ [MPa]	= 4.0 [ksi]
Anchor bolt material	= AWS D1.1 Grade B	
Anchor tensile strength	$f_{uta} = 65$ [ksi]	= 448 [MPa]
	Stud is ductile steel element	A23.3-04 (R2010) D.2
Stud diameter	$d_a = 1$ [in]	= 25.4 [mm]
Stud shank area	$A_{se} = 0.79$ [in ²]	= 507 [mm ²]
Stud head bearing area	$A_{brg} = 1.29$ [in ²]	= 831 [mm ²]
Anchor bolt embedment depth	$h_{ef} = 1397$ [mm]	305
Pedestal height	$h = 1524$ [mm]	1473
Pedestal width	$b_c = 660$ [mm]	
Pedestal depth	$d_c = 660$ [mm]	
Stud edge distance c_1	$c_1 = 127$ [mm]	115
Stud edge distance c_2	$c_2 = 127$ [mm]	115
Stud edge distance c_3	$c_3 = 127$ [mm]	115
Stud edge distance c_4	$c_4 = 127$ [mm]	115

Ver. Reinft For Tension

Hor. Ties For Shear - 4 Legs

Hor. Ties For Shear - 2 Legs

Code Reference

ACI318 M-08

RD.5.2.9

To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost anchor's centerline. In this design $0.5h_{ef}$ value is limited to 200mm.

$$0.5h_{ef} = 200 \text{ [mm]}$$

No of ver. rebar that are effective for resisting anchor tension

Ver. bar size

 $d_b = 25$ $n_v = 2$ single bar area $A_s = 500 \text{ [mm}^2]$

To be considered effective for resisting anchor shear, hor. reinf shall be located within $\min(0.5c_1, 0.3c_2)$ from the outmost anchor's centerline

$$\min(0.5c_1, 0.3c_2) = 38 \text{ [mm]}$$

RD.6.2.9

No of tie leg that are effective to resist anchor shear $n_{leg} = 2$?No of tie layer that are effective to resist anchor shear $n_{lay} = 2$?

Hor. bar size

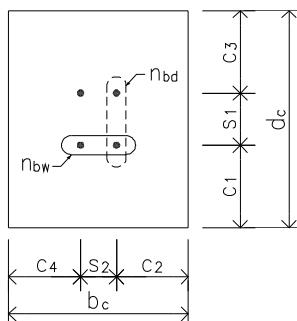
 $d_b = 15$ single bar area $A_s = 200 \text{ [mm}^2]$

For anchor reinf shear breakout strength calc

100% hor. tie bars develop full yield strength ?

suggest

Rebar yield strength


 $f_y = 414$

[MPa] 400

= 60.0

[ksi]

Total no of welded stud

 $n = 4$

No of stud carrying tension

 $n_t = 2$

No of stud carrying shear

 $n_s = 2$

For side-face blowout check use

No of stud along width edge

 $n_{bw} = 2$

Bolt No Input for Side-Face
Blowout Check Use

A23.3-04 (R2010)

Seismic region where $I_E F_a S_a(0.2) \geq 0.35$

= No ?

D.4.3.5

Provide built-up grout pad ?

= No ?

D.7.1.3

		Code Reference
Strength reduction factors		A23.3-04 (R2010)
Anchor reinforcement factor	$\phi_{as} = 0.75$	D.7.2.9
Steel anchor resistance factor	$\phi_s = 0.85$	8.4.3 (a)
Concrete resistance factor	$\phi_c = 0.65$	8.4.2

Resistance modification factors

Anchor rod - ductile steel	$R_{t,s} = 0.80$	$R_{v,s} = 0.75$	D.5.4(a)
Concrete - condition A	$R_{t,c} = 1.15$	$R_{v,c} = 1.15$	D.5.4(c)

CONCLUSION

Abchor Rod Embedment, Spacing and Edge Distance		OK
Min Rquired Anchor Reinf. Development Length	ratio = 0.25	OK 12.2.1
Overall	ratio = 0.76	OK

Tension

Stud Tensile Resistance	ratio = 0.36	OK
Anchor Reinf. Tensile Breakout Resistance	ratio = 0.36	OK
Stud Pullout Resistance	ratio = 0.46	OK
Side Blowout Resistance	ratio = 0.38	OK

Shear

Stud Shear Resistance	ratio = 0.38	OK
Anchor Reinf. Shear Breakout Resistance		
Strut Bearing Strength	ratio = 0.60	OK
Tie Reinforcement	ratio = 0.45	OK
Conc. Prouyt Not Govern When $h_{ef} \geq 12d_a$		OK
Stud on Conc Bearing	ratio = 0.43	OK

Tension Shear Interaction

Tension Shear Interaction	ratio = 0.76	OK
---------------------------	--------------	----

Ductility

Tension	Non-ductile	Shear	Non-ductile
---------	-------------	-------	-------------

Seismic Design Requirement		OK	D.4.3.6
----------------------------	--	----	---------

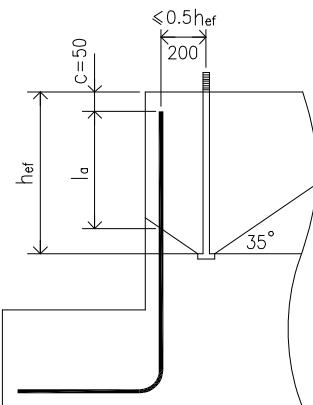
leFaSa(0.2)<0.35, A23.3-04 D.4.3.3 ductility requirement is NOT required

CACULATION

Anchor Tensile Force

Single stud tensile force	$T_1 = 55.2$ [kN]	No of stud for T_1 $n_{T1} = 2$
	$T_2 = 0.0$ [kN]	No of stud for T_2 $n_{T2} = 0$
	$T_3 = 0.0$ [kN]	No of stud for T_3 $n_{T3} = 0$
Sum of stud tensile force	$N_u = \sum n_i T_i$	= 110.3 [kN]

Stud Tensile Resistance	$N_{sr} = A_{se} \phi_s f_{uta} R_{t,s}$	= 154.4 [kN]	D.6.1.2 (D-3)
	ratio = 0.36	> T_1	OK


Code Reference

A23.3-04 (R2010)

Anchor Reinf Tensile Breakout Resistance

Min tension development length $l_d =$ = 887 [mm] 12.2.3

for ver. 25M bar

Actual development length $l_a = h_{ef} - c (50mm) - 200mm \times \tan 35^\circ$ = 1207 [mm]
> 300 OK 12.2.1Seismic design strength reduction $N_{rbr} = \phi_{as} \times f_y \times n_v \times A_s \times (l_a / l_d, \text{ if } l_a < l_d)$ = 310.5 [kN] 12.2.5
= x 1.0 not applicable = 310.5 [kN] D.4.3.5
ratio = 0.36 > N_u OK

Stud Pullout Resistance

Single bolt pullout resistance $N_{pr} = 8 A_{brg} \phi_c f_c' R_{t,c}$ = 119.3 [kN] D.6.3.4 (D-16) $N_{cpr} = \Psi_{c,p} N_{pr}$ = 119.3 [kN] D.6.3.1 (D-15)Seismic design strength reduction = x 1.0 not applicable = 119.3 [kN] D.4.3.5
ratio = 0.46 > T₁ OK $\Psi_{c,p} = 1$ for cracked conc D.6.3.6 $R_{t,c} = 1.00$ pullout strength is always Condition B D.5.4(c)

Side Blowout Resistance

Failure Along Pedestal Width Edge ACI318 M-08

Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal width edge $N_{bw} = n_{T1} T_1$ = 110.3 [kN] RD.5.4.2
 $c = \min(c_1, c_3)$ = 127 [mm]Check if side blowout applicable $h_{ef} = 1397$ [mm] A23.3-04 (R2010)
> 2.5c side blowout is applicable D.6.4.1Check if edge anchors work as a group or work individually $s_{22} = 406$ [mm] $s = s_2 = 406$ [mm] D.6.4.2Single anchor SB resistance $N_{sbr,w} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$ = 191.3 [kN] D.6.4.1 (D-18)Multiple anchors SB resistance $N_{sbgr,w} =$
work as a group - applicable = $(1+s/6c) \times N_{sbr,w}$ = 293.2 [kN] D.6.4.2 (D-19)
work individually - not applicable = $n_{bw} \times N_{sbr,w} \times [1+(c_2 \text{ or } c_4)/c]/4$ = 0.0 [kN] D.6.4.1Seismic design strength reduction = x 1.0 not applicable = 293.2 [kN] D.4.3.5
ratio = 0.38 > N_{bw} OKGroup side blowout resistance $N_{sbgr} = \frac{N_{sbgr,w}}{n_{bw}} n_t$ = 293.2 [kN]Govern Tensile Resistance $N_r = \min(n_t N_{sr}, N_{rbr}, n_t N_{cpr}, N_{sbgr})$ = 238.6 [kN]

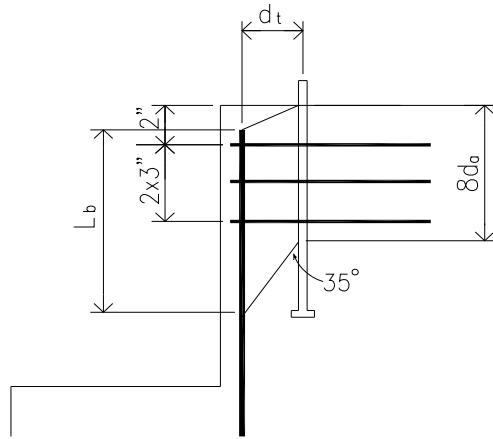
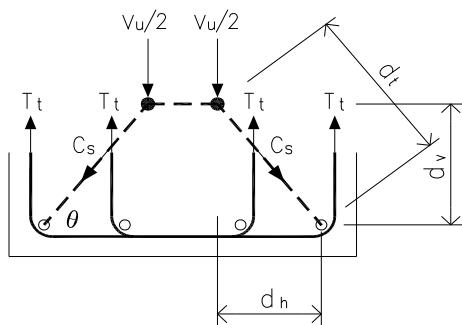
Code Reference

A23.3-04 (R2010)

Stud Shear Resistance

$$V_{sr} = n_s A_{se} \phi_{uta} f_{uta} R_{v,s}$$

= 289.5 [kN] D.7.1.2 (a) (D-20)



Reduction due to built-up grout pads
ratio = 0.38= 289.5 [kN] D.7.1.3
> V_u OK**Anchor Reinf Shear Breakout Resistance**

ACI318 M-08

Strut-and-Tie model is used to analyze the shear transfer and to design the required tie reinf

STM strength reduction factor $\phi_{st} = 0.75$

9.3.2.6

Strut-and-Tie model geometry

$$d_v = 57 \text{ [mm]}$$

$$d_h = 57 \text{ [mm]}$$

$$\theta = 45^\circ$$

$$d_t = 81 \text{ [mm]}$$

Strut compression force

$$C_s = 0.5 V_u / \sin\theta$$

$$= 78.6 \text{ [kN]}$$

ACI318 M-08

Strut Bearing Strength

Strut compressive strength

$$f_{ce} = 0.85 f_c$$

$$= 23.5 \text{ [MPa]} \quad \text{A.3.2 (A-3)}$$

* Bearing of anchor bolt

Anchor bearing length

$$l_e = \min(8d_a, h_{ef})$$

$$= 203 \text{ [mm]} \quad \text{D.6.2.2}$$

Anchor bearing area

$$A_{brg} = l_e \times d_a$$

$$= 5161 \text{ [mm}^2\text{]}$$

Anchor bearing resistance

$$C_r = n_s \times \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 181.6 \text{ [kN]}$$

> V_u OK

* Bearing of ver reinf bar

Ver bar bearing area

$$A_{brg} = (l_e + 1.5 \times d_t - d_a/2 - d_b/2) \times d_b$$

$$= 7473 \text{ [mm}^2\text{]}$$

Ver bar bearing resistance

$$C_r = \phi_{st} \times f_{ce} \times A_{brg}$$

$$= 131.5 \text{ [kN]}$$

$$\text{ratio} = 0.60$$

> C_s OK

Code Reference

Tie Reinforcement

- * For tie reinf, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
- * For enclosed tie, at hook location the tie cannot develop full yield strength f_y . Use the pullout resistance in tension of a single J-bolt as per A23.3-04 Annex D Eq. (D-17) as the max force can be developed at hook T_h
- * Assume 100% of hor. tie bars can develop full yield strength.

Total number of hor tie bar $n = n_{leg} (\text{leg}) \times n_{lay} (\text{layer})$ = 4 A23.3-04 (R2010)

Pull out resistance at hook $T_h = 0.9 \phi_c f_c' e_h d_b R_{t,c}$ = 16.3 [kN] D.6.3.5 (D-17)

$$e_h = 4.5 d_b = 68 \text{ [mm]}$$

Single tie bar tension resistance $T_r = \phi_{as} \times f_y \times A_s$ = 62.1 [kN]

Total tie bar tension resistance $V_{rbr} = 1.0 \times n \times T_r$ = 248.4 [kN]

Seismic design strength reduction = x 1.0 not applicable = 248.4 [kN] D.4.3.5
ratio = 0.45 > V_u OK

Conc. Pryout Shear Resistance

The prayout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with $h_{ef} \geq 12d_a$, the prayout failure will not govern

12d _a = 305	[mm]	$h_{ef} = 1397$ [mm]
		> 12d _a OK CSA S16-09

Stud on Conc Bearing $B_r = n_s \times 1.4 \times \phi_c \times \min(8d_a, h_{ef}) \times d_a \times f_c'$ = 259.3 [kN] 25.3.3.2

$$\text{ratio} = 0.43 < V_u OK$$

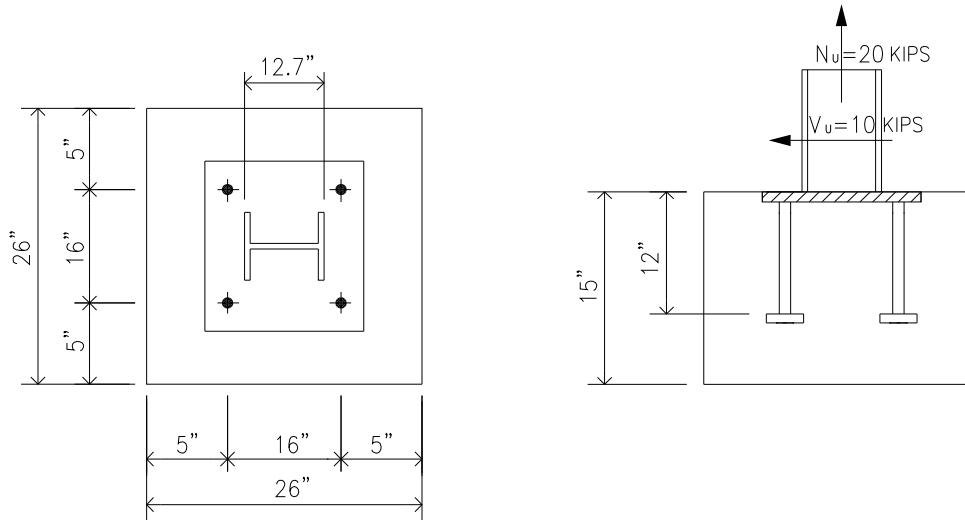
Govern Shear Resistance $V_r = \min(V_{sr}, V_{rbr}, B_r)$ = 248.4 [kN]

Tension Shear Interaction

A23.3-04 (R2010)

Check if $N_u > 0.2 N_r$ and $V_u > 0.2 V_r$ Yes D.8.2 & D.8.3

$$N_u/N_r + V_u/V_r = 0.91 \text{ D.8.4 (D-35)}$$


$$\text{ratio} = 0.76 < 1.2 OK$$

Ductility Tension $N_{sr} = 154.4$ [kN] $> \min(N_{rbr}, N_{cpr}, N_{sbgr})$ = 119.3 [kN]

Non-ductile

Ductility Shear $V_{sr} = 289.5$ [kN] $> \min(V_{rbr}, B_r)$ = 248.4 [kN]

Non-ductile

Example 31: Welded Stud + No Anchor Reinf + Tension & Shear + ACI 318-08 Code $N_u = 20$ kips (Tension) $V_u = 10$ kipsConcrete $f_c' = 4.5$ ksiAnchor stud AWS D1.1 Grade B 1.0" dia $h_{ef} = 12"$ $h_a = 15"$

Seismic design category < C

Supplementary reinforcement Tension \rightarrow Condition AShear \rightarrow Condition A $\Psi_{c,V} = 1.2$

No built-up grout pad for embedded plate.

Note: The stud length used in this example may not be commercially available and it's for illustration purpose only.

STUD ANCHOR DESIGN

Combined Tension and Shear

Anchor bolt design based on

ACI 318-08 Building Code Requirements for Structural Concrete and Commentary Appendix D

PIP STE05121 Anchor Bolt Design Guide-2006

Code Abbreviation

ACI 318-08

PIP STE05121

Input Data

set $N_u = 0$ if it's compression

Code Reference

Factored tension

 $N_u = 20.0$ [kips]

= 89.0 [kN]

Factored shear

 $V_u = 10.0$ [kips]

= 44.5 [kN]

Concrete strength

 $f'_c = 4.5$ [ksi]

= 31.0 [MPa]

Stud material

= AWS D1.1 Grade B

Stud tensile strength

 $f_{uta} = 65$ [ksi]

= 448 [MPa] ACI 318-08

Stud is ductile steel element

D.1

Stud diameter

 $d_a = 1$ [in]

= 25.4 [mm]

Stud shank area

 $A_{se} = 0.79$ [in²]= 507 [mm²]

Stud head bearing area

 $A_{brg} = 1.29$ [in²]= 831 [mm²]

min required

PIP STE05121

Stud embedment depth

 $h_{ef} = 12.0$ [in]

12.0

OK

Page A -1 Table 1

Concrete thickness

 $h_a = 15.0$ [in]

15.0

OK

Page A -1 Table 1

Stud edge distance c_1 $c_1 = 5.0$ [in]

4.5

OK

Page A -1 Table 1

Stud edge distance c_2 $c_2 = 5.0$ [in]

4.5

OK

D.5.2.3

Stud edge distance c_3 $c_3 = 5.0$ [in]

4.5

OK

D.5.2.3

Stud edge distance c_4 $c_4 = 5.0$ [in]

4.5

OK

ACI 318-08

 $c_i > 1.5h_{ef}$ for at least two edges to avoid reducing of h_{ef} when $N_u > 0$

No

D.5.2.3

Adjusted h_{ef} for design $h_{ef} = 5.33$ [in]

12.0

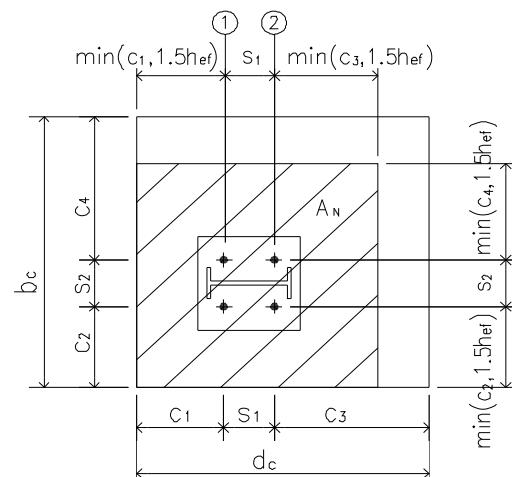
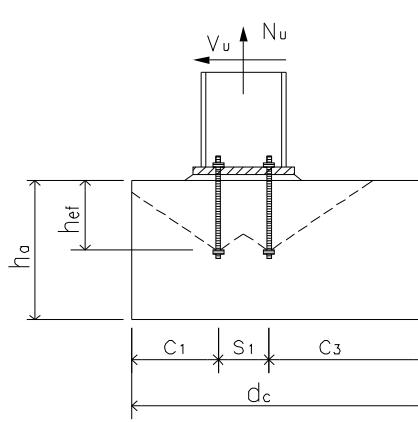
Warn

D.5.2.3

Outermost stud line spacing s_1 $s_1 = 16.0$ [in]

4.0

OK

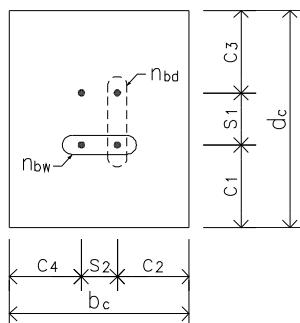


PIP STE05121

Outermost stud line spacing s_2 $s_2 = 16.0$ [in]

4.0

OK

Page A -1 Table 1



2 of 6

Number of stud at bolt line 1 $n_1 = 2$
 Number of stud at bolt line 2 $n_2 = 2$

Total no of welded stud $n = 4$
 Number of stud carrying tension $n_t = 4$
 Number of stud carrying shear $n_s = 2$

For side-face blowout check use
 No of stud along width edge $n_{bw} = 2$
 No of stud along depth edge $n_{bd} = 2$

Code Reference

Bolt No Input for Side-Face
Blowout Check UseSeismic design category >= C $= \text{No} \quad ?$

ACI 318-08

D.3.3.3

Supplementary reinforcement

For tension $= \text{Yes} \quad \text{Condition A}$

D.4.4 (c)

For shear $\Psi_{c,V} = 1.2 \quad \text{Condition A}$

D.6.2.7

Provide built-up grout pad ? $= \text{No} \quad ?$

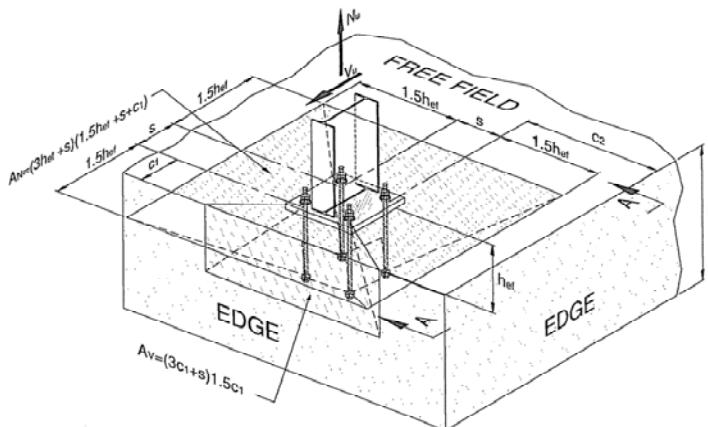
D.6.1.3

Strength reduction factors

Anchor reinforcement $\phi_s = 0.75$

D.5.2.9 & D.6.2.9

Anchor rod - ductile steel $\phi_{t,s} = 0.75$ $\phi_{v,s} = 0.65$


D.4.4 (a)

Concrete $\phi_{t,c} = 0.75$ Cdn-A $\phi_{v,c} = 0.75$ Cdn-A

D.4.4 (c)

Assumptions

1. Concrete is cracked
2. Condition A - supplementary reinforcement provided
3. Load combinations shall be per ACI 318-08 Chapter 9 or ASCE 7-05 Chapter 2
4. Tensile load acts through center of bolt group $\Psi_{ec,N} = 1.0$
5. Shear load acts through center of bolt group $\Psi_{ec,V} = 1.0$

CONCLUSION				3 of 6
Abchor Rod Embedment, Spacing and Edge Distance				Warn
Overall		ratio = 1.00	OK	
Tension				
Stud Tensile Resistance		ratio = 0.13	OK	
Conc. Tensile Breakout Resistance		ratio = 0.57	OK	
Stud Pullout Resistance		ratio = 0.15	OK	
Side Blowout Resistance		ratio = 0.00	OK	
Shear				
Stud Shear Resistance		ratio = 0.15	OK	
Conc. Shear Breakout Resistance		ratio = 0.62	OK	
Conc. Pryout Shear Resistance		ratio = 0.15	OK	
Tension Shear Interaction				
Tension Shear Interaction		ratio = 1.00	OK	
Ductility				
Tension	Non-ductile			
Shear	Non-ductile			
Seismic Design Requirement			OK	D.3.3.4
SDC< C, ACI318-08 D.3.3 ductility requirement is NOT required				
CALCULATION				Code Reference
				ACI 318-08
Stud Tensile Resistance	$\phi_{t,s} N_{sa} = \phi_{t,s} n_t A_{se} f_{uta}$	= 153.2	[kips]	D.5.1.2 (D-3)
	ratio = 0.13	> N _u	OK	
Conc. Tensile Breakout Resistance				
	$N_b = 24 \lambda \sqrt{f_c} h_{ef}^{1.5}$ if $h_{ef} < 11"$ or $h_{ef} > 25"$	= 19.8	[kips]	D.5.2.2 (D-7)
	$16 \lambda \sqrt{f_c} h_{ef}^{5/3}$ if $11" \leq h_{ef} \leq 25"$			D.5.2.2 (D-8)
Projected conc failure area	$1.5h_{ef} =$	= 8.00	[in]	
	$A_{Nc} = [s_1 + \min(c_1, 1.5h_{ef}) + \min(c_3, 1.5h_{ef})]x$	= 676.0	[in ²]	
	$[s_2 + \min(c_2, 1.5h_{ef}) + \min(c_4, 1.5h_{ef})]$			
	$A_{Nco} = 9 h_{ef}^2$	= 256.0	[in ²]	D.5.2.1 (D-6)
	$A_{Nc} = \min(A_{Nc}, n_t A_{Nco})$	= 676.0	[in ²]	D.5.2.1
Min edge distance	$c_{min} = \min(c_1, c_2, c_3, c_4)$	= 5.0	[in]	
Eccentricity effects	$\Psi_{ec,N} = 1.0$ for no eccentric load			D.5.2.4
Edge effects	$\Psi_{ed,N} = \min[(0.7 + 0.3c_{min}/1.5h_{ef}), 1.0]$	= 0.89		D.5.2.5
Concrete cracking	$\Psi_{c,N} = 1.0$ for cracked concrete			D.5.2.6
Concrete splitting	$\Psi_{cp,N} = 1.0$ for cast-in anchor			D.5.2.7

Code Reference

ACI 318-08

Concrete breakout resistance $\phi_{t,c} N_{cbg} = \phi_{t,c} \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b = 34.9$ [kips] D.5.2.1 (D-5)

Seismic design strength reduction ratio = x 1.0 not applicable = 34.9 > N_u [kips] D.3.3.3
ratio = 0.57

OK

Stud Pullout Resistance

Single bolt pullout resistance N_p = 8 A_{brg} f_{c'} = 46.4 [kips] D.5.3.4 (D-15)

$\phi_{t,c} N_{pn} = \phi_{t,c} n_t \Psi_{c,p} N_p = 129.9$ [kips] D.5.3.1 (D-14)

Seismic design strength reduction ratio = x 1.0 not applicable = 129.9 > N_u [kips] D.3.3.3
ratio = 0.15

OK

$\Psi_{c,p} = 1$ for cracked conc D.5.3.6

$\phi_{t,c} = 0.70$ pullout strength is always Condition B D.4.4(c)

Side Blowout Resistance

Failure Along Pedestal Width Edge

Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal width edge N_{buw} = N_u x n_{bw} / n_t = 10.0 [kips] RD.5.4.2
c = min (c₁, c₃) = 5.0 [in]

Check if side blowout applicable h_{ef} = 12.0 [in]
< 2.5c side blowout is NOT applicable D.5.4.1

Check if edge anchors work as a group or work individually s₂₂ = 0.0 [in] s = s₂ = 0.0 [in] D.5.4.2
< 6c side blowout is NOT applicable

Single anchor SB resistance $\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c} = 0.0$ [kips] D.5.4.1 (D-17)

Multiple anchors SB resistance $\phi_{t,c} N_{sbg,w} =$
work as a group - not applicable = (1+s/6c) x $\phi_{t,c} N_{sb}$ = 0.0 [kips] D.5.4.2 (D-18)
work individually - not applicable = n_{bw} x $\phi_{t,c} N_{sb} \times [1+(c_2 \text{ or } c_4) / c] / 4$ = 0.0 [kips] D.5.4.1
Seismic design strength reduction = x 1.0 not applicable = 0.0 [kips] D.3.3.3
ratio = 0.00 < N_{buw} OK

Failure Along Pedestal Depth Edge

Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal depth edge N_{bud} = N_u x n_{bd} / n_t = 10.0 [kips] RD.5.4.2
c = min (c₂, c₄) = 5.0 [in]

Check if side blowout applicable h_{ef} = 12.0 [in]
< 2.5c side blowout is NOT applicable D.5.4.1

Check if edge anchors work as a group or work individually s₁₁ = 0.0 [in] s = s₁ = 0.0 [in] D.5.4.2
< 6c side blowout is NOT applicable

Single anchor SB resistance $\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c} = 0.0$ [kips] D.5.4.1 (D-17)

Multiple anchors SB resistance $\phi_{t,c} N_{sbg,d} =$
work as a group - not applicable = (1+s/6c) x $\phi_{t,c} N_{sb}$ = 0.0 [kips] D.5.4.2 (D-18)
work individually - not applicable = n_{bd} x $\phi_{t,c} N_{sb} \times [1+(c_1 \text{ or } c_3) / c] / 4$ = 0.0 [kips] D.5.4.1
Seismic design strength reduction = x 1.0 not applicable = 0.0 [kips] D.3.3.3
ratio = 0.00 < N_{bud} OK

5 of 6

Group side blowout resistance $\phi_{t,c} N_{sbg} = \phi_{t,c} \min\left(\frac{N_{sbg,w}}{n_{bw}}, \frac{N_{sbg,d}}{n_{bd}} n_t\right) = 0.0$ [kips] **ACI 318-08**

Govern Tensile Resistance $N_r = \min[\phi_{t,c} N_{sa}, \phi_{t,c} (N_{cbg}, N_{pn}, N_{sbg})] = 34.9$ [kips]

Stud Shear Resistance $\phi_{v,s} V_{sa} = \phi_{v,s} n_s A_{se} f_{uta} = 66.4$ [kips] **D.6.1.2 (a) (D-19)**

Reduction due to built-up grout pads = x 1.0, not applicable
ratio = 0.15 = 66.4 [kips] **D.6.1.3**
> V_u **OK**

Conc. Shear Breakout Resistance

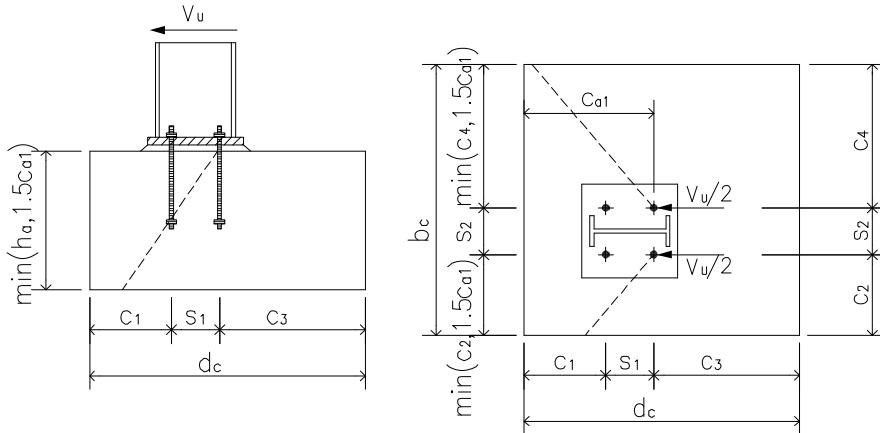

Only Case 2 needs to be considered when anchors are rigidly connected to the attachment

Fig. RD.6.2.1(b) notes

This applies to welded stud case so only Mode 2 is considered for shear checking

in Case 2

Mode 2 Failure cone at back anchors

ACI 318-08

Bolt edge distance $c_{a1} = c_1 + s_1 = 21.0$ [in]

Limiting c_{a1} when anchors are influenced by 3 or more edges = Yes **D.6.2.4**

Bolt edge distance - adjusted $c_{a1} = ca1$ needs to be adjusted = **10.0** [in] **D.6.2.4**

$c_2 = 5.0$ [in]

$1.5c_{a1} = 15.0$ [in]

$A_{Vc} = [\min(c_2, 1.5c_{a1}) + s_2 + \min(c_4, 1.5c_{a1})] \times \min(1.5c_{a1}, h_a) = 390.0$ [in²] **D.6.2.1**

$A_{Vco} = 4.5c_{a1}^2 = 450.0$ [in²] **D.6.2.1 (D-23)**

$A_{Vc} = \min(A_{Vc}, n_2 A_{Vco}) = 390.0$ [in²] **D.6.2.1**

$l_e = \min(8d_a, h_{ef}) = 8.0$ [in] **D.6.2.2**

$V_b = \left[8 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \right] \lambda \sqrt{f_c} c_{a1}^{1.5} = 25.7$ [kips] **D.6.2.3 (D-25)**

Code Reference

ACI 318-08

Eccentricity effects	$\Psi_{ec,v} = 1.0$ shear acts through center of group	D.6.2.5
Edge effects	$\Psi_{ed,v} = \min[(0.7+0.3c_2/1.5c_{a1}), 1.0]$	= 0.80
Concrete cracking	$\Psi_{c,v} =$	= 1.20
Member thickness	$\Psi_{h,v} = \max[(\sqrt{1.5c_{a1}/h_a}), 1.0]$	= 1.00
Conc shear breakout resistance	$V_{cbg2} = \phi_{v,c} \frac{A_{vc}}{A_{Vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_b$	= 16.1 [kips] D.6.2.1 (D-22)
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.62	= 16.1 [kips] D.3.3.3 > V_u OK

Conc. Pryout Shear Resistance

	$k_{cp} = 2.0$	D.6.3
Factored shear prayout resistance	$\phi_{v,c} V_{cpg} = \phi_{v,c} k_{cp} N_{cbg}$	= 65.1 [kips] D.6.3 (D-31)
	$\phi_{v,c} = 0.70$ prayout strength is always Condition B	D.4.4(c)

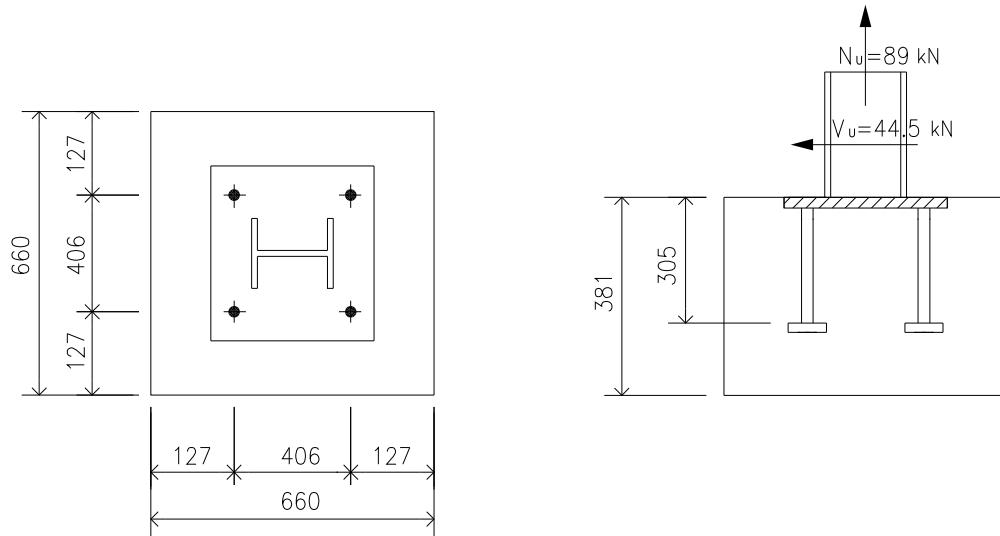
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.15	= 65.1 [kips] D.3.3.3 > V_u OK
---	--	--

Govern Shear Resistance $V_r = \min[\phi_{v,s} V_{sa}, \phi_{v,c} (V_{cbg}, V_{cpg})] = 16.1$ [kips]

Tension Shear Interaction

Check if $N_u > 0.2\phi N_n$ and $V_u > 0.2\phi V_n$	Yes	D.7.1 & D.7.2
	$N_u/N_r + V_u/V_r$ ratio = 1.00	= 1.20 < 1.2 OK

Ductility Tension


$\phi_{t,s} N_{sa} = 153.2$ [kips]	
> $\phi_{t,c} \min(N_{cbg}, N_{pn}, N_{sbg})$	= 34.9 [kips]

Non-ductile

Ductility Shear

$\phi_{v,s} V_{sa} = 66.4$ [kips]	
> $\phi_{v,c} \min(V_{cbg}, V_{cpg})$	= 16.1 [kips]

Non-ductile

Example 32: Welded Stud + No Anchor Reinf + Tension & Shear + CSA A23.3-04 Code $N_u = 89 \text{ kN}$ (Tension) $V_u = 44.5 \text{ kN}$ Concrete $f'_c = 31 \text{ MPa}$ Anchor stud AWS D1.1 Grade B 1.0" dia $h_{ef} = 305 \text{ mm}$ $h_a = 381 \text{ mm}$ Seismic design $I_E F_a S_a(0.2) < 0.35$ Supplementary reinforcement Tension \rightarrow Condition AShear \rightarrow Condition A $\Psi_{c,V} = 1.2$

No built-up grout pad for embedded plate.

Note: The stud length used in this example may not be commercially available and it's for illustration purpose only.

STUD ANCHOR DESIGN

Combined Tension and Shear

Anchor bolt design based on

CSA-A23.3-04 (R2010) Design of Concrete Structures Annex D

ACI 318M-08 Metric Building Code Requirements for Structural Concrete and Commentary

PIP STE05121 Anchor Bolt Design Guide-2006

Code Abbreviation

A23.3-04 (R2010)

ACI318 M-08

PIP STE05121

Input Data

set $N_u = 0$ if it's compression

Code Reference

Factored tension $N_u = 89.0$ [kN] = 20.0 [kips]Factored shear $V_u = 44.5$ [kN] = 10.0 [kips]Concrete strength $f_c = 31$ [MPa] = 4.5 [ksi]

Anchor bolt material = AWS D1.1 Grade B

Anchor tensile strength $f_{uta} = 65$ [ksi] = 448 [MPa] A23.3-04 (R2010)

Stud is ductile steel element

D.2

Stud diameter $d_a = 1$ [in] = 25.4 [mm]Stud shank area $A_{se} = 0.79$ [in^2] = 507 [mm^2]Stud head bearing area $A_{brg} = 1.29$ [in^2] = 831 [mm^2]

min required

PIP STE05121

Anchor bolt embedment depth $h_{ef} = 305$ [mm] 305 OK

Page A -1 Table 1

Concrete thickness $h_a = 381$ [mm] 381 OKStud edge distance $c_1 = 127$ [mm] 115 OK

Page A -1 Table 1

Stud edge distance $c_2 = 127$ [mm] 115 OK

D.6.2.3

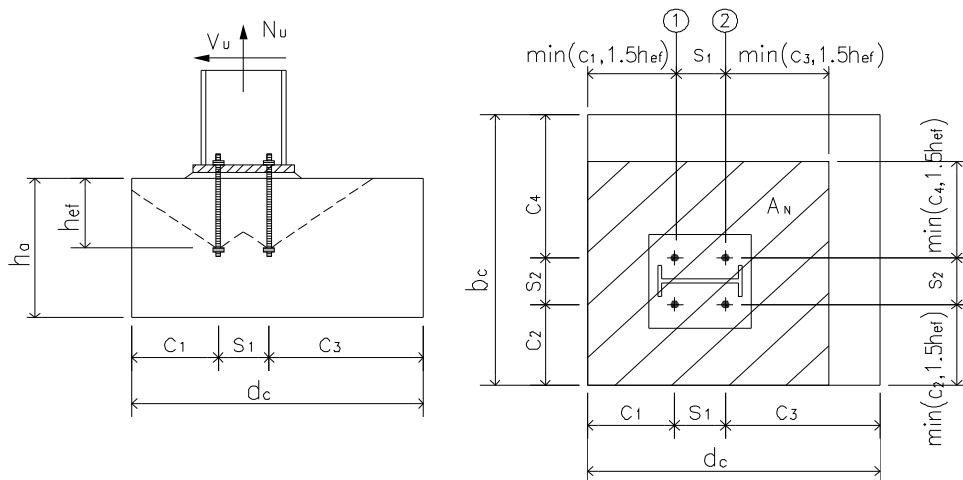
Stud edge distance $c_3 = 127$ [mm] 115 OK

D.6.2.3

Stud edge distance $c_4 = 127$ [mm] 115 OK

A23.3-04 (R2010)

 $c_i > 1.5h_{ef}$ for at least two edges to avoid reducing of h_{ef} when $N_u > 0$ NoAdjusted h_{ef} for design $h_{ef} = 135$ [mm] 305 Warn


D.6.2.3

Outermost stud line spacing $s_1 = 406$ [mm] 102 OK

PIP STE05121

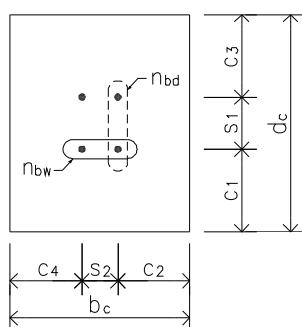
Outermost stud line spacing $s_2 = 406$ [mm] 102 OK

Page A -1 Table 1

2 of 6

No of stud at bolt line 1

No of stud at bolt line 2


Total no of welded stud

No of stud carrying tension

No of stud carrying shear

For side-face blowout check use

No of stud along width edge

No of stud along depth edge

Bolt No Input for Side-Face Blowout Check Use

Seismic region where $I_E F_a S_a(0.2) \geq 0.35$ **Code Reference**

A23.3-04 (R2010)

D.4.3.5

Supplementary reinforcement

For tension

 Condition A

D.5.4 (c)

For shear

 Condition A

D.7.2.7

Provide built-up grout pad ?

D.7.1.3

Strength reduction factors

Anchor reinforcement factor

D.7.2.9

Steel anchor resistance factor

8.4.3 (a)

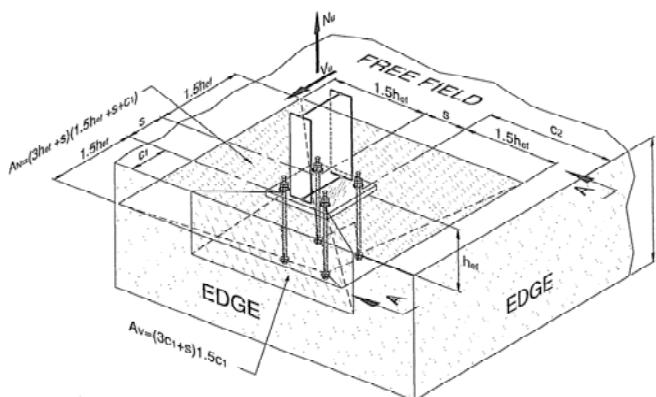
Concrete resistance factor

8.4.2

Resistance modification factors

Anchor rod - ductile steel

D.5.4(a)


Concrete

 Cdn-A

Cdn-A D.5.4(c)

Assumptions

1. Concrete is cracked
2. Condition A for tension - supplementary reinforcement provided
3. Tensile load acts through center of bolt group $\Psi_{ec,N} = 1.0$
4. Shear load acts through center of bolt group $\Psi_{ec,V} = 1.0$

			3 of 6
CONCLUSION			
Abchor Rod Embedment, Spacing and Edge Distance		Warn	
Overall	ratio = 1.01	NG	
Tension			
Stud Tensile Resistance	ratio = 0.14	OK	
Conc. Tensile Breakout Resistance	ratio = 0.58	OK	
Stud Pullout Resistance	ratio = 0.17	OK	
Side Blowout Resistance	ratio = 0.00	OK	
Shear			
Stud Shear Resistance	ratio = 0.15	OK	
Conc. Shear Breakout Resistance	ratio = 0.63	OK	
Conc. Pryout Shear Resistance	ratio = 0.17	OK	
Stud on Conc Bearing	ratio = 0.15	OK	
Tension Shear Interaction			
Tension Shear Interaction	ratio = 1.01	NG	
Ductility			
Tension	Non-ductile		
Shear		Non-ductile	
Seismic Design Requirement			OK D.4.3.6
leFaSa(0.2)<0.35, A23.3-04 D.4.3.3 ductility requirement is NOT required			
CALCULATION			Code Reference
			A23.3-04 (R2010)
Stud Tensile Resistance	$N_{sr} = n_t A_{se} \phi_s f_{uta} R_{t,s}$	= 617.7 [kN]	D.6.1.2 (D-3)
	ratio = 0.14	> N_u	OK
Conc. Tensile Breakout Resistance			
	$N_{br} = 10 \phi_c \sqrt{f_c} h_{ef}^{1.5} R_{t,c}$ if $h_{ef} \leq 275$ or $h_{ef} \geq 625$		D.6.2.2 (D-7)
	$3.9 \phi_c \sqrt{f_c} h_{ef}^{5/3} R_{t,c}$ if $275 < h_{ef} < 625$		D.6.2.2 (D-8)
		= 65.5 [kN]	
Projected conc failure area	$1.5h_{ef} =$	= 203 [mm]	
	$A_{Nc} = [s_1 + \min(c_1, 1.5h_{ef}) + \min(c_3, 1.5h_{ef})]x$	= 4.4E+05 [mm ²]	
	$[s_2 + \min(c_2, 1.5h_{ef}) + \min(c_4, 1.5h_{ef})]$		
	$A_{Nco} = 9 h_{ef}^2$	= 1.6E+05 [mm ²]	D.6.2.1 (D-6)
	$A_{Nc} = \min(A_{Nc}, n_t A_{Nco})$	= 4.4E+05 [mm ²]	D.6.2.1
Min edge distance	$c_{min} = \min(c_1, c_2, c_3, c_4)$	= 127 [mm]	
Eccentricity effects	$\Psi_{ec,N} = 1.0$ for no eccentric load		D.6.2.4
Edge effects	$\Psi_{ed,N} = \min[(0.7 + 0.3c_{min}/1.5h_{ef}), 1.0]$	= 0.89	D.6.2.5
Concrete cracking	$\Psi_{c,N} = 1.0$ for cracked concrete		D.6.2.6
Concrete splitting	$\Psi_{cp,N} = 1.0$ for cast-in anchor		D.6.2.7

Code Reference					
A23.3-04 (R2010)					
Concrete breakout resistance	$N_{cbgr} = \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{br}$	= 153.7	[kN]	D.6.2.1 (D-5)	
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.58	= 153.7 > N _u	[kN]	D.4.3.5 OK	
Stud Pullout Resistance					
Single bolt pullout resistance	$N_{pr} = 8 A_{brg} \phi_c' R_{t,c}$	= 134.0	[kN]	D.6.3.4 (D-16)	
	$N_{cpr} = n_t \Psi_{c,p} N_{pr}$	= 536.0	[kN]	D.6.3.1 (D-15)	
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.17	= 536.0 > N _u	[kN]	D.4.3.5 OK	
	$\Psi_{c,p} = 1$ for cracked conc			D.6.3.6	
	$R_{t,c} = 1.00$ pullout strength is always Condition B			D.5.4(c)	

Side Blowout ResistanceFailure Along Pedestal Width Edge

Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal width edge	$N_{buw} = N_u \times n_{bw} / n_t$	= 44.5	[kN]	ACI318 M-08 RD.5.4.2
	$c = \min(c_1, c_3)$	= 127	[mm]	
Check if side blowout applicable	$h_{ef} = 305$ [mm]			A23.3-04 (R2010)
	< 2.5c	side bowout is NOT applicable		D.6.4.1
Check if edge anchors work as a group or work individually	$s_{22} = 0$ [mm]	$s = s_2 = 0$	[mm]	
	< 6c	side bowout is NOT applicable		D.6.4.2
Single anchor SB resistance	$N_{sbr,w} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$	= 0.0	[kN]	D.6.4.1 (D-18)
Multiple anchors SB resistance	$N_{sbgr,w} =$ work as a group - not applicable work individually - not applicable	= (1+s/6c) x N _{sbr,w} = n _{bw} x N _{sbr,w} x [1+(c ₂ or c ₄)/c] / 4	[kN]	D.6.4.2 (D-19) D.6.4.1
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.00	= 0.0 < N _{buw}	[kN]	D.4.3.5 OK

Failure Along Pedestal Depth Edge

Tensile load carried by anchors close to edge which may cause side-face blowout along pedestal depth edge	$N_{bd} = N_u \times n_{bd} / n_t$	= 44.5	[kN]	ACI318 M-08 RD.5.4.2
	$c = \min(c_2, c_4)$	= 127	[mm]	
Check if side blowout applicable	$h_{ef} = 305$ [mm]			A23.3-04 (R2010)
	< 2.5c	side bowout is NOT applicable		D.6.4.1
Check if edge anchors work as a group or work individually	$s_{11} = 0$ [mm]	$s = s_1 = 0$	[mm]	
	< 6c	side bowout is NOT applicable		D.6.4.2
Single anchor SB resistance	$N_{sbr,d} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$	= 0.0	[kN]	D.6.4.1 (D-18)
Multiple anchors SB resistance	$N_{sbgr,d} =$ work as a group - not applicable work individually - not applicable	= (1+s/6c) x $\phi_{t,c}$ N _{sbr,d} = n _{bd} x N _{sbr,d} x [1+(c ₁ or c ₃)/c] / 4	[kN]	D.6.4.2 (D-19) D.6.4.1
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.00	= 0.0 < N _{bd}	[kN]	D.4.3.5 OK

5 of 6

Group side blowout resistance $N_{sbgr} = \min\left(\frac{N_{sbgr,w}}{n_{bw}} n_t, \frac{N_{sbgr,d}}{n_{bd}} n_t\right) = 0.0$ [kN] Code Reference A23.3-04 (R2010)

Govern Tensile Resistance $N_r = \min(N_{sr}, N_{rbr}, N_{cpr}, N_{sbgr}) = 153.7$ [kN]

Stud Shear Resistance $V_{sr} = n_s A_{se} \phi_s f_{uta} R_{v,s} = 289.5$ [kN] D.7.1.2 (a) (D-20)

Reduction due to built-up grout pads = x 1.0, not applicable = 289.5 [kN] D.7.1.3
ratio = 0.15 > V_u **OK**

Conc. Shear Breakout Resistance ACI318 M-08

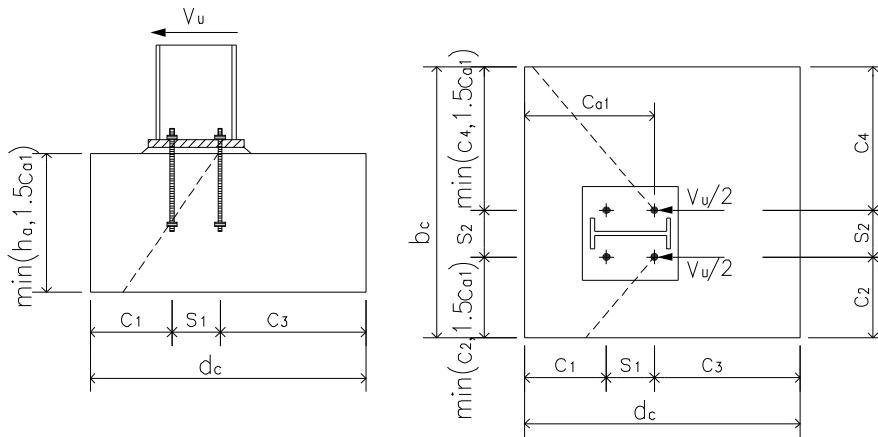

Only Case 2 needs to be considered when anchors are rigidly connected to the attachment

Fig. RD.6.2.1(b) notes

This applies to welded stud case so only Mode 2 is considered for shear checking

in Case 2

Mode 2 Failure cone at back anchors

A23.3-04 (R2010)

Bolt edge distance $c_{a1} = c_1 + s_1 = 533$ [mm]

Limiting c_{a1} when anchors are influenced by 3 or more edges = Yes D.7.2.4

Bolt edge distance - adjusted $c_{a1} = ca1$ needs to be adjusted = 254 [mm] D.7.2.4

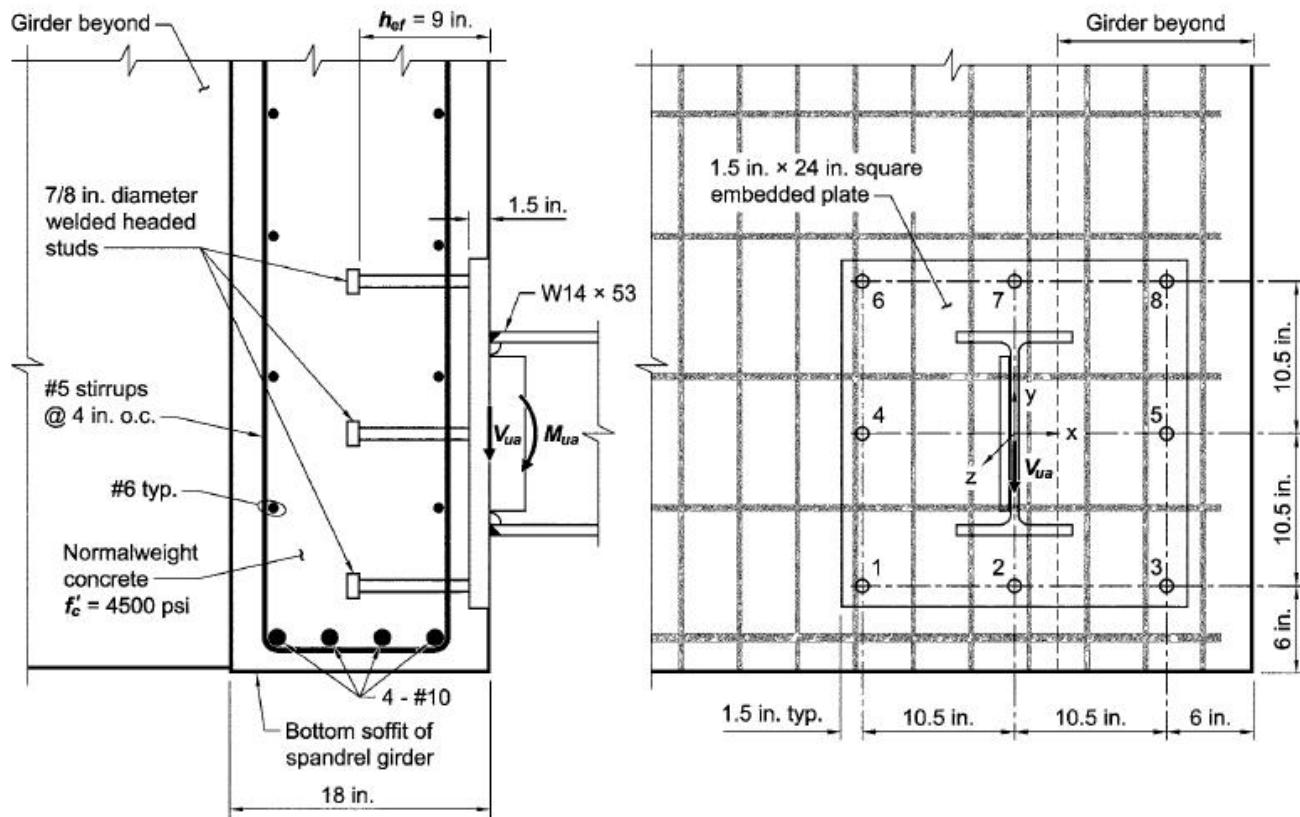
$c_2 = 127$ [mm]

$1.5c_{a1} = 381$ [mm]

$A_{Vc} = [\min(c_2, 1.5c_{a1}) + s_2 + \min(c_4, 1.5c_{a1})] \times \min(1.5c_{a1}, h_a) = 2.5E+05$ [mm²] D.7.2.1

$A_{Vco} = 4.5c_{a1}^2 = 2.9E+05$ [mm²] D.7.2.1 (D-24)

$A_{Vc} = \min(A_{Vc}, n_2 A_{Vco}) = 2.5E+05$ [mm²] D.7.2.1


$l_e = \min(8d_a, h_{ef}) = 203$ [mm] D.3

$V_{br} = 0.66 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \phi_c \sqrt{f_c} c_{a1}^{1.5} R_{v,c} = 84.9$ [kN] D.7.2.3 (D-26)

Code Reference				
A23.3-04 (R2010)				
Eccentricity effects	$\Psi_{ec,v} = 1.0$ shear acts through center of group			D.7.2.5
Edge effects	$\Psi_{ed,v} = \min[(0.7+0.3c_2/1.5c_{a1}), 1.0]$	= 0.80		D.7.2.6
Concrete cracking	$\Psi_{c,v} =$	= 1.20		D.7.2.7
Member thickness	$\Psi_{h,v} = \max[(\sqrt{1.5c_{a1}/h_a}), 1.0]$	= 1.00		D.7.2.8
Conc shear breakout resistance	$V_{cbgr} = \frac{A_{vc}}{A_{vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_{br}$	= 70.6	[kN]	D.7.2.1 (D-23)
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.63	= 70.6 > V_u	[kN]	D.4.3.5 OK
Conc. Pryout Shear Resistance				
Factored shear prout resistance	$V_{cpgr} = k_{cp} N_{cbgr}$	= 267.3	[kN]	D.7.3 D.7.3 (D-32)
	$R_{v,c} = 1.00$ prout strength is always Condition B			D.5.4(c)
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.17	= 267.3 > V_u	[kN]	D.4.3.5 OK
Stud on Conc Bearing				
	$B_r = n_s \times 1.4 \times \phi_c \times \min(8d_a, h_{ef}) \times d_a \times f_c'$	= 291.2	[kN]	CSA S16-09 25.3.3.2
	ratio = 0.15	> V_u		OK
Govern Shear Resistance	$V_r = \min(V_{sr}, V_{cbgr}, V_{cpgr}, B_r)$	= 70.6	[kN]	A23.3-04 (R2010)
Tension Shear Interaction				
Check if $N_u > 0.2 N_r$ and $V_u > 0.2 V_r$	Yes			D.8.2 & D.8.3
	$N_u/N_r + V_u/V_r$	= 1.21		D.8.4 (D-35)
	ratio = 1.01	> 1.2		NG
Ductility Tension				
	$N_{sr} = 617.7$ [kN]			
	> $\min(N_{cbgr}, N_{cpgr}, N_{sbgr})$	= 153.7	[kN]	
	Non-ductile			
Ductility Shear				
	$V_{sr} = 289.5$ [kN]			
	> $\min(V_{cbgr}, V_{cpgr}, B_r)$	= 70.6	[kN]	
	Non-ductile			

Example 33: Welded Stud + No Anchor Reinf + Tension Shear & Moment + ACI 318-08 Code

This example taken from Example 10 on page 82 of *ACI 355.3R-11 Guide for Design of Anchorage to Concrete: Examples Using ACI 318 Appendix D*

$$M_u = 30 \text{ kip-ft} \quad N_u = 0 \text{ kips}, \quad V_u = 20 \text{ kips}, \quad f'_c = 4.5 \text{ ksi}$$

$$\text{Anchor stud } d_a = 7/8 \text{ in} \quad h_{ef} = 9 \text{ in} \quad h_a = 18 \text{ in}$$

Supplementary reinforcement

Tension \rightarrow Condition B

Shear \rightarrow Condition A $\Psi_{c,V} = 1.2$

Provide built-up grout pad

Seismic is not a consideration

Field welded plate washers to base plate at each anchor

Notes:

There are two locations in this calculation which are different from calculation in ACI 355.3R-11 Example 10

- Concrete tension breakout $A_{Nc} = 1215 \text{ in}^2$, different from $A_{Nc} = 1519 \text{ in}^2$, value in ACI 355.3R-11 page 86.

We assume the moment may apply in both directions. When moment causes tensile anchors being close to the edge side, the A_{Nc} value is consequently reduced.

- Concrete shear breakout c_{a1} reduction from 27" to 12" in ACI 355.3R-11 page 90 is not correct. It doesn't comply with both edge distances $c_{a2,1} < 1.5c_{a1}$ and $c_{a2,2} < 1.5c_{a1}$. Refer to ACI 318-11 Fig. RD.6.2.4 for more details.

STUD ANCHOR DESIGN

Combined Tension, Shear and Moment

Anchor bolt design based on

ACI 318-08 Building Code Requirements for Structural Concrete and Commentary Appendix D

PIP STE05121 Anchor Bolt Design Guide-2006

Code Abbreviation

ACI 318-08

PIP STE05121

Assumptions

1. Concrete is cracked
2. Condition B - no supplementary reinforcement provided
3. Load combinations shall be per ACI 318-08 Chapter 9 or ASCE 7-05 Chapter 2
4. Shear load acts through center of bolt group $\Psi_{ec,v} = 1.0$
5. For anchor group subject to moment, the anchor tensile load is designed using elastic analysis and there is no redistribution of the forces between highly stressed and less stressed anchors
6. For anchor tensile force calc in anchor group subject to moment, assume the compression resultant is at the outside edge of the compression flange and base plate exhibits rigid-body rotation. This simplified approach yields conservative output

Code Reference

ACI 318-08

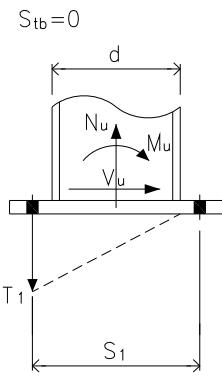
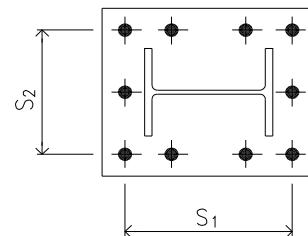
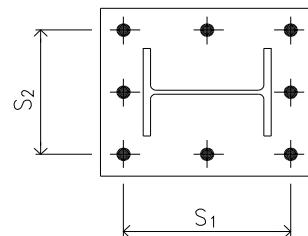
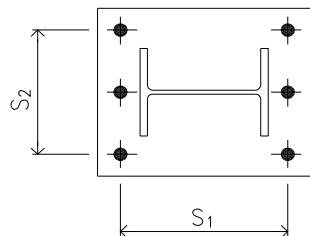
D.4.4 (c)

D.4.4

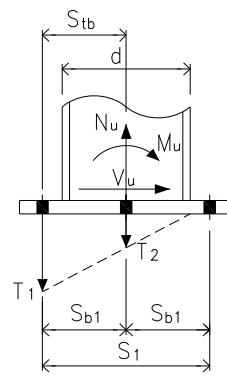
D.6.2.5

D.3.1

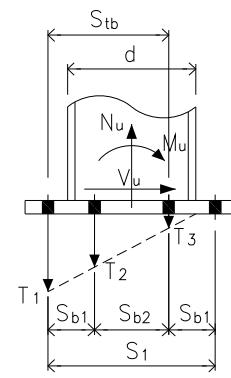
Anchor Stud Data





Factored moment

 $M_u = 30.0$ [kip-ft] $= 40.7$ [kNm]


Factored tension /compression

 $N_u = 0.0$ [kips] $= 0.0$ [kN]


Factored shear

 $V_u = 20.0$ [kips] $= 89.0$ [kN]

2 BOLT LINE

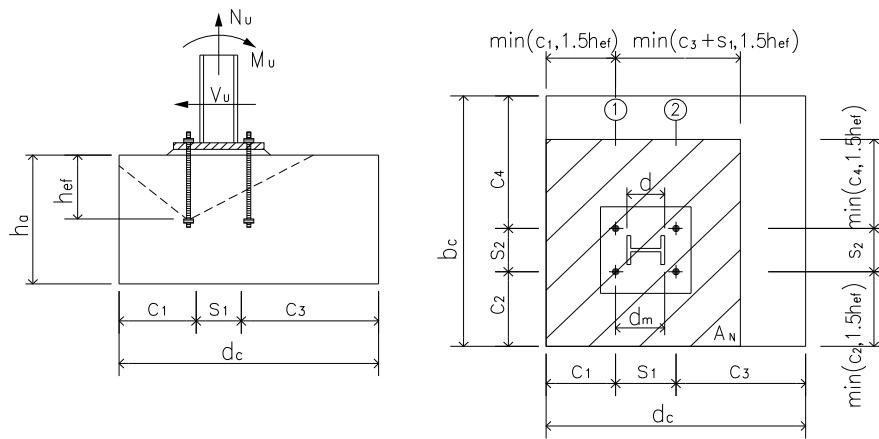
3 BOLT LINE

4 BOLT LINE

No of bolt line for resisting moment

= 3 Bolt Line

No of bolt along outermost bolt line


= 3

Code Reference

PIP STE05121

Page A -1 Table 1

Outermost stud line spacing s_1	$s_1 = 21.0$ [in]	3.5	min required	OK	Code Reference PIP STE05121 Page A -1 Table 1
Outermost stud line spacing s_2	$s_2 = 21.0$ [in]	3.5		OK	
Internal stud line spacing s_{b1}	$s_{b1} = 10.5$ [in]	3.5		OK	
Internal stud line spacing s_{b2}	$s_{b2} = 0.0$ [in]	3.5		OK	
Column depth	$d = 13.9$ [in]				
Concrete strength	$f_c = 4.5$ [ksi]			$= 31.0$ [MPa]	
Stud material	$= \text{AWS D1.1 Grade B}$				
Stud tensile strength	$f_{uta} = 65$ [ksi]			$= 448$ [MPa]	ACI 318-08
			Stud is ductile steel element		D.1
Stud diameter	$d_a = 0.875$ [in]			$= 22.2$ [mm]	
Stud shank area	$A_{se} = 0.60$ [in ²]			$= 388$ [mm ²]	
Stud head bearing area	$A_{brg} = 0.88$ [in ²]			$= 570$ [mm ²]	
Stud embedment depth	$h_{ef} = 9.0$ [in]	10.5	min required	Warn	Code Reference PIP STE05121 Page A -1 Table 1
Concrete thickness	$h_a = 18.0$ [in]	12.0		OK	
Stud edge distance c_1	$c_1 = 6.0$ [in]	4.5		OK	Page A -1 Table 1
Stud edge distance c_2	$c_2 = 6.0$ [in]	4.5		OK	
Stud edge distance c_3	$c_3 = 100.0$ [in]	4.5		OK	
Stud edge distance c_4	$c_4 = 100.0$ [in]	4.5		OK	ACI 318-08
$c_i > 1.5h_{ef}$ for at least two edges to avoid reducing of h_{ef} when $N_u > 0$				Yes	D.5.2.3
Adjusted h_{ef} for design	$h_{ef} = 9.00$ [in]	10.5		Warn	D.5.2.3

Code Reference

Number of stud at bolt line 1	$n_1 = 3$		
Number of stud at bolt line 2	$n_2 = 3$		
Total no of welded stud	$n = 8$		
Number of stud carrying tension	$n_t = 5$		
Number of stud carrying shear	$n_s = 3$		
Seismic design category $\geq C$	= <input type="button" value="No"/> ?		ACI 318-08 D.3.3.3
Supplementary reinforcement			
For tension	= <input type="button" value="No"/> Condition B		D.4.4 (c)
For shear	$\Psi_{c,V} = 1.2$ <input type="button" value="Condition A"/> ?		D.6.2.7
Provide built-up grout pad ?	= <input type="button" value="No"/> ?		D.6.1.3
Strength reduction factors			
Anchor reinforcement	$\phi_s = 0.75$		D.5.2.9 & D.6.2.9
Anchor rod - ductile steel	$\phi_{t,s} = 0.75$	$\phi_{v,s} = 0.65$	D.4.4 (a)
Concrete	$\phi_{t,c} = 0.70$	Cdn-B	$\phi_{v,c} = 0.75$ Cdn-A D.4.4 (c)

CONCLUSION

Abchor Rod Embedment, Spacing and Edge Distance

Warn

Overall

ratio = 0.95

OK

Tension

Stud Tensile Resistance	ratio = 0.21	OK
Conc. Tensile Breakout Resistance	ratio = 0.64	OK
Stud Pullout Resistance	ratio = 0.28	OK
Side Blowout Resistance	ratio = 0.00	OK

Shear

Stud Shear Resistance	ratio = 0.26	OK
Conc. Shear Breakout Resistance	ratio = 0.50	OK
Conc. Pryout Shear Resistance	ratio = 0.27	OK

Tension Shear Interaction

Tension Shear Interaction

ratio = 0.95

OK

Ductility

ACI 318-08

Tension Shear

Seismic Design Requirement

OK D.3.3.4

SDC< C, ACI318-08 D.3.3 ductility requirement is NOT required

CALCULATION				Code Reference
Anchor Stud Tensile Force				
Single bolt tensile force	$T_1 = 6.22$ [kips]	No of bolt for T_1 $n_{T1} = 3$		
	$T_2 = 2.48$ [kips]	No of bolt for T_2 $n_{T2} = 2$		
	$T_3 = 0.00$ [kips]	No of bolt for T_3 $n_{T3} = 0$		
Sum of bolt tensile force	$N_u = \sum n_{Ti} T_i$	= 23.6	[kips]	
Tensile bolts outer distance s_{tb}	$s_{tb} = 10.5$ [in]			
Eccentricity e'_N -- distance between resultant of tensile load and centroid of anchors loaded in tension	$e'_N = 2.00$ [in]			ACI 318-08 Fig. RD.5.2.4 (b)
Eccentricity modification factor	$\Psi_{ec,N} = \frac{1}{\left(1 + \frac{2e'_N}{3h_{ef}}\right)}$	= 0.87		D.5.2.4 (D-9)
Stud Tensile Resistance	$\phi_{t,s} N_{sa} = \phi_{t,s} A_{se} f_{uta}$	= 29.3	[kips]	D.5.1.2 (D-3)
	ratio = 0.21	> T_1		OK
Conc. Tensile Breakout Resistance				
	$N_b = 24 \lambda \sqrt{f_c} h_{ef}^{1.5}$ if $h_{ef} < 11"$ or $h_{ef} > 25"$	= 43.5	[kips]	D.5.2.2 (D-7)
	$16 \lambda \sqrt{f_c} h_{ef}^{5/3}$ if $11" \leq h_{ef} \leq 25"$			D.5.2.2 (D-8)
Projected conc failure area	$1.5h_{ef} =$	= 13.50	[in]	
	$A_{Nc} = [s_{tb} + \min(c_1, 1.5h_{ef}) + \min(c_3, 1.5h_{ef})]x$	= 1215.0	[in ²]	
	$[s_2 + \min(c_2, 1.5h_{ef}) + \min(c_4, 1.5h_{ef})]$			
	$A_{Nco} = 9 h_{ef}^2$	= 729.0	[in ²]	D.5.2.1 (D-6)
	$A_{Nc} = \min(A_{Nc}, n_t A_{Nco})$	= 1215.0	[in ²]	D.5.2.1
Min edge distance	$c_{min} = \min(c_1, c_2, c_3, c_4)$	= 6.0	[in]	
Eccentricity effects	$\Psi_{ec,N} =$	= 0.87		D.5.2.4 (D-9)
Edge effects	$\Psi_{ed,N} = \min[(0.7 + 0.3c_{min}/1.5h_{ef}), 1.0]$	= 0.83		D.5.2.5
Concrete cracking	$\Psi_{c,N} = 1.0$ for cracked concrete			D.5.2.6
Concrete splitting	$\Psi_{cp,N} = 1.0$ for cast-in anchor			D.5.2.7
Concrete breakout resistance	$\phi_{t,c} N_{cbg} = \phi_{t,c} \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$	= 36.8	[kips]	D.5.2.1 (D-5)
Seismic design strength reduction	= x 1.0 not applicable	= 36.8	[kips]	D.3.3.3
	ratio = 0.64	> N_u		OK
Stud Pullout Resistance				
Single bolt pullout resistance	$N_p = 8 A_{brg} f_c'$	= 31.8	[kips]	D.5.3.4 (D-15)
	$\phi_{t,c} N_{pn} = \phi_{t,c} \Psi_{c,p} N_p$	= 22.3	[kips]	D.5.3.1 (D-14)
Seismic design strength reduction	= x 1.0 not applicable	= 22.3	[kips]	D.3.3.3
	ratio = 0.28	> T_1		OK
	$\Psi_{c,p} = 1$ for cracked conc			D.5.3.6
	$\phi_{t,c} = 0.70$ pullout strength is always Condition B			D.4.4(c)

Side Blowout Resistance**Code Reference**

ACI 318-08

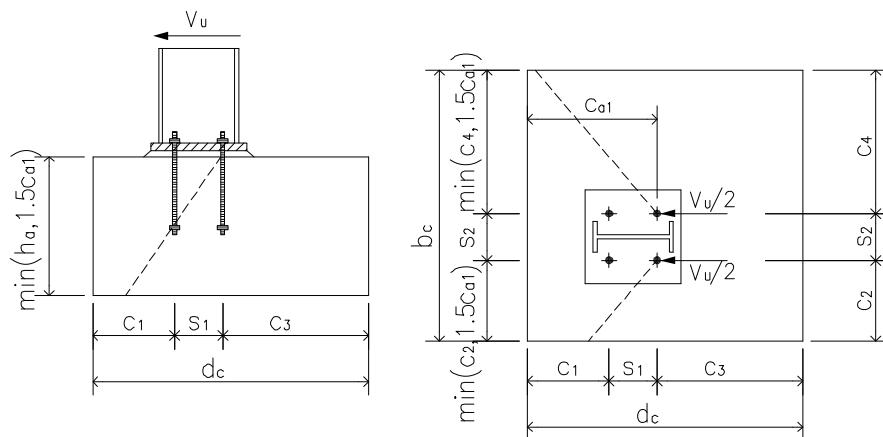
Tensile load carried by anchors close to edge which may cause side-face blowout

along pedestal width edge	$N_{buw} = n_{T1} T_1$	= 18.7	[kips]	RD.5.4.2
	$c = \min(c_1, c_3)$	= 6.0	[in]	
Check if side blowout applicable	$h_{ef} = 9.0$ [in]			
	$< 2.5c$	side blowout is NOT applicable		D.5.4.1
Check if edge anchors work as a group or work individually	$s_{22} = 0.0$ [in]	$s = s_2 = 0.0$	[in]	D.5.4.2
Single anchor SB resistance	$\phi_{t,c} N_{sb} = \phi_{t,c} (160 c \sqrt{A_{brg}}) \lambda \sqrt{f'_c}$	= 0.0	[kips]	D.5.4.1 (D-17)
Multiple anchors SB resistance	$\phi_{t,c} N_{sbg,w} =$			
work as a group - not applicable	$= (1+s/6c) \times \phi_{t,c} N_{sb}$	= 0.0	[kips]	D.5.4.2 (D-18)
work individually - not applicable	$= n_{bw} \times \phi_{t,c} N_{sb} \times [1+(c_2 \text{ or } c_4)/c] / 4$	= 0.0	[kips]	D.5.4.1
Seismic design strength reduction	$= \times 1.0$ not applicable	= 0.0	[kips]	D.3.3.3
	ratio = 0.00	< N_{buw}		OK
Group side blowout resistance	$\phi_{t,c} N_{sbg} = \phi_{t,c} \frac{N_{sbgr,w}}{n_{T1}} n_t$	= 0.0	[kips]	

Govern Tensile Resistance $N_r = \min[\phi_{t,s} n_t N_{sa}, \phi_{t,c} (N_{cbg}, n_t N_{pn}, N_{sbg})] = 36.8$ [kips]

Stud Shear Resistance $\phi_{v,s} V_{sa} = \phi_{v,s} n_s A_{se} f_{uta}$ = 76.2 [kips] D.6.1.2 (a) (D-19)

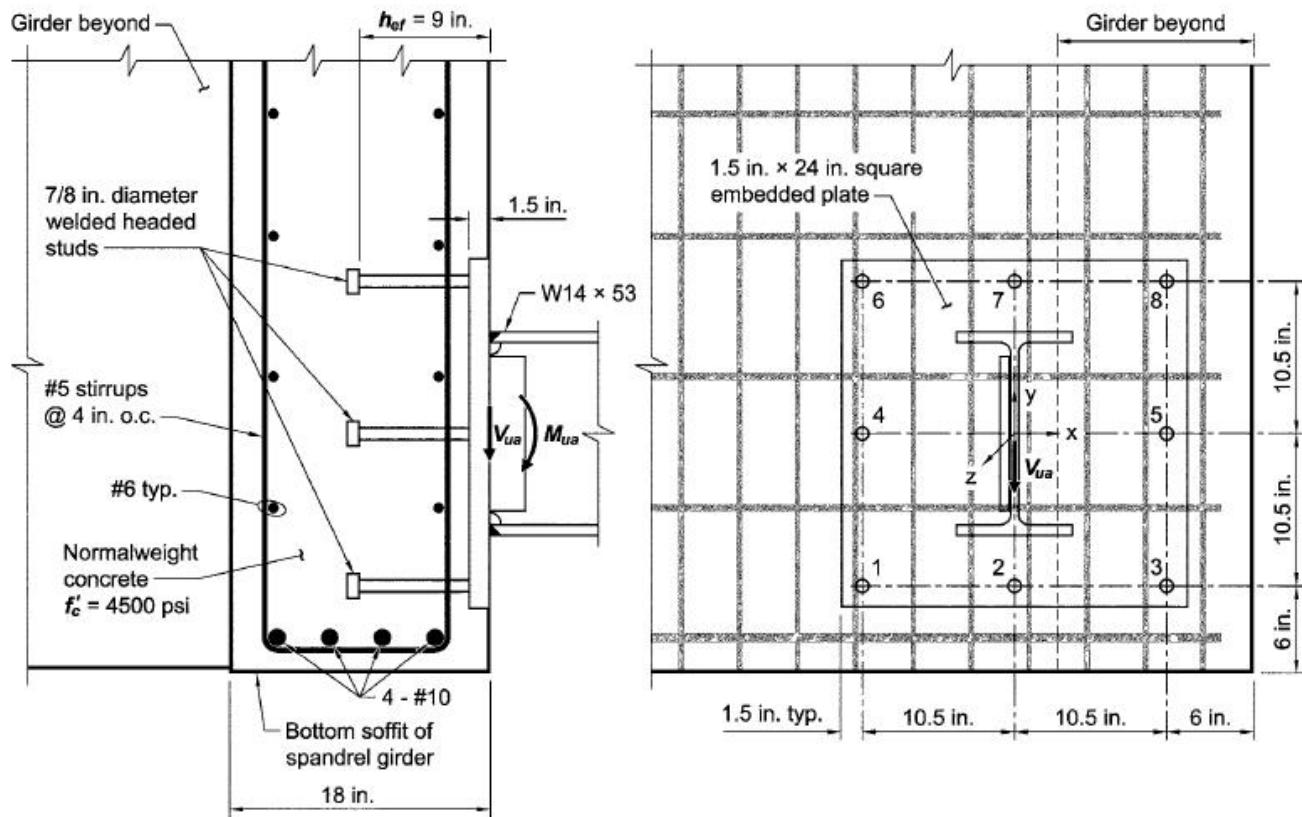
Reduction due to built-up grout pads = $\times 1.0$, not applicable = 76.2 [kips] D.6.1.3
ratio = 0.26 > V_u OK


Conc. Shear Breakout Resistance

Only Case 2 needs to be considered when anchors are rigidly connected to the attachment

Fig. RD.6.2.1(b) notes

This applies to welded stud case so only Mode 2 is considered for shear checking


in Case 2

Mode 2 Failure cone at back anchors

Code Reference				
Bolt edge distance	$c_{a1} =$	= 27.0	[in]	ACI 318-08
Limiting c_{a1} when anchors are influenced by 3 or more edges	= No			D.6.2.4
Bolt edge distance - adjusted	$c_{a1} = ca1$ needs NOT to be adjusted	= 27.0	[in]	D.6.2.4
	$c_2 =$	6.0	[in]	
	$1.5c_{a1} =$	40.5	[in]	
	$A_{Vc} = [\min(c_2, 1.5c_{a1}) + s_2 + \min(c_4, 1.5c_{a1})] x$	= 1215.0	[in ²]	D.6.2.1
	$\min(1.5c_{a1}, h_a)$			
	$A_{Vco} = 4.5c_{a1}^2$	= 3280.5	[in ²]	D.6.2.1 (D-23)
	$A_{Vc} = \min(A_{Vc}, n_2 A_{Vco})$	= 1215.0	[in ²]	D.6.2.1
	$l_e = \min(8d_a, h_{ef})$	= 7.0	[in]	D.6.2.2
	$V_b = \left[8 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \right] \lambda \sqrt{f_c} c_{a1}^{1.5}$	= 106.7	[kips]	D.6.2.3 (D-25)
Eccentricity effects	$\Psi_{ec,v} = 1.0$ shear acts through center of group			D.6.2.5
Edge effects	$\Psi_{ed,v} = \min[(0.7+0.3c_2/1.5c_{a1}), 1.0]$	= 0.74		D.6.2.6
Concrete cracking	$\Psi_{c,v} =$	= 1.20		D.6.2.7
Member thickness	$\Psi_{h,v} = \max[(\sqrt{1.5c_{a1}/h_a}), 1.0]$	= 1.50		D.6.2.8
Conc shear breakout resistance	$V_{cbg2} = \phi_{v,c} \frac{A_{Vc}}{A_{Vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_b$	= 39.7	[kips]	D.6.2.1 (D-22)
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.50	= 39.7 > V_u	[kips]	D.3.3.3 OK
Conc. Pryout Shear Resistance				
	$k_{cp} = 2.0$			D.6.3
Factored shear pryout resistance	$\phi_{v,c} V_{cpg} = \phi_{v,c} k_{cp} N_{cbg}$	= 73.6	[kips]	D.6.3 (D-31)
	$\phi_{v,c} = 0.70$ pryout strength is always Condition B			D.4.4(c)
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.27	= 73.6 > V_u	[kips]	D.3.3.3 OK
Govern Shear Resistance	$V_r = \min[\phi_{v,s} V_{sa}, \phi_{v,c} (V_{cbg}, V_{cpg})]$	= 39.7	[kips]	
Tension Shear Interaction				
Check if $N_u > 0.2\phi N_n$ and $V_u > 0.2\phi V_n$	Yes			D.7.1 & D.7.2
	$N_u/N_r + V_u/V_r$	= 1.14		D.7.3 (D-32)
	ratio = 0.95	< 1.2		OK
Ductility Tension				
	$\phi_{t,s} N_{sa} = 29.3$ [kips]			
	> $\phi_{t,c} \min(N_{cbg}, N_{pn}, N_{sbg})$	= 22.3	[kips]	
	Non-ductile			
Ductility Shear				
	$\phi_{v,s} V_{sa} = 76.2$ [kips]			
	> $\phi_{v,c} \min(V_{cbg}, V_{cpg})$	= 39.7	[kips]	
	Non-ductile			

Example 34: Welded Stud + No Anchor Reinf + Tension Shear & Moment + CSA A23.3-04 Code

This example taken from Example 10 on page 82 of *ACI 355.3R-11 Guide for Design of Anchorage to Concrete: Examples Using ACI 318 Appendix D*

$$M_u = 40.7 \text{ kNm} \quad N_u = 0 \text{ kN}, \quad V_u = 89 \text{ kN}, \quad f'_c = 31 \text{ MPa}$$

$$\text{Anchor stud } d_a = 7/8 \text{ in} \quad h_{ef} = 229 \text{ mm} \quad h_a = 457 \text{ mm}$$

Supplementary reinforcement

Tension \rightarrow Condition B

Shear \rightarrow Condition A $\Psi_{c,V} = 1.2$

Provide built-up grout pad

Seismic is not a consideration

Field welded plate washers to base plate at each anchor

Notes:

There are two locations in this calculation which are different from calculation in ACI 355.3R-11 Example 10

- Concrete tension breakout $A_{NC} = 1215 \text{ in}^2$, different from $A_{NC} = 1519 \text{ in}^2$, value in ACI 355.3R-11 page 86.

We assume the moment may apply in both directions. When moment causes tensile anchors being close to the edge side, the A_{NC} value is consequently reduced.

- Concrete shear breakout c_{a1} reduction from 27" to 12" in ACI 355.3R-11 page 90 is not correct. It doesn't comply with both edge distances $c_{a2,1} < 1.5c_{a1}$ and $c_{a2,2} < 1.5c_{a1}$. Refer to ACI 318-11 Fig. RD.6.2.4 for more details.

STUD ANCHOR DESIGN

Combined Tension, Shear and Moment

Anchor bolt design based on

CSA-A23.3-04 (R2010) Design of Concrete Structures Annex D

ACI 318M-08 Metric Building Code Requirements for Structural Concrete and Commentary

PIP STE05121 Anchor Bolt Design Guide-2006

Code Abbreviation

A23.3-04 (R2010)

ACI318 M-08

PIP STE05121

Assumptions

1. Concrete is cracked
2. Condition B for tension - no supplementary reinforcement provided
3. Shear load acts through center of bolt group $\Psi_{ec,V} = 1.0$
4. For anchor group subject to moment, the anchor tensile load is designed using elastic analysis and there is no redistribution of the forces between highly stressed and less stressed anchors
5. For anchor tensile force calc in anchor group subject to moment, assume the compression resultant is at the outside edge of the compression flange and base plate exhibits rigid-body rotation. This simplified approach yields conservative output

Code Reference

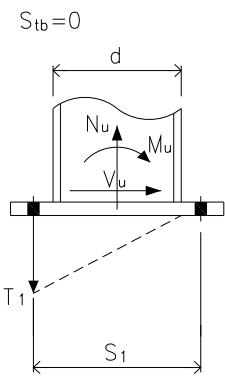
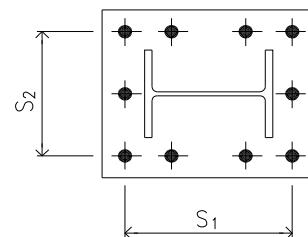
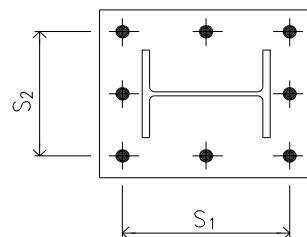
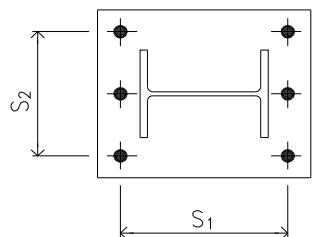
A23.3-04 (R2010)

D.5.4 (c)

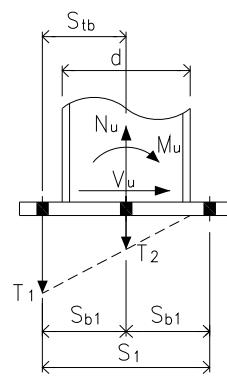
D.7.2.5

D.4.1

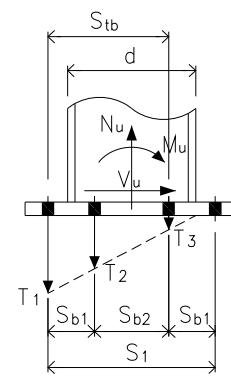
Anchor Stud Data





Factored moment

 $M_u = 40.7$ [kNm] $= 30.0$ [kip-ft]


Factored tension /compression

 $N_u = 0.0$ [kN] $= 0.0$ [kips]

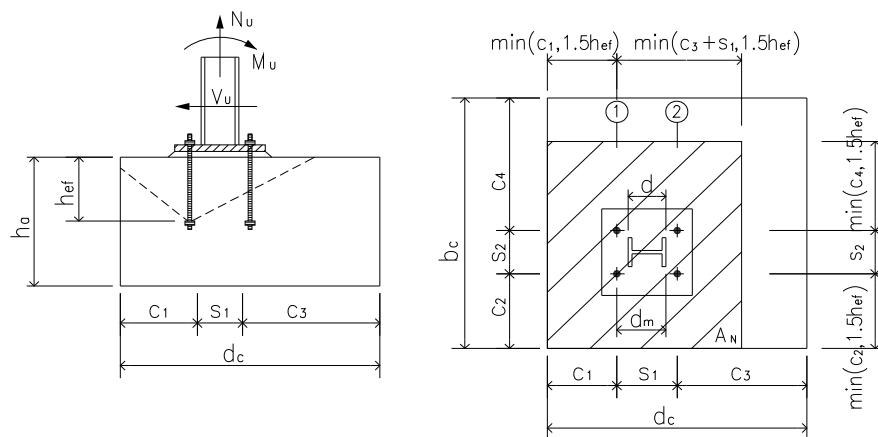

Factored shear

 $V_u = 89.0$ [kN] $= 20.0$ [kips]

2 BOLT LINE

3 BOLT LINE

4 BOLT LINE


No of bolt line for resisting moment

 $=$ 3 Bolt Line

No of bolt along outermost bolt line

 $=$ 3

min required					Code Reference
Outermost stud line spacing s_1	$s_1 = 533$	[mm]	89	OK	PIP STE05121
Outermost stud line spacing s_2	$s_2 = 533$	[mm]	89	OK	Page A -1 Table 1
Internal stud line spacing s_{b1}	$s_{b1} = 267$	[mm]	89	OK	
Internal stud line spacing s_{b2}	$s_{b2} = 0$	[mm]	89	OK	
Column depth	$d = 353$	[mm]			
Concrete strength	$f_c = 31$	[MPa]		= 4.5 [ksi]	
Anchor bolt material	= AWS D1.1 Grade B				
Anchor tensile strength	$f_{uta} = 65$	[ksi]		= 448 [MPa]	A23.3-04 (R2010)
	Stud is ductile steel element				
Stud diameter	$d_a = 0.875$	[in]		= 22.2 [mm]	
Stud shank area	$A_{se} = 0.60$	[in ²]		= 388 [mm ²]	
Stud head bearing area	$A_{brg} = 0.88$	[in ²]		= 570 [mm ²]	
Anchor bolt embedment depth	$h_{ef} = 229$	[mm]	267	Warn	PIP STE05121
Concrete thickness	$h_a = 457$	[mm]	305	OK	Page A -1 Table 1
Stud edge distance c_1	$c_1 = 152$	[mm]	115	OK	Page A -1 Table 1
Stud edge distance c_2	$c_2 = 152$	[mm]	115	OK	
Stud edge distance c_3	$c_3 = 2540$	[mm]	115	OK	
Stud edge distance c_4	$c_4 = 2540$	[mm]	115	OK	A23.3-04 (R2010)
$c_i > 1.5h_{ef}$ for at least two edges to avoid reducing of h_{ef} when $N_u > 0$				Yes	D.6.2.3
Adjusted h_{ef} for design	$h_{ef} = 229$	[mm]	267	Warn	D.6.2.3

3 of 6			
No of stud at bolt line 1	$n_1 = 3$		Code Reference
No of stud at bolt line 2	$n_2 = 3$		A23.3-04 (R2010)
Total no of welded stud	$n = 8$		
No of stud carrying tension	$n_t = 5$		
No of stud carrying shear	$n_s = 3$		
Seismic region where $I_E F_a S_a(0.2) \geq 0.35$	= <input type="button" value="No"/> ?		D.4.3.5
Supplementary reinforcement			
For tension	= <input type="button" value="No"/> Condition B		D.5.4 (c)
For shear	$\Psi_{c,V} = 1.2$ <input type="button" value="Condition A"/>	?	D.7.2.7
Provide built-up grout pad ?	= <input type="button" value="No"/> ?		D.7.1.3
Strength reduction factors			
Anchor reinforcement factor	$\phi_{as} = 0.75$		D.7.2.9
Steel anchor resistance factor	$\phi_s = 0.85$		8.4.3 (a)
Concrete resistance factor	$\phi_c = 0.65$		8.4.2
Resistance modification factors			
Anchor rod - ductile steel	$R_{t,s} = 0.80$	$R_{v,s} = 0.75$	D.5.4(a)
Concrete	$R_{t,c} = 1.00$ Cdn-B	$R_{v,c} = 1.15$	Cdn-A D.5.4(c)
CONCLUSION			
Abchor Rod Embedment, Spacing and Edge Distance			Warn
Overall		ratio = 1.00	NG
Tension			
Stud Tensile Resistance		ratio = 0.23	OK
Conc. Tensile Breakout Resistance		ratio = 0.69	OK
Stud Pullout Resistance		ratio = 0.30	OK
Side Blowout Resistance		ratio = 0.00	OK
Shear			
Stud Shear Resistance		ratio = 0.27	OK
Conc. Shear Breakout Resistance		ratio = 0.51	OK
Conc. Pryout Shear Resistance		ratio = 0.29	OK
Stud on Conc Bearing		ratio = 0.27	OK
Tension Shear Interaction			
Tension Shear Interaction		ratio = 1.00	NG
Ductility			
Tension	Non-ductile		A23.3-04 (R2010)
Shear		Non-ductile	
Seismic Design Requirement			OK D.4.3.6
IeF _a S _a (0.2) < 0.35, A23.3-04 D.4.3.3 ductility requirement is NOT required			

CALCULATION				Code Reference
Anchor Tensile Force				A23.3-04 (R2010)
Single stud tensile force	$T_1 = 27.7$ [kN]	No of stud for T_1 $n_{T1} = 3$		
	$T_2 = 11.0$ [kN]	No of stud for T_2 $n_{T2} = 2$		
	$T_3 = 0.0$ [kN]	No of stud for T_3 $n_{T3} = 0$		
Sum of stud tensile force	$N_u = \sum n_i T_i$	= 105.1	[kN]	
Tensile studs outer distance s_{tb}	$s_{tb} = 267$ [mm]			
Eccentricity e'_N -- distance between resultant of tensile load and centroid of studs loaded in tension	$e'_N = 51$ [mm]			Figure D.8 (b)
Eccentricity modification factor	$\Psi_{ec,N} = \frac{1}{\left(1 + \frac{2e'_N}{3h_{ef}}\right)}$	= 0.87		D.6.2.4 (D-9)
Stud Tensile Resistance	$N_{sr} = A_{se} \phi_s f_{uta} R_{t,s}$	= 118.2	[kN]	D.6.1.2 (D-3)
	ratio = 0.23	> T_1		OK
Conc. Tensile Breakout Resistance				
	$N_{br} = 10 \phi_c \sqrt{f_c} h_{ef}^{1.5} R_{t,c}$ if $h_{ef} \leq 275$ or $h_{ef} \geq 625$			D.6.2.2 (D-7)
	$3.9 \phi_c \sqrt{f_c} h_{ef}^{5/3} R_{t,c}$ if $275 < h_{ef} < 625$			D.6.2.2 (D-8)
		= 125.4	[kN]	
Projected conc failure area	$1.5h_{ef} =$	= 344	[mm]	
	$A_{Nc} = [s_{tb} + \min(c_1, 1.5h_{ef}) + \min(c_3, 1.5h_{ef})]x$	= 7.8E+05	[mm ²]	
	$[s_2 + \min(c_2, 1.5h_{ef}) + \min(c_4, 1.5h_{ef})]$			
	$A_{Nco} = 9 h_{ef}^2$	= 4.7E+05	[mm ²]	D.6.2.1 (D-6)
	$A_{Nc} = \min(A_{Nc}, n_t A_{Nco})$	= 7.8E+05	[mm ²]	D.6.2.1
Min edge distance	$c_{min} = \min(c_1, c_2, c_3, c_4)$	= 152	[mm]	
Eccentricity effects	$\Psi_{ec,N} =$	= 0.87		D.6.2.4 (D-9)
Edge effects	$\Psi_{ed,N} = \min[(0.7 + 0.3c_{min}/1.5h_{ef}), 1.0]$	= 0.83		D.6.2.5
Concrete cracking	$\Psi_{c,N} = 1.0$ for cracked concrete			D.6.2.6
Concrete splitting	$\Psi_{cp,N} = 1.0$ for cast-in anchor			D.6.2.7
Concrete breakout resistance	$N_{cbgr} = \frac{A_{Nc}}{A_{Nco}} \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_{br}$	= 151.2	[kN]	D.6.2.1 (D-5)
Seismic design strength reduction	= x 1.0 not applicable	= 151.2	[kN]	D.4.3.5
	ratio = 0.69	> N_u		OK
Stud Pullout Resistance				
Single bolt pullout resistance	$N_{pr} = 8 A_{brg} \phi_c f_c' R_{t,c}$	= 91.9	[kN]	D.6.3.4 (D-16)
	$N_{cpr} = \Psi_{c,p} N_{pr}$	= 91.9	[kN]	D.6.3.1 (D-15)
Seismic design strength reduction	= x 1.0 not applicable	= 91.9	[kN]	D.4.3.5
	ratio = 0.30	> T_1		OK
	$\Psi_{c,p} = 1$ for cracked conc			D.6.3.6
	$R_{t,c} = 1.00$ pullout strength is always Condition B			D.5.4(c)

Side Blowout Resistance Code Reference
Failure Along Pedestal Width Edge

Tensile load carried by anchors close to edge which may cause side-face blowout ACI318 M-08

along pedestal width edge $N_{buw} = n_{T1} T_1$ = 83.0 [kN] RD.5.4.2
 $c = \min(c_1, c_3)$ = 152 [mm]

Check if side blowout applicable $h_{ef} = 229$ [mm] A23.3-04 (R2010)
 $< 2.5c$ side blowout is NOT applicable D.6.4.1

Check if edge anchors work as a group or work individually $s_{22} = 0$ [mm] $s = s_2 = 0$ [mm] D.6.4.2
 $< 6c$ side blowout is NOT applicable D.6.4.2

Single anchor SB resistance $N_{sbr,w} = 13.3c\sqrt{A_{brg}} \phi_c \sqrt{f'_c} R_{t,c}$ = 0.0 [kN] D.6.4.1 (D-18)

Multiple anchors SB resistance $N_{sbgr,w} =$
 work as a group - not applicable $= (1+s/6c) \times N_{sbr,w}$ = 0.0 [kN] D.6.4.2 (D-19)
 work individually - not applicable $= n_{bw} \times N_{sbr,w} \times [1+(c_2 \text{ or } c_4)/c]/4$ = 0.0 [kN] D.6.4.1

Seismic design strength reduction $= \times 1.0$ not applicable = 0.0 [kN] D.4.3.5
 $\text{ratio} = 0.00$ < N_{buw} OK

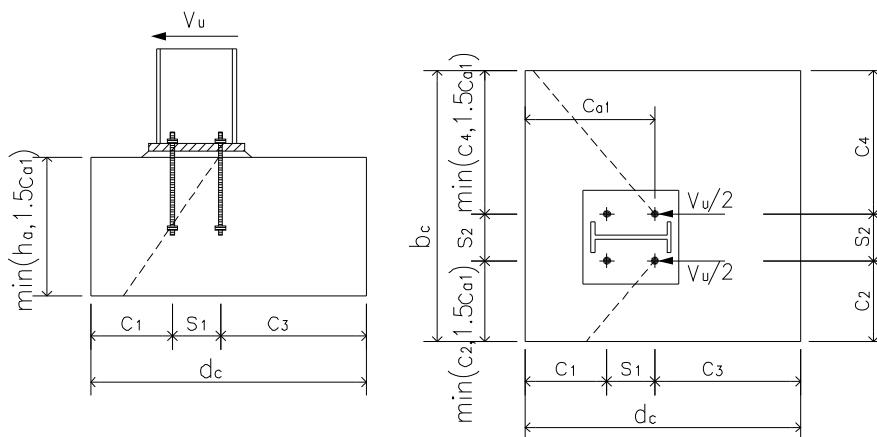
Group side blowout resistance $N_{sbgr} = \frac{N_{sbgr,w}}{n_{T1}} n_t$ = 0.0 [kN]

Govern Tensile Resistance $N_r = \min(n_t N_{sr}, N_{rbr}, n_t N_{cpr}, N_{sbgr})$ = 151.2 [kN]

Stud Shear Resistance $V_{sr} = n_s A_{se} \phi_s f_{uta} R_{v,s}$ = 332.5 [kN] D.7.1.2 (a) (D-20)

Reduction due to built-up grout pads $= \times 1.0$, not applicable = 332.5 [kN] D.7.1.3
 $\text{ratio} = 0.27$ > V_u OK

Conc. Shear Breakout Resistance


ACI318 M-08

Only Case 2 needs to be considered when anchors are rigidly connected to the attachment

Fig. RD.6.2.1(b) notes

This applies to welded stud case so only Mode 2 is considered for shear checking

in Case 2

Mode 2 Failure cone at back anchors

A23.3-04 (R2010)

Bolt edge distance $c_{a1} = c_1 + s_1$ = 685 [mm]

Limiting c_{a1} when anchors are influenced by 3 or more edges = No D.7.2.4

Bolt edge distance - adjusted $c_{a1} = c_{a1}$ needs NOT to be adjusted = 685 [mm] D.7.2.4

6 of 6

$c_2 =$	152	[mm]	Code Reference	
$1.5c_{a1} =$	1028	[mm]	A23.3-04 (R2010)	
$A_{Vc} = [\min(c_2, 1.5c_{a1}) + s_2 + \min(c_4, 1.5c_{a1})] \times \min(1.5c_{a1}, h_a)$	= 7.8E+05	[mm ²]	D.7.2.1	
$A_{Vco} = 4.5c_{a1}^2$	= 2.1E+06	[mm ²]	D.7.2.1 (D-24)	
$A_{Vc} = \min(A_{Vc}, n_2 A_{Vco})$	= 7.8E+05	[mm ²]	D.7.2.1	
$l_e = \min(8d_a, h_{ef})$	= 178	[mm]	D.3	
$V_{br} = 0.66 \left(\frac{l_e}{d_a} \right)^{0.2} \sqrt{d_a} \phi_c \sqrt{f_c} c_{a1}^{1.5} R_{v,c}$	= 352.2	[kN]	D.7.2.3 (D-26)	
Eccentricity effects	$\Psi_{ec,v} = 1.0$ shear acts through center of group		D.7.2.5	
Edge effects	$\Psi_{ed,v} = \min[(0.7+0.3c_2/1.5c_{a1}), 1.0]$	= 0.74	D.7.2.6	
Concrete cracking	$\Psi_{c,v} =$	= 1.20	D.7.2.7	
Member thickness	$\Psi_{h,v} = \max[(\sqrt{1.5c_{a1}}/h_a), 1.0]$	= 1.50	D.7.2.8	
Conc shear breakout resistance	$V_{cbgr} = \frac{A_{Vc}}{A_{Vco}} \Psi_{ec,v} \Psi_{ed,v} \Psi_{c,v} \Psi_{h,v} V_{br}$	= 174.8	[kN]	D.7.2.1 (D-23)
Seismic design strength reduction ratio	= x 1.0 not applicable ratio = 0.51	= 174.8 > V_u	[kN]	D.4.3.5 OK
Conc. Pryout Shear Resistance				
Factored shear prout resistance	$V_{cpgr} = k_{cp} N_{cbgr}$	= 302.4	[kN]	D.7.3 (D-32)
Seismic design strength reduction ratio	$R_{v,c} = 1.00$ prout strength is always Condition B = x 1.0 not applicable ratio = 0.29	= 302.4 > V_u	[kN]	D.5.4(c) D.4.3.5 OK
Stud on Conc Bearing	$B_r = n_s \times 1.4 \times \phi_c \times \min(8d_a, h_{ef}) \times d_a \times f_c'$ ratio = 0.27	= 334.4 > V_u	[kN]	CSA S16-09 25.3.3.2 OK
Govern Shear Resistance	$V_r = \min(V_{sr}, V_{cbgr}, V_{cpgr}, B_r)$	= 174.8	[kN]	A23.3-04 (R2010)
Tension Shear Interaction				
Check if $N_u > 0.2 N_r$ and $V_u > 0.2 V_r$	Yes			D.8.2 & D.8.3
	$N_u/N_r + V_u/V_r$	= 1.20		D.8.4 (D-35)
	ratio = 1.00	> 1.2		NG
Ductility Tension				
	$N_{sr} = 118.2$ [kN]			
	> $\min(N_{cbgr}, N_{cpgr}, N_{sbgr})$	= 91.9	[kN]	
			Non-ductile	
Ductility Shear				
	$V_{sr} = 332.5$ [kN]			
	> $\min(V_{cbgr}, V_{cpgr}, B_r)$	= 174.8	[kN]	
			Non-ductile	

Example 41: Shear Lug Design ACI 349-06 Code

SHEAR LUG / SHEAR KEY DESIGN

Shear Lug / Shear Key design based on

Code Abbreviation

ACI 349-06 Code Requirements for Nuclear Safety-Related Concrete Structures & Commentary

ACI 349-06

AISC Design Guide 1: Base Plate and Anchor Rod Design - 2nd Edition

AISC Design Guide 1

AISC 360-05 Specification for Structural Steel Buildings

AISC 360-05

INPUT DATA

Factored shear along strong axis

 $V_{ux} = 75.0$ [kips]

Code Reference

Factored shear along weak axis

 $V_{uy} = 50.0$ [kips] applicable for W Shape only

Pedestal width

 $b_c = 26.0$ [in]

Pedestal depth

 $d_c = 26.0$ [in]

Pedestal height

 $h_a = 30.0$ [in]

Grout thickness

 $g = 2.0$ [in]

Shear key type

= W_Shape W8X40

Shear key width Shape

 $w = 8.07$ [in] Applicable

Shear key width used for design

 $w = 8.07$ [in]

Shear key embed depth

 $d = 8.0$ [in]

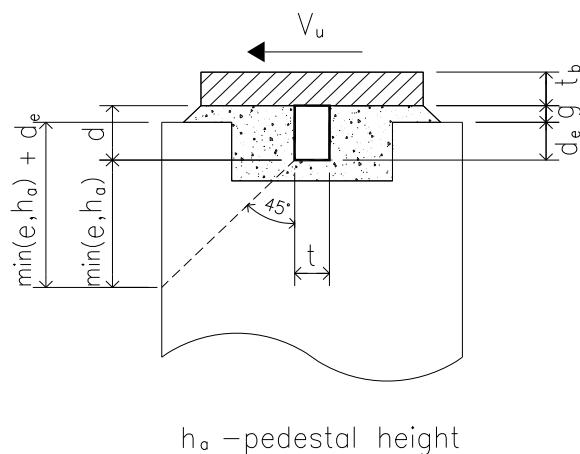
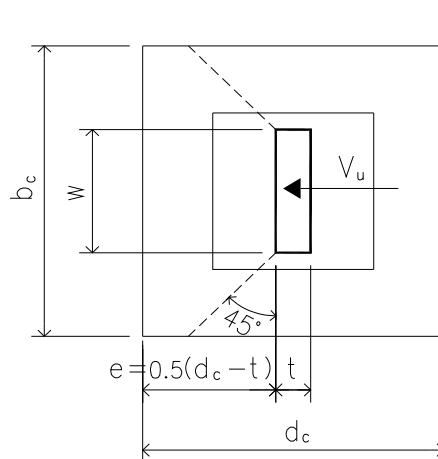
Concrete strength

 $f_c = 4.5$ [ksi] suggest 4 = 31.0 [MPa]

A36 A992

Shear key steel strength

 $F_y = 50$ [ksi] 36 50 = 344.8 [MPa] $F_u = 65$ [ksi] 58 65 = 448.2 [MPa]



Weld electrode

= E70XX A/SC 360-05

Electrode ultimate tensile

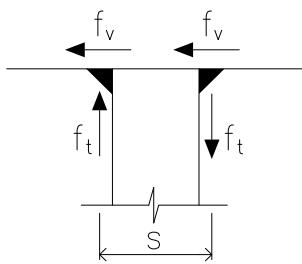
 $F_{EXX} = 70$ [ksi] 70 = 482.7 [MPa]

Fillet weld leg size

 $A_m = 5$ [1/16 in] 5/16 = 7.9 [mm] Table J2.4

Code Reference ACI 349-06			
2 of 4			
CONCLUSION			
OVERALL			
Concrete Bearing	ratio = 0.94	OK	
Shear Toward Free Edge	ratio = 0.41	OK	D.4.6.2
	ratio = 0.81	OK	D.11.2
Shear Key Section Flexure & Shear Check	ratio = 0.94	OK	
Shear Key To Base Plate Fillet Weld	ratio = 0.69	OK	
CALCULATION			
Concrete Bearing			
$A_b = w d_e = w (d-g)$	= 48.42	[in ²]	
$V_b = 1.3 \phi f'_c A_b$	= 184.1	[kips]	D.4.6.2
ratio = 0.41	> V_{ux}	OK	
$\phi = 0.65$ for anchor controlled by concrete bearing			D.4.4 (d)
Shear Toward Free Edge			
$e = 0.5x(d_c - t)$	= 12.38	[in]	
$e = \min(e, h_a)$	= 12.38	[in]	
$A_{eff} = [e + (d-g)] \times b_c - wx(d-g)$	= 429.3	[in ²]	
$\phi V_n = 4\phi \sqrt{f'_c} A_{eff}$	= 92.2	[kips]	D.11.2
ratio = 0.81	> V_u	OK	
$\phi = 0.80$			D.4.4 (f)
Shear Key Section Flexure & Shear Check			
Shear Key Plate Sect			
This case does not apply			
Flexure	$M_{ux} = V_{ux} \times [0.5x(d-g) + g]$	= 375.0	[kip-in]
	$Z = w \times t^2 / 4$	= 3.15	[in ³]
	$\phi M_n = 0.9 \times Z \times F_y$	= 141.9	[kip-in]
	ratio = 0.00	< M_{ux}	OK
Shear	$\phi V_n = 0.9 \times A_w \times 0.6F_y$	= 272.4	[kips]
	ratio = 0.00	> V_{ux}	OK
Shear Key Pipe Sect			
This case does not apply			
Flexure	$M_{ux} = V_{ux} \times [0.5x(d-g) + g]$	= 375.0	[kip-in]
	$Z =$	= 0.00	[in ³]
	$\phi M_n = 0.9 \times Z \times F_y$	= 0.0	[kip-in]
	ratio = 0.00	< M_{ux}	OK
Shear	$A_w =$	= 0.000	[in ²]
	$\phi V_n = 0.9 \times A_w \times 0.6F_y$	= 0.0	[kips]
	ratio = 0.00	< V_{ux}	OK

Code Reference				
Shear Key HSS Sect				3 of 4
Flexure				OK
Shear				OK
Shear Key W Sect				
Flexure strong axis				OK
Flexure weak axis				OK
Shear strong axis				OK
Shear weak axis				OK
Shear Key To Base Plate Fillet Weld				
Resultant angle				A/SC 360-05
Nominal fillet weld strength				Eq J2-5
Weld metal shear strength				Eq J2-4
For PLATE shear key only				not applicable
Base metal thickness				[in]
Base metal shear strength				[kips/in] Eq J4-3 & Eq J4-4
Shear strength used for design				[kips/in] Eq J2-2


Code Reference

Factored moment to base plate	$M_{ux} = V_{ux} \times [0.5x(d-g) + g]$	= 375.0	[kip-in]
	$M_{uy} = V_{uy} \times [0.5x(d-g) + g]$	= 250.0	[kip-in]

Shear Key Plate

This case does not apply

$s = t + (1/3)A_m \times 2$	= 1.458	[in]
$f_t = M_{ux} / (s \times w)$	= 0.00	[kips/in]
$f_v = V_{ux} / (w \times 2)$	= 0.00	[kips/in]
$f_r = \sqrt{f_t^2 + f_v^2}$	= 0.00	[kips/in]
ratio = 0.00	< ϕr_n	OK

Force on Shear Key Plate Weld

Shear Key Pipe Sect

This case does not apply

Weld ring diameter	$D =$	= 8.07	[in]
	$f_t = M_{ux} / (\pi D^2 / 4)$	= 0.00	[kips/in]
	$f_v = V_{ux} / (\pi D \times 1)$	= 0.00	[kips/in]
	$f_r = \sqrt{f_t^2 + f_v^2}$	= 0.00	[kips/in]
	ratio = 0.00	< ϕr_n	OK

Shear Key HSS Sect

This case does not apply

Weld box width/depth	$b = 8.07$	[in]	$d = 0.00$	[in]
	$f_t = M_{ux} / (bd + d^2/3)$	= 0.00	[kips/in]	
	$f_v = V_{ux} / (2xd)$	= 0.00	[kips/in]	
	$f_r = \sqrt{f_t^2 + f_v^2}$	= 0.00	[kips/in]	
	ratio = 0.00	< ϕr_n	OK	

Shear Key W Sect

This case applies

Strong Axis	$b = 8.07$	[in]	$d = 8.25$	[in]
	$f_t = M_{ux} / (bxd)$	= 5.63	[kips/in]	
	$f_v = V_{ux} / (2xd)$	= 4.55	[kips/in]	
	$f_r = \sqrt{f_t^2 + f_v^2}$	= 7.24	[kips/in]	
	ratio = 0.69	< ϕr_n	OK	

Weak Axis

	$f_t = M_{uy} / [(1xb^2/6) \times 4]$	= 5.76	[kips/in]
	$f_v = V_{uy} / (4xb)$	= 1.55	[kips/in]
	$f_r = \sqrt{f_t^2 + f_v^2}$	= 5.96	[kips/in]
	ratio = 0.57	< ϕr_n	OK

Example 42: Shear Lug Design ACI 349M-06 Code

SHEAR LUG / SHEAR KEY DESIGN

Shear Lug / Shear Key design based on

Code Abbreviation

ACI 349M-06 Metric Code Requirements for Nuclear Safety-Related Concrete Structures & Commentary

ACI 349M-06

AISC Design Guide 1: Base Plate and Anchor Rod Design - 2nd Edition

AISC Design Guide 1

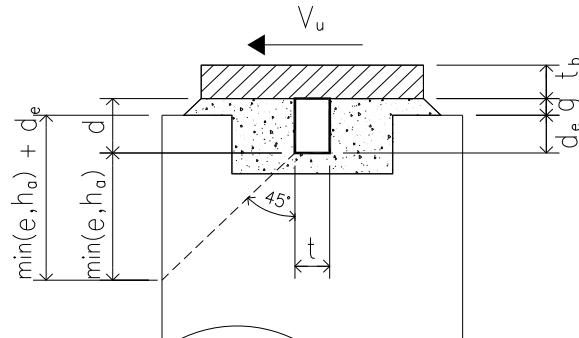
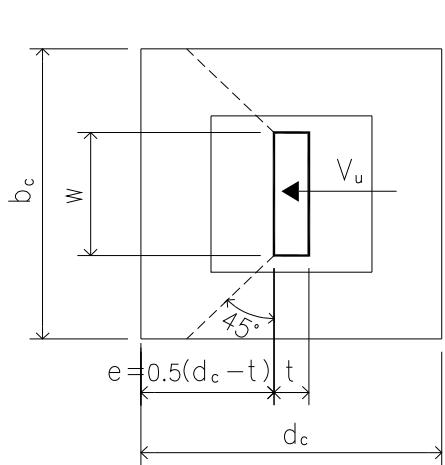
CSA S16-09 Design of Steel Structures

CSA S16-09

INPUT DATA

Code Reference

Factored shear along strong axis $V_{ux} = 333.6$ [kN]
 Factored shear along weak axis $V_{uy} = 222.4$ [kN] applicable for W Shape only



Pedestal width $b_c = 660$ [mm]
 Pedestal depth $d_c = 660$ [mm]
 Pedestal height $h_a = 762$ [mm]
 Grout thickness $g = 51$ [mm]
 Shear key type = W_Shape W200x59
 Shear key width Shape $w = 205$ [mm] Applicable

Shear key width used for design $w = 205$ [mm]
 Shear key embed depth $d = 203$ [mm]

Concrete strength $f_c = 31$ [MPa] 30 suggest $= 4.5$ [ksi]

Shear key steel strength $F_y = 345$ [MPa] 300 $= 50.0$ [ksi]
 $F_u = 448$ [MPa] 450 $= 65.0$ [ksi]

Weld electrode = E49XX $X_u = 490$ [MPa]
 Fillet weld leg size $D = 8$ [mm]

h_a - pedestal height

Code Reference ACI 349M-06			
2 of 4			
CONCLUSION			
OVERALL	ratio = 0.94	OK	
Concrete Bearing	ratio = 0.41	OK	D.4.6.2
Shear Toward Free Edge	ratio = 0.81	OK	D.11.2
Shear Key Section Flexure & Shear Check	ratio = 0.94	OK	
Shear Key To Base Plate Fillet Weld	ratio = 0.79	OK	
CALCULATION			
Concrete Bearing			
$A_b = w d_e = w (d-g)$	= 31242	[mm ²]	
$V_b = 1.3 \phi f'_c A_b$	= 818.4	[kN]	D.4.6.2
ratio = 0.41	> V_{ux}	OK	
$\phi = 0.65$ for anchor controlled by concrete bearing			D.4.4 (d)
Shear Toward Free Edge			
$e = 0.5x(d_c - t)$	= 314	[mm]	
$e = \min(e, h_a)$	= 314	[mm]	
$A_{eff} = [e + (d-g)] \times b_c - wx(d-g)$	= 2.8E+05	[mm ²]	
$\phi V_n = 4\phi \sqrt{f'_c} A_{eff}$	= 409.6	[kN]	D.11.2
ratio = 0.81	> V_u	OK	
$\phi = 0.80$			D.4.4 (f)
Shear Key Section Flexure & Shear Check			
Shear Key Plate Sect	This case does not apply		
Flexure	$M_{ux} = V_{ux} \times [0.5x(d-g) + g]$	= 42.4	[kNm]
	$Z = w \times t^2 / 4$	= 52.5	[x10 ³ mm ³]
	$\phi M_n = 0.9 \times Z \times F_y$	= 16.3	[kNm]
	ratio = 0.00	< M_{ux}	OK
Shear	$\phi V_n = 0.9 \times A_w \times 0.6F_y$	= 1222.1	[kN]
	ratio = 0.00	> V_{ux}	OK
Shear Key Pipe Sect	This case does not apply		
Flexure	$M_{ux} = V_{ux} \times [0.5x(d-g) + g]$	= 42.4	[kNm]
	$Z =$	= 0.0	[x10 ³ mm ³]
	$\phi M_n = 0.9 \times Z \times F_y$	= 0.0	[kNm]
	ratio = 0.00	< M_{ux}	OK
Shear	$A_w =$	= 0	[mm ²]
	$\phi V_n = 0.9 \times A_w \times 0.6F_y$	= 0.0	[kN]
	ratio = 0.00	< V_{ux}	OK

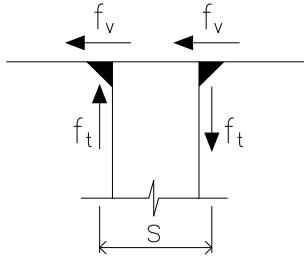
Code Reference

Shear Key HSS Sect		This case does not apply	
		$M_{ux} = V_{ux} x [0.5x(d-g) + g]$	= 42.4 [kNm]
		$Z =$	= 0.0 [$x10^3\text{mm}^3$]
Flexure		$\phi M_n = 0.9 x Z x F_y$	= 0.0 [kNm]
Shear		$\text{ratio} = 0.00$	< M_{ux} OK
		$A_w =$	= 0 [mm^2]
		$\phi V_n = 0.9 x A_w x 0.6F_y$	= 0.0 [kN]
		$\text{ratio} = 0.00$	< V_{ux} OK
Shear Key W Sect		This case applies	
Flexure strong axis		$M_{ux} = V_{ux} x [0.5x(d-g) + g]$	= 42.4 [kNm]
		$Z_x =$	= 653 [$x10^3\text{mm}^3$]
		$\phi M_{nx} = 0.9 x Z_x x F_y$	= 202.8 [kNm]
		$\text{ratio} = 0.21$	> M_{ux} OK
Flexure weak axis		$M_{uy} = V_{uy} x [0.5x(d-g) + g]$	= 28.2 [kNm]
		$Z_y =$	= 303 [$x10^3\text{mm}^3$]
		$\phi M_{ny} = 0.9 x Z_y x F_y$	= 94.1 [kNm]
		$\text{ratio} = 0.30$	> M_{uy} OK
Shear strong axis		$b_f = 205.0$ [mm]	$d = 210.0$ [mm]
		$t_w = 9.1$ [mm]	$t_f = 14.2$ [mm]
		$A_w = t_w x d$	= 1911 [mm^2]
		$\phi V_{nx} = 0.9 x A_w x 0.6F_y$	= 356.0 [kN]
		$\text{ratio} = 0.94$	> V_{ux} OK
Shear weak axis		$A_w = 2 x t_f x b_f$	= 5822 [mm^2]
		$\phi V_{ny} = 0.9 x A_w x 0.6F_y$	= 1084.6 [kN]
		$\text{ratio} = 0.21$	> V_{uy} OK
Shear Key To Base Plate Fillet Weld			
Base metal resistance		$A_m = D x 1\text{mm}$	= 8.00 [mm^2]
		$V_{rm} = 0.67 \phi_w A_m F_u$	= 1.61 [kN/mm] 13.13.2.2
		$\phi_w = 0.67$	13.1 (h)
Weld metal resistance		$A_w = 0.707 x D x 1\text{mm}$	= 5.66 [mm^2]
Fillet weld resistance - shear		$\theta =$	= 90
		$V_{rw} = 0.67 \phi_w A_w X_u (1 + 0.5 \sin \theta)^{1.5}$	= 1.87 [kN/mm] 13.13.2.2
		$V_r = \min(V_{rm}, V_{rw})$	= 1.61 [kN/mm]

Code Reference

Factored moment to base plate	$M_{ux} = V_{ux} \times [0.5x(d-g) + g]$	= 42.4	[kNm]
	$M_{uy} = V_{uy} \times [0.5x(d-g) + g]$	= 28.2	[kNm]

Shear Key Plate


This case does not apply

$s = t + (1/3)D \times 2$	= 37.3	[mm]
$f_t = M_{ux} / (s \times w)$	= 0.00	[kN/mm]
$f_v = V_{ux} / (w \times 2)$	= 0.00	[kN/mm]
$f_r = \sqrt{f_t^2 + f_v^2}$	= 0.00	[kN/mm]

ratio = 0.00

< ϕr_n

OK

Force on Shear Key Plate Weld

Shear Key Pipe Sect

This case does not apply

Weld ring diameter

$D =$	= 205.0	[mm]
$f_t = M_{ux} / (\pi D^2 / 4)$	= 0.00	[kN/mm]
$f_v = V_{ux} / (\pi D \times 1)$	= 0.00	[kN/mm]
$f_r = \sqrt{f_t^2 + f_v^2}$	= 0.00	[kN/mm]

ratio = 0.00

< ϕr_n

OK

Shear Key HSS Sect

This case does not apply

Weld box width/depth

$b = 205.0$ [in]	$d = 205.0$	[mm]
$f_t = M_{ux} / (bd + d^2/3)$	= 0.00	[kN/mm]
$f_v = V_{ux} / (2xd)$	= 0.00	[kN/mm]
$f_r = \sqrt{f_t^2 + f_v^2}$	= 0.00	[kN/mm]

ratio = 0.00

< ϕr_n

OK

Shear Key W Sect

This case applies

Strong Axis

$b = 205.0$ [in]	$d = 210.0$	[mm]
$f_t = M_{ux} / (bxd)$	= 0.98	[kN/mm]
$f_v = V_{ux} / (2xd)$	= 0.79	[kN/mm]
$f_r = \sqrt{f_t^2 + f_v^2}$	= 1.26	[kN/mm]

ratio = 0.79

< ϕr_n

OK

Weak Axis

$f_t = M_{uy} / [(1xb^2/6) \times 4]$	= 1.01	[kN/mm]
$f_v = V_{uy} / (4xb)$	= 0.27	[kN/mm]
$f_r = \sqrt{f_t^2 + f_v^2}$	= 1.04	[kN/mm]

ratio = 0.65

< ϕr_n

OK

Example 51: Base Plate (LRFD) & Anchor Bolt (ACI 318-08) Design With Anchor Reinforcement

BASE PLATE & ANCHOR BOLT DESIGN - MOMENT CONNECTION

Base Plate Data

Column section type

= W_Shape

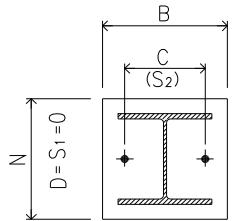
Column size

= W14X53

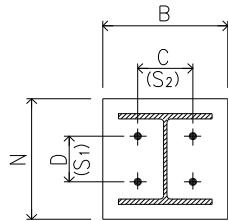
Depth

d = 13.900 [in] Flange thickness t_f = 0.660 [in]

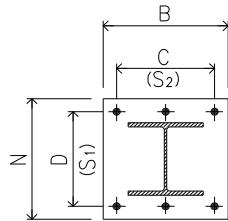
Flange width

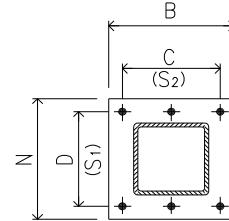

 b_f = 8.060 [in] Web thickness t_w = 0.370 [in]

Base plate anchor bolt pattern

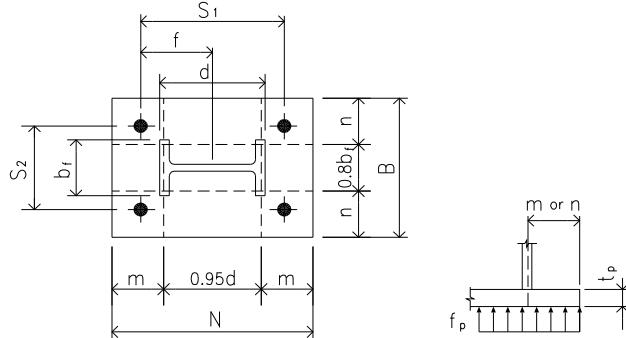

= 4 or 6-Bolt MC WF ? base plate is moment connection

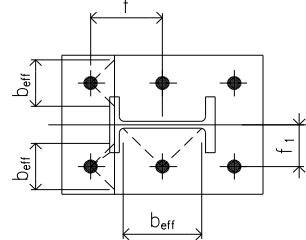
Base plate anchor bolt location


= Bolt Outside Flange Only ?


2-BOLT PIN

4-BOLT PIN


4 or 6-Bolt MC WF


4 or 6-Bolt MC HS

suggest

Base plate width	B = 22.0 [in]	15.0
Base plate depth	N = 22.0 [in]	21.0
Base plate thickness	t_p = 2.00 [in]	1.75
Anchor bolt spacing $s_2 = C$	C = 18.0 [in]	11.0
Anchor bolt spacing $s_1 = D$	D = 18.0 [in]	17.0

BASE PLATE GEOMETRIC

BASE PLATE SUBJECT TO TENSILE LOAD

Bolt to column center dist. $f = 9.0$ [in]
 Bolt to column web center dist. $f_1 = 9.0$ [in]
 Suggested plate thickness for rigidity: $t_p = \max$ of $m/4$ and $n/4$

= No ?

Factored column load

LCB	Cases	P_u [kips]	V_u [kips]	M_u [kip-ft]
LCB1	Axial Comp.	100.0	15.0	0.0
LCB2	Axial Comp. + M	0.0	20.0	30.0
LCB3	Axial Comp. + M	15.0	20.0	30.0
LCB4	Axial Tensile	10.0	35.0	0.0

2 of 4

Code Reference

Anchor Bolt Data

2 BOLT LINE 3 BOLT LINE 4 BOLT LINE

No of bolt line for resisting moment min required

No of bolt along outermost bolt line

Outermost bolt line spacing s_1 $s_1 = 18.0$ [in] 3.5 OK *PIP STE05121*

Outermost bolt line spacing s_2 $s_2 = 18.0$ [in] 3.5 OK *Page A -1 Table 1*

Internal bolt line spacing s_{b1} 3.5 OK *PIP STE05121*

Internal bolt line spacing s_{b2} $s_{b2} = 0.0$ [in] 3.5 OK

Anchor bolt material

Anchor tensile strength $f_{uta} = 75.0$ [ksi] $= 517$ [MPa] *ACI 318-08*

Anchor bolt diameter $d_a = 0.875$ [in] max 1.5 in $= 22.2$ [mm] *PIP STE05121*

Bolt sleeve diameter $d_s = 2.0$ [in] *Page A -1 Table 1*

Bolt sleeve height $h_s = 7.0$ [in] min required

Anchor bolt embedment depth $h_{ef} = 20.0$ [in] 10.5 OK *Page A -1 Table 1*

Pedestal height $h_a = 23.0$ [in] 23.0 OK

Pedestal width $b_c = 124.0$ [in]

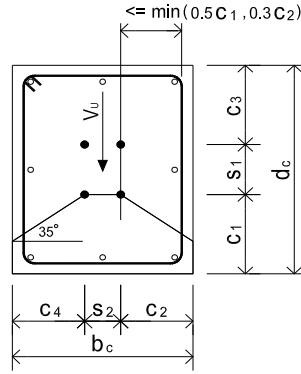
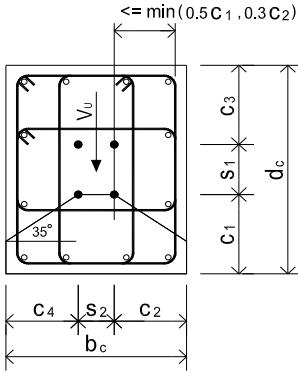
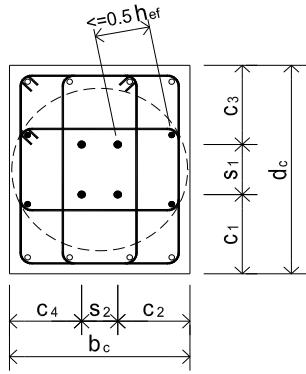
Pedestal depth $d_c = 124.0$ [in]

Bolt edge distance c_1 $c_1 = 6.0$ [in] 5.3

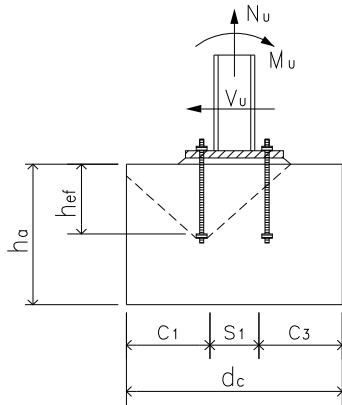
OK

Code Reference
PIP STE0512Bolt edge distance c_2 $c_2 = 6.0$ [in] 5.3

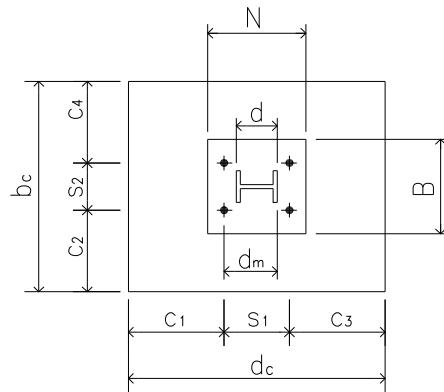
OK




Page A -1 Table 1

Bolt edge distance c_3 $c_3 = 100.0$ [in] 5.3


OK

Bolt edge distance c_4 $c_4 = 100.0$ [in] 5.3


OK

Ver. Reinft For Tension

Hor. Ties For Shear - 4 Legs

Hor. Ties For Shear - 2 Legs

ACI 318-08

To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost anchor's centerline. In this design $0.5h_{ef}$ value is limited to 8 in.

RD.5.2.9

 $0.5h_{ef} = 8.0$ [in]

No of ver. rebar that are effective for resisting anchor tension

 $n_v = 6$

Ver. bar size No.

8: 1.000 [in] dia single bar area $A_s = 0.79$ [in²]

To be considered effective for resisting anchor shear, hor. reinf shall be located

RD.6.2.9

within $\min(0.5c_1, 0.3c_2)$ from the outmost anchor's centerline $\min(0.5c_1, 0.3c_2) = 1.8$ [in]

No of tie leg that are effective to resist anchor shear

 $n_{leg} = 2$?

No of tie layer that are effective to resist anchor shear

 $n_{lay} = 2$?

Hor. tie bar size No.

4: 0.500 [in] dia single bar area $A_s = 0.20$ [in²]

For anchor reinf shear breakout strength calc

100% hor. tie bars develop full yield strength ?

4 of 4		
Concrete strength	$f_c = 4.5$ [ksi]	suggest 4
Rebar yield strength	$f_y = 60.0$ [ksi]	60
Base plate yield strength	$F_y = 36.0$ [ksi]	36
Total no of anchor bolt	$n = 8$	
No of anchor bolt carrying shear	$n_s = 8$	
For side-face blowout check use		
No of bolt along width edge	$n_{bw} = 3$	
No of bolt along depth edge	$n_{bd} = 3$	
Anchor head type	<input type="button" value="Heavy Hex"/> ?	
Anchor effective cross sect area	$A_{se} = 0.462$ [in ²]	
Bearing area of one head	$A_{brg} = 1.188$ [in ²]	
	A_{brg} [in ²]	not applicable
Bolt 1/8" (3mm) corrosion allowance	<input type="button" value="No"/> ?	
Provide shear key ?	<input type="button" value="No"/> ?	
Seismic design category >= C	<input type="button" value="No"/> ?	
Provide built-up grout pad ?	<input type="button" value="Yes"/> ?	
Code Reference		
OVERALL	ratio = 0.97 OK	
BASE PLATE	ratio = 0.52 OK	
ANCHOR BOLT	ratio = 0.42 OK	
LCB1 Axial Compression	ratio = 0.97 OK	
Abchor Rod Embedment, Spacing and Edge Distance	ratio = 0.97 OK	
Min Rquired Anchor Reinft. Development Length	ratio = 0.97 OK	
Overall Ratio	ratio = 0.42 OK	
LCB2 Axial Compression + Moment	ratio = 0.97 OK	
Abchor Rod Embedment, Spacing and Edge Distance	ratio = 0.97 OK	
Min Rquired Anchor Reinft. Development Length	ratio = 0.97 OK	
Overall Ratio	ratio = 0.83 OK	
LCB3 Axial Compression + Moment	ratio = 0.97 OK	
Abchor Rod Embedment, Spacing and Edge Distance	ratio = 0.97 OK	
Min Rquired Anchor Reinft. Development Length	ratio = 0.97 OK	
Overall Ratio	ratio = 0.72 OK	
LCB4 Axial Tensile	ratio = 0.97 OK	
Abchor Rod Embedment, Spacing and Edge Distance	ratio = 0.97 OK	
Min Rquired Anchor Reinft. Development Length	ratio = 0.97 OK	
Overall Ratio	ratio = 0.97 OK	

BASE PLATE DESIGN

Base plate design based on

AISC Design Guide 1: Base Plate and Anchor Rod Design 2nd Edition

ACI 318-08 Building Code Requirements for Structural Concrete and Commentary

Code Abbreviation

AISC Design Guide 1

ACI 318-08

DESIGN DATA

Column section type

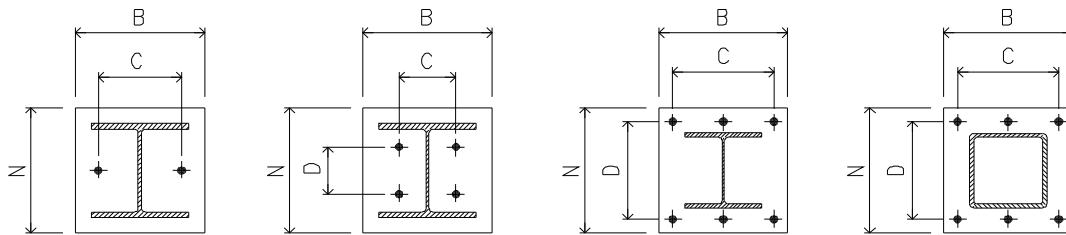
W_Shape

Column size

W14X53

Depth

 $d = 13.900$ [in] Flange thickness $t_f = 0.660$ [in]


Flange width

 $b_f = 8.060$ [in] Web thickness $t_w = 0.370$ [in]

Base plate anchor bolt pattern

4 or 6-Bolt MC WF

base plate is moment connection

2-BOLT PIN**4-BOLT PIN****4 or 6-Bolt MC WF****4 or 6-Bolt MC HS**

suggest

Base plate width

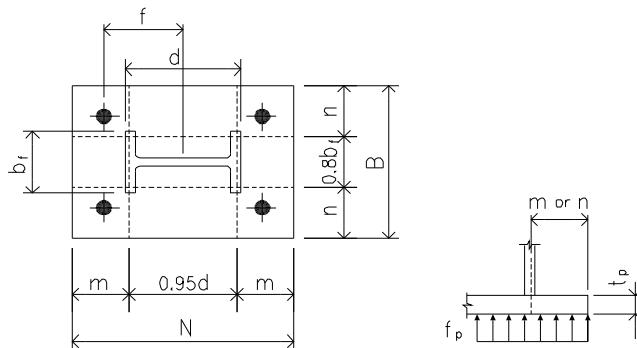
 $B = 22.0$ [in]**15.0**

Base plate depth

 $N = 22.0$ [in]**21.0**

Base plate thickness

 $t_p = 2.000$ [in]**1.8**


Anchor bolt spacing

 $C = 18.0$ [in]**11.0**

Anchor bolt spacing

 $D = 18.0$ [in]**17.0**

Anchor bolt diameter

 $d = 0.875$ [in]**max 1.5 in****BASE PLATE GEOMETRIC****BASE PLATE SUBJECT TO TENSILE LOAD**

suggest

Bolt to column center dist.

 $f = 9.0$ [in]**9 in**

Bolt to column web center dist.

 $f_1 = 9.0$ [in]**9 in**

Pedestal width

 $b_c = 124.0$ [in]**>= 28.5 in**

Pedestal depth

 $d_c = 124.0$ [in]**>= 28.5 in**

2 of 6

Factored column load

LCB	Cases	P _u [kips]	M _u [kip-ft]	t _p (in)	Base Plate Size
LCB1	Axial Compressive	100.0	0.0	0.88	Base Plate B x N OK
LCB2	Compression + M	0.0	30.0	0.89	Base Plate B x N OK
LCB3	Compression + M	15.0	30.0	1.04	Base Plate B x N OK
LCB4	Axial Tensile	10.0	0.0	0.28	Anchor Bolt Tensile OK
Min required plate thickness				1.04	

suggest max plate thickness 1.75 in

Suggested plate thickness for rigidity: t_p = max. of m/4 and n/4

= No

For base plate subject to tensile force only

Total No of anchor bolt n = 8

Bolt pattern Bolt Outside Flange Only

For base plate subject to large moment

No of bolt resisting tensile force n_t = 5

Anchor rod material F1554 Grade 55

Anchor rod tensile strength f_{uta} = 75.0 [ksi]

Bolt 1/8" (3mm) corrosion allowance No

Anchor rod effective area A_{se} = 0.462 [in²]Concrete strength f_c = 4.5 [ksi]Base plate yield strength F_y = 36.0 [ksi]

Strength reduction factor

ACI 318-08

Bearing on concrete φ_c = 0.65

9.3.2.4

Base plate bending φ_b = 0.90**CONCLUSION**

[Base Plate Size and Anchor Bolt Tensile Is Adequate]

OK

[The Base Plate Thickness Is Adequate]

ratio= 0.52

DESIGN CHECK

For base plate subject to large moment

Code Reference

ACI 318-08

Anchor rod tensile resistance

$$T_r = \phi_{t,s} n_t A_{se} f_{uta}$$

$$= 129.9$$

[kips]

D.5.1.2 (D-3)

 $\phi_{t,s} = 0.75$ for ductile steel element

D.4.4 (a)

AISC Design Guide 1

W Shapes

$$m = (N - 0.95d) / 2$$

$$= 4.40$$

[in]

$$n = (B - 0.8b_f) / 2$$

$$= 7.78$$

[in]

3.1.2 on Page 15

HSS Rectangle Shapes

$$m = (N - 0.95d) / 2$$

$$= 4.40$$

[in]

3.1.3 on Page 16

$$n = (B - 0.95b_f) / 2$$

$$= 7.17$$

[in]

HSS Round Shapes

$$m = (N - 0.8d) / 2$$

$$= 5.44$$

[in]

3.1.3 on Page 16

$$n = (B - 0.8b_f) / 2$$

$$= 5.44$$

[in]

m value used for design

$$m =$$

$$= 4.40$$

[in]

n value used for design

$$n =$$

$$= 7.78$$

[in]

Suggested plate thickness for rigidity: $t_p = \max(m/4, n/4)$

$$= 1.94$$

[in]

Base plate area

$$A_1 = B \times N$$

$$= 484.0 \text{ [in}^2\text{]}$$

Pedestal area

$$A_2 = b_c \times d_c$$

$$= 15376.0 \text{ [in}^2\text{]}$$

ACI 318-08

$$k = \min(\sqrt{A_2/A_1}, 2)$$

$$= 2.000$$

10.14.1

$$\phi_c P_n = \phi_c 0.85 f_c' A_1 k$$

$$= 2406.7 \text{ [kips]}$$

10.14.1

$$> P_u$$

OK

LCB1: Axial Compressive

AISC Design Guide 1

$$X = \frac{4db_f}{(d+b_f)^2} \frac{P_u}{\phi_c P_p}$$

$$= 0.039$$

3.1.2 on Page 16

$$\lambda = \min\left(\frac{2\sqrt{X}}{1+\sqrt{1-X}}, 1\right)$$

$$= 0.2$$

$$\lambda n' = \lambda \sqrt{dx b_f} / 4$$

$$= 0.53$$

[in]

For W shape

$$L = \max(m, n, \lambda n')$$

$$= 7.78$$

[in]

3.1.2 on Page 15

For HSS and Pipe

$$L = \max(m, n)$$

$$= 7.78$$

[in]

3.1.3 on Page 16

L value used for design

$$L =$$

$$= 7.78$$

[in]

$$t_p = L \sqrt{\frac{2 P_u}{\phi_b F_y B N}}$$

$$= 0.88$$

[in]

Base Plate B x N OK

LCB2: Axial Compression + Moment

Code Reference

$P_u = 0.1$ [kips] $e = M_u / P_u$ $f_{p(max)} = \phi_c 0.85 f'_c k$ $q_{max} = f_{p(max)} \times B$ $e_{crit} = N/2 - P_u / (2q_{max})$ $e > e_{crit}$ Large moment case applied		$M_u = 30.0$ [kip-ft] $= 3600.00$ [in] $= 4.97$ [ksi] $= 109.40$ [kips/in] $= 11.00$ [in]	
Small moment case		This case does not apply	
Bearing length		$Y = N - 2e$	= 0.00 [in]
Verify linear bearing pressure		$q = P_u / Y$	= 0.00 [kips/in]
		$f_p = P_u / BY$	< q_{max} OK
		$m = \max(m, n)$	= 0.00 [ksi]
If $Y \geq m$		$t_{req1} = 1.49m \sqrt{f_p / F_y}$	= 0.00 [in] Eq. 3.3.14a-1
If $Y < m$		$t_{req2} = 2.11 \sqrt{\frac{f_p Y \left(m - \frac{Y}{2} \right)}{F_y}}$	= 0.00 [in] Eq. 3.3.15a-1
		$t_{min} = \max(t_{req1}, t_{req2})$	= 0.00 [in]
Large moment case		This case applies	
Check if real solution of Y exist		$var_1 = (f + N/2)^2$	= 400 [in ²]
		$var_2 = 2P_u (e+f) / q_{max}$	= 7 [in ²]
		$var_1 > var_2$	OK
Bearing length		$Y = \left(f + \frac{N}{2} \right) \pm \sqrt{\left(f + \frac{N}{2} \right)^2 - \frac{2P_u(e+f)}{q_{max}}}$	= 0.17 [in] Eq. 3.4.3
Anchor rod tension force		$T_u = q_{max} Y - P_u$	= 18.0 [kips]
		ratio = 0.14	< T_r OK
At anchor rod tension interface		$x = f - d/2 + t_f / 2$	= 2.38 [in] Eq. 3.4.6
		$t_{req-t} = 2.11 \sqrt{\frac{T_u x}{B F_y}}$	= 0.49 [in] Eq. 3.4.7a
At conc. bearing interface		$m = \max(m, n)$	= 7.78 [in]
If $Y \geq m$		$t_{req-b} = 1.49m \sqrt{f_{p(max)} / F_y}$	= 0.00 [in] Eq. 3.3.14a-2
If $Y < m$		$t_{req-b} = 2.11 \sqrt{\frac{f_{p(max)} Y \left(m - \frac{Y}{2} \right)}{F_y}}$	= 0.89 [in] Eq. 3.3.15a-2
		$t_{min} = \max(t_{req-t}, t_{req-b})$	= 0.89 [in]
Base Plate B x N OK			

LCB3: Axial Compression + Moment

Code Reference

$P_u = 15.0$ [kips] $e = M_u / P_u$ $f_{p(max)} = \phi_c 0.85 f_c' k$ $q_{max} = f_{p(max)} \times B$ $e_{crit} = N/2 - P_u / (2q_{max})$ $e > e_{crit}$ Large moment case applied		$M_u = 30.0$ [kip-ft] $= 24.00$ [in] $= 4.97$ [ksi] $= 109.40$ [kips/in] $= 10.93$ [in]
THIS SECTION NOT APPLICABLE		
Small moment case	This case does not apply	<i>AISC Design Guide 1</i>
Bearing length	$Y = N - 2e$ $= 0.00$ [in]	
Verify linear bearing pressure	$q = P_u / Y$ $= 0.00$ [kips/in]	
If $Y \geq m$	$f_p = P_u / BY$ $m = \max(m, n)$ $t_{req1} = 1.49m \sqrt{f_p / F_y}$ $= 0.00$ [in]	OK $= 0.00$ [ksi] $= 7.78$ [in] Eq. 3.3.14a-1
If $Y < m$	$t_{req2} = 2.11 \sqrt{\frac{f_p Y \left(m - \frac{Y}{2} \right)}{F_y}}$ $t_{min} = \max(t_{req1}, t_{req2})$ $= 0.00$ [in]	$= 0.00$ [in] Eq. 3.3.15a-1 $= 0.00$ [in]
Large moment case	This case applies	
Check if real solution of Y exist	$var_1 = (f + N/2)^2$ $var_2 = 2P_u (e+f) / q_{max}$ $var_1 > var_2$	$= 400$ [in ²] $= 9$ [in ²] OK
Bearing length	$Y = \left(f + \frac{N}{2} \right) \pm \sqrt{\left(f + \frac{N}{2} \right)^2 - \frac{2P_u(e+f)}{q_{max}}}$ $= 0.23$ [in]	Eq. 3.4.3
Anchor rod tension force	$T_u = q_{max} Y - P_u$ $ratio = 0.08$ $= 9.9$ [kips]	$< T_r$ OK Eq. 3.4.2
At anchor rod tension interface	$x = f - d/2 + t_f / 2$ $= 2.38$ [in]	Eq. 3.4.6
	$t_{req-t} = 2.11 \sqrt{\frac{T_u x}{B F_y}}$ $= 0.36$ [in]	Eq. 3.4.7a
At conc. bearing interface	$m = \max(m, n)$ $t_{req-b} = 1.49m \sqrt{f_{p(max)} / F_y}$ $= 0.00$ [in]	$= 7.78$ [in] Eq. 3.3.14a-2
If $Y \geq m$	$t_{req-b} = 2.11 \sqrt{\frac{f_{p(max)} Y \left(m - \frac{Y}{2} \right)}{F_y}}$ $= 1.04$ [in]	Eq. 3.3.15a-2
If $Y < m$	$t_{min} = \max(t_{req-t}, t_{req-b})$ $= 1.04$ [in]	
Base Plate B x N OK		

Example 52: Base Plate (S16-09) & Anchor Bolt (CSA A23.3-04) Design With Anchor Reinforcement

BASE PLATE & ANCHOR BOLT DESIGN - MOMENT CONNECTION

Base Plate Data

Column section type

= W_Shape

Column size

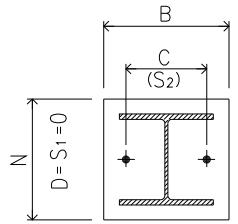
= W360x79

Depth

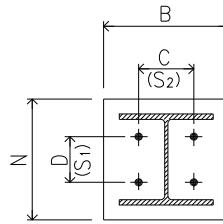
d = 354.0 [mm] Flange thickness t_f = 16.8 [mm]

Flange width

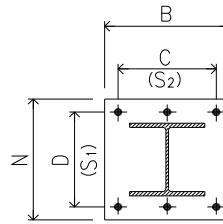
 b_f = 205.0 [mm] Web thickness t_w = 9.4 [mm]

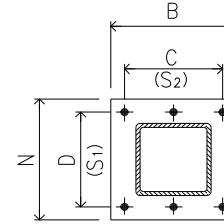

Base plate anchor bolt pattern

= 4 or 6-Bolt MC WF ? base plate is moment connection

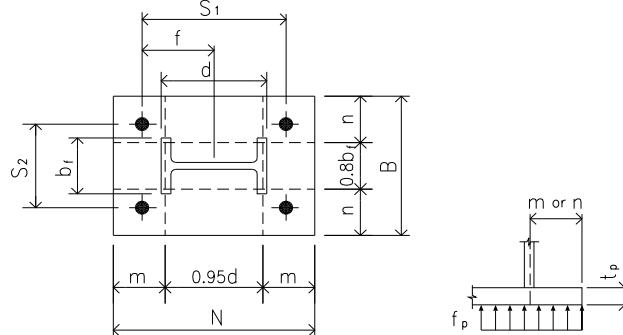

Base plate anchor bolt location

= Bolt Outside Flange Only

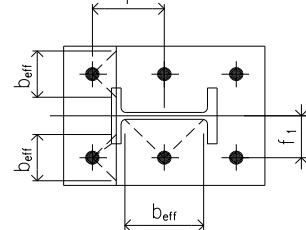

?


2-BOLT PIN

4-BOLT PIN



4 or 6-Bolt MC WF



4 or 6-Bolt MC HS

suggest

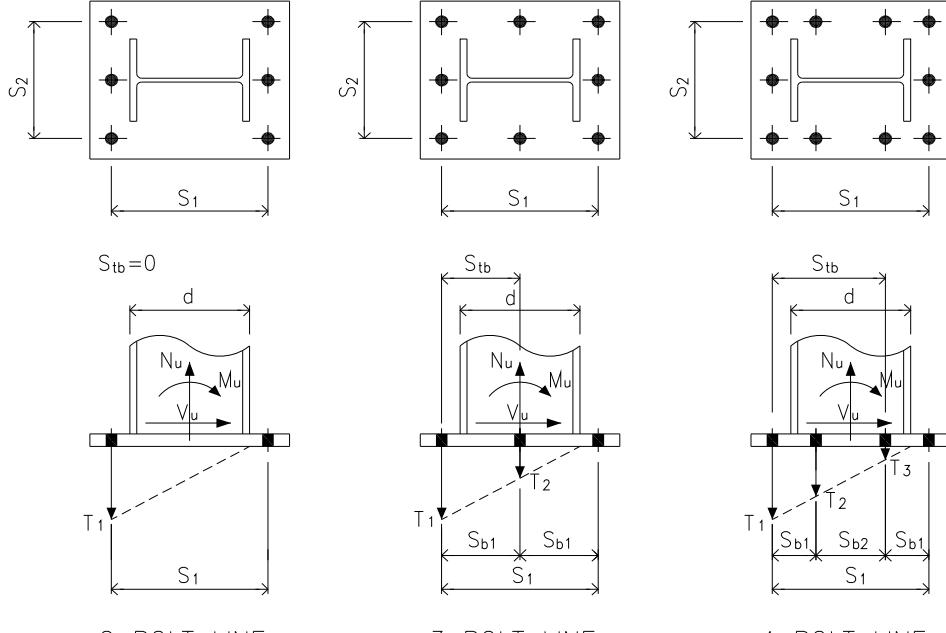
Base plate width $B = 559$ [mm] 380Base plate depth $N = 559$ [mm] 530Base plate thickness $t_p = 51$ [mm] 45Anchor bolt spacing $s_2 = C = 457$ [mm] 280Anchor bolt spacing $s_1 = D = 457$ [mm] 430

BASE PLATE GEOMETRIC

BASE PLATE SUBJECT TO TENSILE LOAD

Bolt to column center dist. $f = 229$ [mm]Bolt to column web center dist. $f_1 = 229$ [mm]Suggested plate thickness for rigidity: $t_p = \max$ of $m/4$ and $n/4$

= No ?


Factored column load

LCB	Cases	P_u [kN]	V_u [kN]	M_u [kNm]
LCB1	Axial Comp.	444.8	66.7	0.0
LCB2	Axial Comp. + M	0.0	89.0	40.7
LCB3	Axial Comp. + M	66.7	89.0	40.7
LCB4	Axial Tensile	44.5	155.7	0.0

2 of 4

Code Reference

Anchor Bolt Data

2 BOLT LINE 3 BOLT LINE 4 BOLT LINE

No of bolt line for resisting moment

No of bolt along outermost bolt line min required

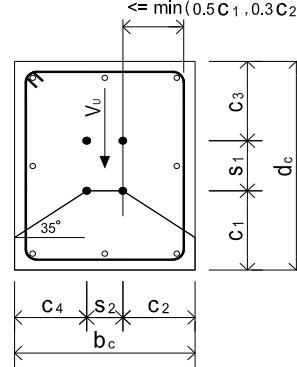
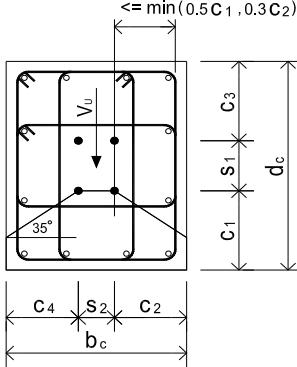
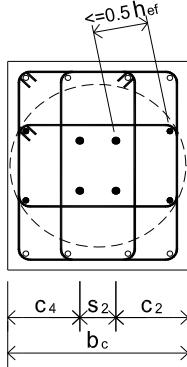
Outermost bolt line spacing s_1	$s_1 = 457$ [mm] 89	 	<i>PIP STE05121</i>
Outermost bolt line spacing s_2	$s_2 = 457$ [mm] 89	 	<i>Page A -1 Table 1</i>
Internal bolt line spacing s_{b1}	$s_{b1} = 229$ [mm] 89	 	
Internal bolt line spacing s_{b2}	$s_{b2} = 0$ [mm] 89	 	
Anchor bolt material	<input style="background-color: orange; border: 1px solid black; padding: 2px 10px; border-radius: 5px; width: 200px; height: 20px; text-decoration: none; color: black; font-size: 10px; font-weight: bold; margin-right: 10px;" type="button" value="F1554 Grade 55"/> 		
Anchor tensile strength	$f_{uta} = 75.0$ [ksi]	$= 517$ [MPa]	<i>A23.3-04 (R2010)</i>
	Anchor is ductile steel element		
Anchor bolt diameter	$d_a = 0.875$ [in] max 1.5 in	$= 22.2$ [mm]	<i>PIP STE05121</i>
Bolt sleeve diameter	$d_s = 51$ [mm]	<i>Page A -1 Table 1</i>	
Bolt sleeve height	$h_s = 178$ [mm]	min required	
Anchor bolt embedment depth	$h_{ef} = 508$ [mm] 267	 	<i>Page A -1 Table 1</i>
Pedestal height	$h_a = 584$ [mm] 584	 	
Pedestal width	$b_c = 3150$ [mm]	<i>Page A -1 Table 1</i>	
Pedestal depth	$d_c = 3150$ [mm]	 	

Bolt edge distance c_1 $c_1 = 152$ [mm] 135

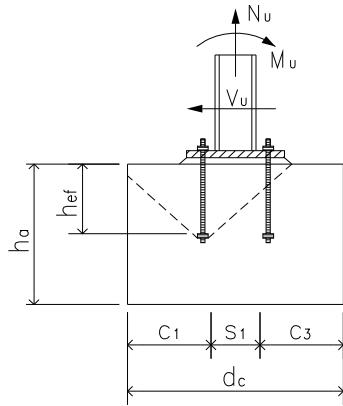
OK

Code Reference
PIP STE05121Bolt edge distance c_2 $c_2 = 152$ [mm] 135

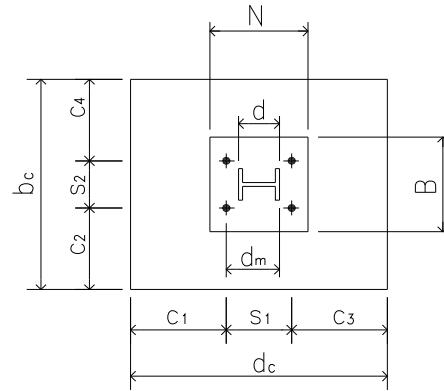
OK




Page A -1 Table 1

Bolt edge distance c_3 $c_3 = 2540$ [mm] 135


OK

Bolt edge distance c_4 $c_4 = 2540$ [mm] 135


OK

Ver. Reinft For Tension

Hor. Ties For Shear - 4 Legs

Hor. Ties For Shear - 2 Legs

ACI318 M-08

To be considered effective for resisting anchor tension, ver reinforcing bars shall be located within $0.5h_{ef}$ from the outmost anchor's centerline. In this design $0.5h_{ef}$ value is limited to 200mm.

RD.5.2.9

 $0.5h_{ef} = 200$ [mm]

No of ver. rebar that are effective for resisting anchor tension

 $n_v = 6$

Ver. bar size

 $d_b = 25$ single bar area $A_s = 500$ [mm²]

To be considered effective for resisting anchor shear, hor. reinf shall be located

RD.6.2.9

within $\min(0.5c_1, 0.3c_2)$ from the outmost anchor's centerline $\min(0.5c_1, 0.3c_2) = 46$ [mm]

No of tie leg that are effective to resist anchor shear

 $n_{leg} = 2$?

No of tie layer that are effective to resist anchor shear

 $n_{layer} = 2$?

Tie bar size

 $d_b = 15$ single bar area $A_s = 200$ [mm²]

For anchor reinf shear breakout strength calc

100% hor. tie bars develop full yield strength ?

4 of 4		
Concrete strength	$f_c = 31$ [MPa]	suggest 30
Rebar yield strength	$f_y = 414$ [MPa]	400
Base plate yield strength	$F_y = 248$ [MPa]	300
Total no of anchor bolt	$n = 8$	
No of anchor bolt carrying shear	$n_s = 8$	
For side-face blowout check use		
No of bolt along width edge	$n_{bw} = 3$	
No of bolt along depth edge	$n_{bd} = 3$	
Anchor head type	= Heavy Hex	
Anchor effective cross sect area	$A_{se} = 0.462$ [in^2]	= 298 [mm^2]
Bearing area of head	$A_{brg} = 1.188$ [in^2]	= 766 [mm^2]
A_{brg}	[in^2] not applicable	
Code Reference		
Bolt 1/8" (3mm) corrosion allowance	= No ?	
Provide shear key ?	= No ?	
Seismic region where $I_E F_a S_a(0.2) \geq 0.35$	= No ?	
Provide built-up grout pad ?	= Yes ?	
CONCLUSION <div style="display: flex; justify-content: space-between;"> OVERALL ratio = 0.94 OK </div> <div style="display: flex; justify-content: space-between;"> BASE PLATE ratio = 0.52 OK </div> <div style="display: flex; justify-content: space-between;"> ANCHOR BOLT </div> <div style="display: flex; justify-content: space-between;"> LCB1 Axial Compression </div> <div style="display: flex; justify-content: space-between;"> Abchor Rod Embedment, Spacing and Edge Distance OK </div> <div style="display: flex; justify-content: space-between;"> Min Rquired Anchor Reinft. Development Length OK </div> <div style="display: flex; justify-content: space-between;"> Overall Ratio OK </div> <div style="display: flex; justify-content: space-between;"> LCB2 Axial Compression + Moment </div> <div style="display: flex; justify-content: space-between;"> Abchor Rod Embedment, Spacing and Edge Distance OK </div> <div style="display: flex; justify-content: space-between;"> Min Rquired Anchor Reinft. Development Length OK </div> <div style="display: flex; justify-content: space-between;"> Overall Ratio OK </div> <div style="display: flex; justify-content: space-between;"> LCB3 Axial Compression + Moment </div> <div style="display: flex; justify-content: space-between;"> Abchor Rod Embedment, Spacing and Edge Distance OK </div> <div style="display: flex; justify-content: space-between;"> Min Rquired Anchor Reinft. Development Length OK </div> <div style="display: flex; justify-content: space-between;"> Overall Ratio OK </div> <div style="display: flex; justify-content: space-between;"> LCB4 Axial Tensile </div> <div style="display: flex; justify-content: space-between;"> Abchor Rod Embedment, Spacing and Edge Distance OK </div> <div style="display: flex; justify-content: space-between;"> Min Rquired Anchor Reinft. Development Length OK </div> <div style="display: flex; justify-content: space-between;"> Overall Ratio OK </div>		

2 of 6

Factored column load

LCB	Cases	P _u [kN]	M _u [kNm]	t _p (mm)	Base Plate Size
LCB1	Axial Compressive	444.8	0.0	22.3	Base Plate B x N OK
LCB2	Compression + M	0.0	40.7	22.5	Base Plate B x N OK
LCB3	Compression + M	66.7	40.7	26.3	Base Plate B x N OK
LCB4	Axial Tensile	44.5	0.0	7.1	Anchor Bolt Tensile OK
Min required plate thickness				26.3	

suggest max plate thickness 45 mm

Suggested plate thickness for rigidity: t_p = max. of m/4 and n/4

= No

For base plate subject to tensile force only

Total No of anchor bolt n = 8

Bolt pattern Bolt Outside Flange Only

For base plate subject to large moment

No of bolt resisting tensile force n_t = 5

Anchor rod material F1554 Grade 55

Anchor rod tensile strength f_{uta} = 75.0 [ksi] = 517 [MPa]

Bolt 1/8" (3mm) corrosion allowance No

Anchor rod effective area A_{se} = 0.462 [in²] = 298 [mm²]Concrete strength f_c = 31 [MPa]Base plate yield strength F_y = 248 [MPa]

Code Reference

Strength reduction factor A23.3-04 (R2010)

Bearing on concrete φ_c = 0.65 8.4.2Steel anchor resistance factor φ_s = 0.85 8.4.3 (a)Base plate bending φ_b = 0.90**CONCLUSION**

[Base Plate Size and Anchor Bolt Tensile Is Adequate]

OK

[The Base Plate Thickness Is Adequate]

ratio= 0.52

DESIGN CHECK

For base plate subject to large moment

Code Reference
A23.3-04 (R2010)

Anchor rod tensile resistance

$$T_r = n_t A_{se} \phi_s f_{uta} R_{t,s}$$

$$R_{t,s} = 0.80 \quad \text{for ductile steel in tension}$$

$$= 524.0 \quad [\text{kN}] \quad \text{D.6.1.2 (D-3)}$$

$$= 197.4 \quad [\text{mm}] \quad \text{D.5.4(a)}$$

W Shapes

$$m = (N - 0.95d) / 2$$

$$n = (B - 0.8b_f) / 2$$

$$= 111.3 \quad [\text{mm}] \quad \text{AISC Design Guide 1}$$

$$= 197.4 \quad [\text{mm}] \quad 3.1.2 on Page 15$$

HSS Rectangle Shapes

$$m = (N - 0.95d) / 2$$

$$n = (B - 0.95b_f) / 2$$

$$= 111.3 \quad [\text{mm}] \quad 3.1.3 on Page 16$$

$$= 182.0 \quad [\text{mm}]$$

HSS Round Shapes

$$m = (N - 0.8d) / 2$$

$$n = (B - 0.8b_f) / 2$$

$$= 137.8 \quad [\text{mm}] \quad 3.1.3 on Page 16$$

$$= 137.8 \quad [\text{mm}]$$

m value used for design

$$m =$$

$$= 111.3 \quad [\text{mm}]$$

n value used for design

$$n =$$

$$= 197.4 \quad [\text{mm}]$$

Suggested plate thickness for rigidity: $t_p = \max(m/4, n/4)$

$$= 49.4 \quad [\text{mm}]$$

Base plate area

$$A_1 = B \times N$$

$$= 3.1E+05 \quad [\text{mm}^2]$$

Pedestal area

$$A_2 = b_c \times d_c$$

$$= 9.9E+06 \quad [\text{mm}^2]$$

A23.3-04 (R2010)

$$k = \min(\sqrt{A_2/A_1}, 2)$$

$$= 2.00 \quad 10.8.1$$

$$\phi_c P_n = \phi_c 0.85 f_c' A_1 k$$

$$= 10696.4 \quad [\text{kN}]$$

$$> P_u \quad \text{OK}$$

LCB1: Axial Compressive

AISC Design Guide 1

$$X = \frac{4db_f}{(d+b_f)^2} \frac{P_u}{\phi_c P_p}$$

$$= 0.039 \quad 3.1.2 on Page 16$$

$$\lambda = \min\left(\frac{2\sqrt{X}}{1+\sqrt{1-X}}, 1\right)$$

$$= 0.2$$

$$\lambda n' = \lambda \sqrt{dx b_f} / 4$$

$$= 13.4 \quad [\text{mm}]$$

For W shape

$$L = \max(m, n, \lambda n')$$

$$= 197.4 \quad [\text{mm}] \quad 3.1.2 on Page 15$$

For HSS and Pipe

$$L = \max(m, n)$$

$$= 197.4 \quad [\text{mm}] \quad 3.1.3 on Page 16$$

L value used for design

$$L =$$

$$= 197.4 \quad [\text{mm}]$$

$$t_p = L \sqrt{\frac{2 P_u}{\phi_b F_y B N}}$$

$$= 22.3 \quad [\text{mm}]$$

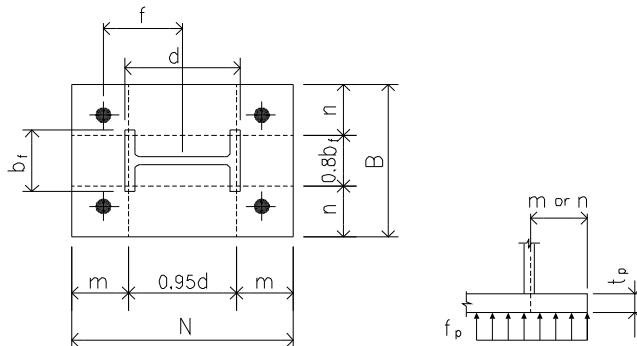
Base Plate B x N OK

LCB2: Axial Compression + Moment

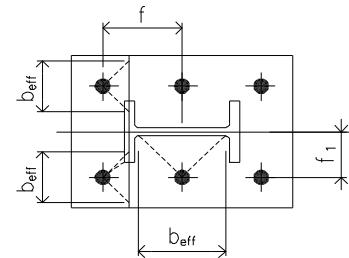
Code Reference

$P_u = 0.1$ [kN] $e = M_u / P_u$ $f_{p(max)} = \phi_c 0.85 f'_c k$ $q_{max} = f_{p(max)} \times B$ $e_{crit} = N/2 - P_u / (2q_{max})$ $e > e_{crit}$ Large moment case applied		$M_u = 40.7$ [kNm] $= 407000$ [mm] $= 34.3$ [MPa] $= 19142$ [N/mm] $= 279.4$ [mm]	
Small moment case		This case does not apply	
Bearing length		$Y = N - 2e$	= 0.0 [mm]
Verify linear bearing pressure		$q = P_u / Y$	= 0 [N/mm]
		$< q_{max}$	OK
		$f_p = P_u / BY$	= 0.0 [MPa]
		$m = \max(m, n)$	= 197.4 [mm]
If $Y \geq m$		$t_{req1} = 1.49m \sqrt{(f_p / F_y)}$	= 0.0 [mm]
If $Y < m$		$t_{req2} = 2.11 \sqrt{\frac{f_p Y (m - \frac{Y}{2})}{F_y}}$	= 0.0 [mm]
		$t_{min} = \max(t_{req1}, t_{req2})$	= 0.0 [mm]
Large moment case		This case applies	
Check if real solution of Y exist		$var_1 = (f + N/2)^2$	= 258064 [mm ²]
		$var_2 = 2P_u (e+f) / q_{max}$	= 4255 [mm ²]
		$var_1 > var_2$	OK
Bearing length		$Y = \left(f + \frac{N}{2} \right) \pm \sqrt{\left(f + \frac{N}{2} \right)^2 - \frac{2P_u(e+f)}{q_{max}}}$	= 4.2 [mm]
Anchor rod tension force		$T_u = q_{max} Y - P_u$	= 80.4 [kN]
		ratio = 0.15	< T_r
At anchor rod tension interface			
		$x = f - d/2 + t_f / 2$	= 60.0 [mm]
		$t_{req-t} = 2.11 \sqrt{\frac{T_u x}{B F_y}}$	= 12.4 [mm]
At conc. bearing interface			
		$m = \max(m, n)$	= 197.4 [mm]
If $Y \geq m$		$t_{req-b} = 1.49m \sqrt{(f_{p(max)} / F_y)}$	= 0.0 [mm]
If $Y < m$		$t_{req-b} = 2.11 \sqrt{\frac{f_{p(max)} Y (m - \frac{Y}{2})}{F_y}}$	= 22.5 [mm]
		$t_{min} = \max(t_{req-t}, t_{req-b})$	= 22.5 [mm]
Base Plate B x N OK			

LCB3: Axial Compression + Moment


Code Reference

$P_u = 66.7$ [kN] $e = M_u / P_u$ $f_{p(max)} = \phi_c 0.85 f_c' k$ $q_{max} = f_{p(max)} \times B$ $e_{crit} = N/2 - P_u / (2q_{max})$ $e > e_{crit}$ Large moment case applied		$M_u = 40.7$ [kNm] $= 610$ [mm] $= 34.3$ [MPa] $= 19142$ [N/mm] $= 277.7$ [mm]	
Small moment case		<i>AISC Design Guide 1</i>	
Bearing length		$Y = N - 2e$	$= 0.0$ [mm]
Verify linear bearing pressure		$q = P_u / Y$	$= 0$ [N/mm]
		$< q_{max}$	OK
		$f_p = P_u / BY$	$= 0.0$ [MPa]
		$m = \max(m, n)$	$= 197.4$ [mm]
If $Y \geq m$		$t_{req1} = 1.49m \sqrt{(f_p / F_y)}$	$= 0.0$ [mm]
If $Y < m$		$t_{req2} = 2.11 \sqrt{\frac{f_p Y (m - \frac{Y}{2})}{F_y}}$	$= 0.00$ [mm]
		$t_{min} = \max(t_{req1}, t_{req2})$	0.0 [mm]
Large moment case		<i>This case applies</i>	
Check if real solution of Y exist		$var_1 = (f + N/2)^2$	$= 258064$ [mm ²]
		$var_2 = 2P_u (e+f) / q_{max}$	$= 5846$ [mm ²]
		$var_1 > var_2$	OK
Bearing length		$Y = \left(f + \frac{N}{2}\right) \pm \sqrt{\left(f + \frac{N}{2}\right)^2 - \frac{2P_u(e+f)}{q_{max}}}$	$= 5.8$ [mm]
Anchor rod tension force		$T_u = q_{max} Y - P_u$	$= 44.1$ [MPa]
		$ratio = 0.08$	$< T_r$
			OK
At anchor rod tension interface			
		$x = f - d/2 + t_f / 2$	$= 60.0$ [mm]
		$t_{req-t} = 2.11 \sqrt{\frac{T_u x}{B F_y}}$	$= 9.2$ [mm]
			<i>Eq. 3.4.7a</i>
At conc. bearing interface			
		$m = \max(m, n)$	$= 197.4$ [mm]
If $Y \geq m$		$t_{req-b} = 1.49m \sqrt{(f_{p(max)} / F_y)}$	$= 0.00$ [mm]
If $Y < m$		$t_{req-b} = 2.11 \sqrt{\frac{f_{p(max)} Y (m - \frac{Y}{2})}{F_y}}$	$= 26.3$ [mm]
		$t_{min} = \max(t_{req-t}, t_{req-b})$	26.3 [mm]
Base Plate B x N OK			


LCB4: Axial Tensile

Factored tensile load $P_u = 44.5$ [kN]For base plate subject to tensile force only A23.3-04 (R2010)Anchor rod tensile resistance $T_r = n A_{se} \phi_s f_{uta} R_{t,s} = 838.5$ [kN] D.6.1.2 (D-3)
 $R_{t,s} = 0.80$ for ductile steel in tension D.5.4(a)
ratio = 0.05 > P_u OK

Bolt pattern Bolt Outside Flange Only

Total No of anchor bolt $n = 8$ Bolt to column center dist. $f = 229$ [mm]Bolt to column web center dist. $f_1 = 229$ [mm]Each bolt factored tensile load $T_u = 5.6$ [kN]

BASE PLATE GEOMETRIC

BASE PLATE SUBJECT TO TENSILE LOAD

Bending to Column Flange

Moment lever arm $a = 60$ [mm]Moment to column flange $M_u = 0.3$ [kNm]Effective plate width $b_{eff} = 2 \times a = 120$ [mm]Base plate required thickness $t_{p1} = \sqrt{\frac{4 M_u}{b_{eff} \phi_b F_y}} = 7.1$ [mm]

Bending to Column Web

Moment lever arm $a = 224$ [mm]Moment to column flange $M_u = 1.2$ [kNm]Effective plate width $b_{eff} = 2 \times a = 448$ [mm]Base plate required thickness $t_{p2} = \sqrt{\frac{4 M_u}{b_{eff} \phi_b F_y}} = 0.0$ [mm] $t_{min} = \max(t_{p1}, t_{p2}) = 7.1$ [mm]

Anchor Bolt Tensile OK

5.0 REFERENCES

1. ACI 318-08 Building Code Requirements for Structural Concrete and Commentary
2. ACI 318M-08 Metric Building Code Requirements for Structural Concrete and Commentary
3. ACI 349-06 Code Requirements for Nuclear Safety-Related Concrete Structures & Commentary
4. ACI 349.2R-07 Guide to the Concrete Capacity Design (CCD) Method - Embedment Design Examples
5. ACI 355.3R-11 Guide for Design of Anchorage to Concrete: Examples Using ACI 318 Appendix D
6. Design of Anchor Reinforcement in Concrete Pedestals by Widianto, Chandu Patel, and Jerry Owen
7. CSA A23.3-04 (R2010) - Design of Concrete Structures
8. AISC Design Guide 1: Base Plate and Anchor Rod Design 2nd Edition
9. PIP STE05121 Anchor Bolt Design Guide-2006