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__________________________________________________________________ 

Foreword 

Manufacturing technology plays a vital role for the development of a country’s 
industrial growth and largely dictates the trend of the economy. Liberalization and 
globalization with reformed industrial trade policies have made manufacturing a 
key element to address global competition.  

In the last 20 years, strategic thinking has overtaken single-minded cost 
reduction and cost minimization in manufacturing. Consequently, the pursuit of 
cost, quality, flexibility, dependability and timeliness has replaced the single-
minded cost reduction in manufacturing firms, which was the norm in 
manufacturing until the 1970s. Now, manufacturers find competitive advantage 
through better design, improved customer satisfaction, quick response, faster new-
product introduction, and other goals overshadowed in the past by the sole pursuit 
of cost reduction. The new engineering challenges require systematic and integrated 
planning and optimization approaches in the manufacturing environment. In this 
context, the aim of a manufacturing system is to achieve overall performance, 
utilizing resources in development, design, production, delivery and support of 
products. 

Decision making in the manufacturing environment is a strategic topic, 
especially in connection with the complexity of driving forces and factors influencing 
manufacturing systems dynamics. The decision-making exercise can be 
implemented in the manufacturing environment at different stages, if appropriate 
procedures are made available to the designers, manufacturing engineers, 
production planners, and managers. These aspects are considered in the present 
book using graph theory and fuzzy MADM methods.  

Professor R. Venkata Rao has become known as one of the leading experts in 
the field of decision making related to manufacturing environment. I congratulate 
him on his achievement, and believe that the book is highly appropriate for use by 
academicians, designers and practitioners, manufacturing engineers, production 
planners, marketing managers, applied researchers in industry, academic institutes, 
R&D organizations, and all decision makers in the manufacturing environment.

Surat, Gujarat, India     (Prof. P. D. POREY) 
4th December 2006   Director, S. V. National Institute of Technology 
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Preface

The purpose of this book is to demonstrate how the graph theory and matrix 
approach as well as fuzzy multiple attribute decision-making methods can be 
effectively used for decision making in various situations of the manufacturing 
environment. The book is divided into two parts. In Part 1, an introduction to the 
decision-making situations in the manufacturing environment, graph theory and 
matrix approach as a decision-making method, classical MADM methods, and a 
logical approach to solve fuzzy MADM problems are presented. In Part 2, the 
applications of these methods to various real manufacturing situations are 
presented. The book documents the latest research works, and a significant number 
of these are original studies of mine published in various national and international 
journals and conference proceedings. As can be seen from the topics covered, the 
book deals with most situations in the manufacturing environment (e.g.,
manufacturing processes such as machining, welding, casting, forming and modern 
machining methods; advanced manufacturing technologies such as CAD/CAM, 
robotics, FMS, CIMS, and rapid prototyping; environmentally conscious design 
and manufacturing, environmental impact assessment; vendor selection, etc.). Both 
graph theory and fuzzy MADM approaches have been successfully applied to 
various manufacturing situations, and the results are presented. A thorough 
literature survey on each topic, real case studies, and computer codes have also 
been included. Thus, the book is expected to become essential reading for the 
industry and academia, as it makes decision making easier, logical, systematic, 
efficient, and effective.        

I am grateful to Anthony Doyle and Simon Rees of Springer-Verlag, London, 
for their support and help in producing this book. I wish to thank various 
researchers and the publishers of international journals for giving me the 
permission to reproduce certain portions of their published research works. I 
gratefully acknowledge Prof. P. D. Porey who has written a nice foreword. My 
special thanks go to my colleagues at SVNIT, Surat. 

 While every attempt has been made to ensure that no errors (printing or 
otherwise) enter the book, the possibility of these creeping is always there. I would 
be grateful to the readers if these errors are pointed out. Suggestions for further 
improvement of the book will be thankfully acknowledged.   

(R. Venkata Rao) 



__________________________________________________________________ 

Contents

Part 1 Introduction to Decision Making 

1 Introduction to Decision Making in the Manufacturing  
Environment ................................................................................................. 3
1.1 Introduction.......................................................................................... 3 
1.2 Decision-making Methods Used .......................................................... 5 

2 Graph Theory and Matrix Approach as a Decision-making Method...... 7
2.1 Introduction.......................................................................................... 7 
2.2 Machinability Attributes Digraph ....................................................... .8 
2.3 Matrix Representation of the Digraph................................................ 10 
2.4 Machinability Index ........................................................................... 19 
2.5 Identification and Comparison of Work Materials............................. 21 

2.5.1 Identification of Work Materials ........................................... 21 
2.5.2 Comparison of Work Materials ............................................. 22 

2.6 Methodology of GTMA as a Decision-making Method .................... 23 
References .................................................................................................... 24 

3 Introduction to Multiple Attribute Decision-making (MADM)  
Methods ....................................................................................................... 27
3.1 Introduction........................................................................................ 27 
3.2 Multiple Attribute Decision-making Methods ................................... 28 

3.2.1 Simple Additive Weighting (SAW) Method ......................... 28 
3.2.2 Weighted Product Method (WPM)........................................ 29 
3.2.3 Analytic Hierarchy Process (AHP) Method........................... 29 
3.2.4 Revised Analytic Hierarchy Process (RAHP) Method .......... 32 
3.2.5 Multiplicative Analytic Hierarchy Process (MAHP)  

Method................................................................................... 32 
3.2.6 TOPSIS Method..................................................................... 32 

3.2.6.1 Entropy Method........................................................ 34 
3.2.6.2 Standard Deviation Method...................................... 35 
3.2.6.3 AHP Method ............................................................ 35 



xii        Contents 

3.2.7 Modified TOPSIS Method..................................................... 35 
3.2.8 Compromise Ranking Method (VIKOR)............................... 36 

3.3 Sensitivity Analysis............................................................................ 37 
3.4 Group Decision Making (GDM) ........................................................ 38 
References .................................................................................................... 39 

4 A Logical Approach to Fuzzy MADM Problems..................................... 43
4.1 Introduction........................................................................................ 43 
4.2 Method Proposed by Chen and Hwang (1992.................................... 44 

4.2.1 Converting Linguistic Terms to Fuzzy Numbers................... 44 
4.2.2 Converting Fuzzy Numbers to Crisp Scores.......................... 44 

4.3 Demonstration of the Method ............................................................ 45 
References .................................................................................................... 49 

Part 2 Applications of GTMA and Fuzzy MADM Methods  
in the Manufacturing Environment  

5 Material Selection for a Given Engineering Application ........................ 53
5.1 Introduction........................................................................................ 53 
5.2 Examples............................................................................................ 55 

5.2.1 Example 1 .............................................................................. 56 
5.2.1.1 Application of GTMA.............................................. 56 
5.2.1.2 SAW Method............................................................ 58 
5.2.1.3 WPM ........................................................................ 59 
5.2.1.4 AHP and its Versions ............................................... 59 
5.2.1.5 TOPSIS Method ....................................................... 61 
5.2.1.6 Modified TOPSIS Method ....................................... 62 
5.2.1.7 VIKOR ..................................................................... 63 

5.2.2 Example 2 .............................................................................. 64 
5.2.2.1 Application of GTMA.............................................. 64 
5.2.2.2 SAW Method............................................................ 65 
5.2.2.3 WPM ........................................................................ 66 
5.2.2.4 AHP and its Versions……… .......... ……………….66 
5.2.2.5 TOPSIS Method ....................................................... 67 
5.2.2.6 Modified TOPSIS Method ....................................... 67 

References .................................................................................................... 68 

6 Evaluation of Product Designs .................................................................. 71
6.1 Introduction........................................................................................ 71 
6.2 Example ............................................................................................. 74 

6.2.1 GTMA ................................................................................... 74 
6.2.2 AHP Method.......................................................................... 76 
6.2.3 TOPSIS Method..................................................................... 77 
6.2.4 Modified TOPSIS Method..................................................... 79 

References .................................................................................................... 79 



Contents        xiii 

7 Machinability Evaluation of Work Materials .......................................... 81
7.1 Introduction........................................................................................ 81 
7.2 Examples............................................................................................ 84 

7.2.1 Example 1 .............................................................................. 84 
7.2.1.1 Application of GTMA.............................................. 85 
7.2.1.2 SAW Method............................................................ 87 
7.2.1.3 WPM ........................................................................ 87 
7.2.1.4 AHP and its Versions ............................................... 88 
7.2.1.5 TOPSIS Method ....................................................... 88 
7.2.1.6 Modified TOPSIS Method ....................................... 89 

7.2.2 Example 2 .............................................................................. 90 
7.2.2.1 Application of SAW Method ................................... 90 
7.2.2.2 WPM ........................................................................ 91 
7.2.2.3 AHP and its Versions ............................................... 91 
7.2.2.4 TOPSIS Method ....................................................... 92 
7.2.2.5 Modified TOPSIS Method ....................................... 93 

References .................................................................................................... 93 

8 Cutting Fluid Selection for a Given Machining Application .................. 97
8.1 Introduction........................................................................................ 97 
8.2 Examples.......................................................................................... 103 

8.2.1 Example 1 ............................................................................ 103 
8.2.1.1 Application of GTMA............................................ 104 
8.2.1.2 SAW Method.......................................................... 105 
8.2.1.3 WPM ...................................................................... 106 
8.2.1.4 AHP and its Versions ............................................. 106 
8.2.1.5 TOPSIS Method ..................................................... 107 
8.2.1.6 Modified TOPSIS Method ..................................... 108 

8.2.2 Example 2 ............................................................................ 109 
8.2.2.1 GTMA.................................................................... 109 
8.2.2.2 SAW Method.......................................................... 110 
8.2.2.3 WPM ...................................................................... 111 
8.2.2.4 AHP and its Versions ............................................. 111 
8.2.2.5 TOPSIS Method ..................................................... 111 
8.2.2.6 Modified TOPSIS Method ..................................... 112 

References .................................................................................................. 112 

9 Evaluation and Selection of Modern Machining Methods.................... 115
9.1 Introduction...................................................................................... 115 
9.2 Examples.......................................................................................... 117 

9.2.1 Example 1 ............................................................................ 117 
9.2.1.1 GTMA.................................................................... 117 
9.2.1.2 SAW Method.......................................................... 119 
9.2.1.3 WPM ...................................................................... 120 
9.2.1.4 AHP and its Versions ............................................. 120 
9.2.1.5 TOPSIS Method ..................................................... 121 
9.2.1.6 Modified TOPSIS Method ..................................... 121 



xiv        Contents 

9.2.2 Example 2 ............................................................................ 121 
9.2.2.1 GTMA.................................................................... 122 
9.2.2.2 TOPSIS Method ..................................................... 123 
9.2.2.3 Modified TOPSIS Method ..................................... 124 

References .................................................................................................. 124 

10 Evaluation of Flexible Manufacturing Systems ..................................... 125
10.1 Introduction...................................................................................... 125 
10.2 Examples.......................................................................................... 127 

10.2.1 Example 1 ............................................................................ 127 
10.2.1.1 Application of GTMA............................................ 128 
10.2.1.2 AHP and its Versions ............................................. 130 

10.2.2 Example 2 ............................................................................ 131 
10.2.2.1 Application of GTMA............................................ 132 
10.2.2.2 AHP and its Versions ............................................. 133 
10.2.2.3 TOPSIS & Modified TOPSIS Methods ................. 134 
10.2.2.4 Compromise Ranking Method (VIKOR) ............... 134 

References .................................................................................................. 135 

11 Machine Selection in a Flexible Manufacturing Cell ............................ 139
11.1 Introduction...................................................................................... 139 
11.2 Example ........................................................................................... 141 

11.2.1 Application of GTMA ......................................................... 142 
11.2.2 SAW Method ....................................................................... 144 
11.2.3 WPM.................................................................................... 145 
11.2.4 AHP and its Versions........................................................... 145 
11.2.5 TOPSIS Method................................................................... 146 
11.2.6 Modified TOPSIS Method................................................... 146 

References .................................................................................................. 147 

12 Failure Cause Analysis of Machine Tools .............................................. 149
12.1 Introduction...................................................................................... 149 
12.2 Identifying Contributing Events of a Failure Cause......................... 154 
12.3 MTFCD and its Matrix Representation............................................ 156 
12.4 General Machine Tool Failure Causality Function .......................... 158 
12.5 Machine Tool Failure Cause Evaluation .......................................... 160 
12.6 Machine Tool Failure Cause Analysis ............................................. 162 
12.7 Methodology .................................................................................... 163 
12.8 Summary .......................................................................................... 164 
References……………………………………………………................... 165 

13 Robot Selection for a Given Industrial Application .............................. 169
13.1 Introduction...................................................................................... 169 
13.2 Examples.......................................................................................... 171 

13.2.1 Example 1 ............................................................................ 172 
13.2.1.1 Application of GTMA............................................ 172 
13.2.1.2 SAW Method.......................................................... 173 



Contents        xv 

13.2.1.3 WPM ...................................................................... 173 
13.2.1.4 AHP and its Versions ............................................. 174 
13.2.1.5 TOPSIS Method ..................................................... 174 
13.2.1.6 Modified TOPSIS Method ..................................... 175 

13.2.2 Example 2 ............................................................................ 176 
13.2.2.1 Application of GTMA............................................ 176 
13.2.2.2 AHP and its Versions ............................................. 177 

References .................................................................................................. 178 

14 Selection of Automated Inspection Systems ........................................... 181
14.1 Introduction...................................................................................... 181 
14.2 Example ........................................................................................... 182 

14.2.1 Application of GTMA ......................................................... 182 
14.2.2 AHP and its Versions........................................................... 185 
14.2.3 TOPSIS Method................................................................... 186 
14.2.4 Modified TOPSIS Method................................................... 186 

References .................................................................................................. 186 

15 Selection of Material Handling Equipment............................................ 187
15.1 Introduction...................................................................................... 187 
15.2 Example ........................................................................................... 191 

15.2.1 Application of GTMA ......................................................... 191 
15.2.2 SAW Method ....................................................................... 192 
15.2.3 WPM.................................................................................... 193 
15.2.4 AHP and its Versions........................................................... 193 
15.2.5 TOPSIS Method................................................................... 193 
15.2.6 Modified TOPSIS Method................................................... 194 

References .................................................................................................. 194  

16 Selection of Rapid Prototyping Process in Rapid Product  
Development ............................................................................................. 197
16.1 Introduction...................................................................................... 197 
16.2 Example ........................................................................................... 200 

16.2.1 Application of GTMA ......................................................... 201 
16.2.2 SAW Method ....................................................................... 203 
16.2.3 WPM.................................................................................... 204 
16.2.4 AHP and its Versions........................................................... 204 
16.2.5 TOPSIS Method................................................................... 205 
16.2.6 Modified TOPSIS Method................................................... 205 
16.2.7 VIKOR................................................................................. 206 

References .................................................................................................. 206 

17 Selection of Software in Manufacturing Industries............................... 209
17.1 Introduction...................................................................................... 209 
17.2 Example ........................................................................................... 211 
17.3 General Remarks.............................................................................. 213 
References .................................................................................................. 213 



xvi        Contents 

18 Welding Process Selection for a Given Application .............................. 215
18.1 Introduction...................................................................................... 215 
18.2 Example ........................................................................................... 216 

18.2.1 GTMA ................................................................................. 216 
18.2.2 SAW Method ....................................................................... 218 
18.2.3 WPM.................................................................................... 218 
18.2.4 AHP and its Versions........................................................... 218 
18.2.5 TOPSIS Method................................................................... 219 

References .................................................................................................. 219 

19 Geometric Moldability Analysis of Parts ............................................... 221
19.1 Introduction...................................................................................... 221 
19.2 Example ........................................................................................... 224 

19.2.1 GTMA ................................................................................. 225 
19.2.2 SAW Method ....................................................................... 226 
19.2.3 AHP Method........................................................................ 226 
19.2.4 TOPSIS Method................................................................... 227 
19.2.5 Modified TOPSIS Method................................................... 228 

19.3 General Remarks.............................................................................. 228 
References .................................................................................................. 228 

20 Evaluation of Metal Stamping Layouts .................................................. 231
20.1 Introduction...................................................................................... 231 
20.2 Example ........................................................................................... 233 

20.2.1 Application of GTMA ......................................................... 234 
20.2.2 SAW Method ....................................................................... 236 
20.2.3 WPM.................................................................................... 236 
20.2.4 AHP and its Versions........................................................... 237 
20.2.5 TOPSIS Method................................................................... 238 
20.2.6 Modified TOPSIS Method................................................... 238 

References .................................................................................................. 239 

21 Selection of Forging Conditions for Forging a Given Component....... 243
21.1 Introduction...................................................................................... 243 
21.2 Example ........................................................................................... 248 

21.2.1 GTMA ................................................................................. 248 
21.2.2 SAW Method ....................................................................... 249 
21.2.3 WPM.................................................................................... 250 
21.2.4 AHP Method........................................................................ 250 
21.2.5 TOPSIS Method................................................................... 250 
21.2.6 Modified TOPSIS Method................................................... 251 

References .................................................................................................. 251 

22 Evaluation of Environmentally Conscious Manufacturing  
Programs ................................................................................................... 255
22.1 Introduction...................................................................................... 255 
22.2 Example ........................................................................................... 257 



Contents        xvii 

22.2.1 GTMA ................................................................................. 258 
22.2.2 SAW Method ....................................................................... 259 
22.2.3 AHP and its Versions........................................................... 260 
22.2.4 TOPSIS Method................................................................... 260 
22.2.5 Modified TOPSIS Method................................................... 261 

References .................................................................................................. 262 

23 Environmental Impact Assessment of Manufacturing Processes ........ 265
23.1 Introduction...................................................................................... 265 
23.2 Example ........................................................................................... 268 

23.2.1 GTMA ................................................................................. 270 
23.2.2 AHP Method........................................................................ 271 
23.2.3 TOPSIS Method................................................................... 272 
23.2.4 Modified TOPSIS Method................................................... 274 

References .................................................................................................. 274 

24 Evaluation of Aggregate Risk in Green Manufacturing ....................... 277 
24.1 Introduction...................................................................................... 277 
24.2 Example ........................................................................................... 280 

24.2.1 GTMA ................................................................................. 280 
24.2.2 AHP Method........................................................................ 281 
24.2.3 TOPSIS Method................................................................... 282 
24.2.4 Modified TOPSIS Method................................................... 282 

References .................................................................................................. 283 

25 Selection of Best Product End-of-Life Scenario..................................... 285
25.1 Introduction...................................................................................... 285 
25.2 Example ........................................................................................... 288 

25.2.1 GTMA ................................................................................. 289 
25.2.2 SAW Method ........................................................................ 290 
25.2.3 WPM.................................................................................... 290 
25.2.4 TOPSIS Method................................................................... 291 
25.2.5 Modified TOPSIS Method................................................... 291 
25.2.6 Compromise Ranking Method (VIKOR)............................. 292 

References .................................................................................................. 292 

26 Integrated Project Evaluation and Selection ......................................... 295
26.1 Introduction...................................................................................... 295 
26.2 Example ........................................................................................... 299 

26.2.1 WPM.................................................................................... 301 
26.2.2 TOPSIS Method................................................................... 301 
26.2.3 Modified TOPSIS Method................................................... 302 

References .................................................................................................. 303 

27 Facility Location Selection....................................................................... 305
27.1 Introduction...................................................................................... 305 
27.2 Examples.......................................................................................... 306 



xviii        Contents 

27.2.1 Example 1 ............................................................................ 306 
27.2.1.1 GTMA.................................................................... 306 
27.2.1.2 SAW Method.......................................................... 308 
27.2.1.3 WPM ...................................................................... 308 
27.2.1.4 AHP and its Versions ............................................. 309 
27.2.1.5 TOPSIS Method ..................................................... 309 
27.2.1.6 Modified TOPSIS Method ..................................... 310 

27.2.2 Example 2 ............................................................................ 310 
27.2.2.1 GTMA.................................................................... 311 
27.2.2.2 AHP and its Versions ............................................. 312 

References .................................................................................................. 312 

28 Operational Performance Evaluation of Competing Companies......... 315
28.1 Introduction...................................................................................... 315 
28.2 Example ........................................................................................... 316 

28.2.1 Application of GTMA ......................................................... 317 
28.2.2 SAW Method ....................................................................... 318 
28.2.3 WPM.................................................................................... 318 
28.2.4 AHP and its Versions........................................................... 318 
28.2.5 TOPSIS Method................................................................... 319 
28.2.6 Modified TOPSIS Method................................................... 319 

References .................................................................................................. 319 

29 Vendor Selection in a Supply Chain Environment................................ 321
29.1 Introduction...................................................................................... 321 
29.2 Example 1 ........................................................................................ 323 

29.2.1 GTMA ................................................................................. 324 
29.2.2 TOPSIS Method................................................................... 326 

29.3 Genetic Algorithms .......................................................................... 329 
29.4 Proposed Methodology .................................................................... 330 
29.5 Example 2 ........................................................................................ 331 
29.6 General Remarks.............................................................................. 336 
References .................................................................................................. 337 

30 Group Decision Making in the Manufacturing Environment .............. 341
30.1 Introduction...................................................................................... 341 
30.2 Example ........................................................................................... 342 

30.2.1 Application of GTMA ......................................................... 343 
30.2.2 SAW Method ....................................................................... 344 
30.2.3 WPM.................................................................................... 344 
30.2.4 TOPSIS Method................................................................... 345 
30.2.5 Modified TOPSIS Method................................................... 345 

30.3 General Remarks.............................................................................. 345 
References .................................................................................................. 346 

Appendix Computer Codes ............................................................................... 347
Index .................................................................................................................... 371



Part 1 

Introduction to Decision Making 



1
__________________________________________________________________ 

Introduction to Decision Making in the Manufacturing 
Environment

1.1 Introduction 

Manufacturing is the backbone of any industrialized nation. Its importance is 
emphasized by the fact that, as an economic activity, it comprises approximately 
20 to 30% of the value of all goods and services produced. A country’s level of 
manufacturing activity is directly related to its economic health. In general, the 
higher the level of manufacturing activity in a country, the higher the standard of 
living of its people.  

Manufacturing can be defined as the application of mechanical, physical, and 
chemical processes to modify the geometry, properties and/or appearance of a 
given starting material in the making of new, finished parts or products. This effort 
includes all intermediate processes required for the production and integration of a 
product’s components. The ability to produce this conversion efficiently 
determines the success of the company. The type of manufacturing performed by a 
company depends on the kinds of products it makes. Manufacturing is an important 
commercial activity carried out by companies that sell products to customers. In 
the modern sense, manufacturing involves interrelated activities that include 
product design and documentation, material selection, process planning, 
production, quality assurance, management, and marketing of products. These 
activities should be integrated to yield viable and competitive products.   

Manufacturing technologies have continually gone through gradual but 
revolutionary changes. These advancements in manufacturing technologies have 
brought about a metamorphism in the world industrial scene. They include CNC, 
CAD/CAM, FMS, robotics, rapid prototyping, environmentally sustainable 
technologies, etc., which have become an integral part of manufacturing. Parallel to 
this are rapid strides in the development of new products, and the emergence of an 
open economy leading to global competition. Manufacturing industries are 
compelled to move away from traditional setups to more responsive and dynamic 
ones. Many new concepts have emerged from these changes, sustained by 
strategies aimed at meeting the challenges arising from global markets. Product 
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attributes like quality, reliability, cost, life-cycle prediction, and the organizational 
ability to meet market pressures like delivery and service, have come into focus.  

A long array of emerging technologies have opened up the potential for a 
variety of new products. Fast-changing technologies on the product front cautioned 
the need for an equally fast response from the manufacturing industries. The old, 
traditional model of ‘unfocused, short-term views and non-holistic vision’ is 
becoming replaced by the enlightened approach of ‘focused, holistic and strategic 
vision’. To meet the challenges, manufacturing industries have to select 
appropriate manufacturing strategies, product designs, manufacturing processes, 
work piece and tool materials, machinery and equipment, etc. The selection 
decisions are complex, as decision making is more challenging today. Necessary 
conditions for achieving efficient decision making consist in understanding the 
current and upcoming events and factors influencing the whole manufacturing 
environment, in exploring the nature of decision-making processes and the reach of 
different typologies of methods and techniques, and finally in structuring 
appropriately the decision-making approach based on a wide range of issues related 
to manufacturing systems design, planning, and management.  

Decision makers in the manufacturing sector frequently face the problem of 
assessing a wide range of alternative options, and selecting one based on a set of 
conflicting criteria. Some of the important decision-making situations in the 
manufacturing environment are listed below: 

Material selection for a given engineering application 
Evaluation of alternative product designs 
Machinability evaluation of work materials 
Cutting fluid selection for a given machining application  
Evaluation and selection of modern machining methods  
Evaluation and selection of flexible manufacturing systems 
Machine group selection in a flexible manufacturing cell 
Failure cause analysis of machine tools 
Robot selection for a given industrial application 
Selection of automated inspection systems 
Selection of material handling equipment 
Selection of a rapid prototyping process in rapid product development 
Selection of software for design and manufacturing applications 
Selection of the most appropriate welding process for a given job 
Mouldability analysis of parts 
Evaluation of metal stamping layouts 
Selection of forging conditions for a given component  
Evaluation of environmentally conscious manufacturing programs 
Environmental impact assessment of manufacturing processes 
Evaluation of aggregate risk in green manufacturing   
Selection of best product end-of-life scenario 
Integrated project evaluation and selection 
Facility location selection  
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Operational performance evaluation of competing companies 
Vendor selection in a supply chain environment 

It must be noted that in choosing the right alternative, there is not always a 
single definite criterion of selection, and decision makers have to take into account 
a large number of criteria including technological, economic, ethical, political, 
legal, and social factors. There is a need for simple, systematic, and logical 
methods or mathematical tools to guide decision makers in considering a number 
of selection criteria and their interrelations. The objective of any selection 
procedure is to identify appropriate selection criteria, and obtain the most 
appropriate combination of criteria in conjunction with the real requirement. Thus, 
efforts need to be extended to identify those criteria that influence an alternative 
selection for a given problem, using simple and logical methods, to eliminate 
unsuitable alternatives, and to select the most appropriate alternative to strengthen 
existing selection procedures. This book presents such simple, systematic and 
logical methods.   

1.2 Decision- aking Methods Used 

The methods included in this book for decision making in the manufacturing 
environment are: 

(i) Graph theory and matrix approach 
(ii) Fuzzy multiple attribute decision-making methods.  

Graph theory is a logical and systematic approach. The advanced theory of 
graphs, and its applications are very well documented. Graph/digraph model 
representations have proved to be useful for modeling and analyzing various kinds 
of systems and problems in numerous fields of science and technology. If the 
graph/digraph is complex, it becomes difficult to analyze it visually. This can be 
done by computer through the use of the matrix method. An equivalent matrix of 
the graph/digraph model can be defined. Graph theory and the matrix approach 
help in identifying attributes, and offer a better visual appraisal of the attributes and 
their interrelations. This approach is capable of handling the inherent errors, and 
can deal with any number of qualitative and quantitative attributes simultaneously. 
The method has axiomatic foundation, involves less computation, provides great 
emphasis on decision-making methodology, and offers a more objective, simple 
and consistent decision-making approach. In addition, identification and 
comparison of alternatives in terms of their similarity/ dissimilarity can be carried 
out. The application of graph theory and the matrix approach as a decision-making 
tool in manufacturing situations is relatively new, and this approach has not been 
used by previous researchers.  

In addition to graph theory and the matrix approach, some other important 
methods, known as multiple attribute decision-making (MADM) methods, are also 
used in this book for decision making in the manufacturing environment. These 
methods fall under the category of multiple criteria decision making (MCDM), i.e.,
decision making in the presence of multiple, generally conflicting criteria. 
Depending on the domain of alternatives, MCDM problems are usually subdivided 

m
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into continuous and discrete types. MCDM problems have two classifications: 
multiple objective decision making (MODM), and multiple attribute decision 
making (MADM). MODM methods have decision variable values that are 
determined in a continuous or integer domain with either an infinitive or a large 
number of alternative choices, the best of which should satisfy the decision 
maker’s constraints and preference priorities. MADM methods, on the other hand, 
are generally discrete, with a limited number of pre-specified alternatives. These 
methods require both intra- and inter-attribute comparisons, and involve explicit 
tradeoffs that are appropriate for the problem considered. 

Each decision matrix in MADM methods has four main parts, namely: (a) 
alternatives, (b) attributes, (c) weight or relative importance of each attribute (i.e.,
weight), and (d) measures of performance of alternatives with respect to the 
attributes. Of the many MADM methods, five methods are commonly used: the 
weighted sum method (WSM), weighted product method (WPM), four modes of 
the analytic hierarchy process (AHP), Revised AHP, and technique for order 
preference by similarity to ideal solution (TOPSIS). A compromise ranking 
method (VIKOR) is also included in this book as an MADM method. However, 
one of the most crucial problems in many decision-making methods is the precise 
evaluation of pertinent data. Often, the data are imprecise and fuzzy. It is desirable 
to develop decision-making methods to deal with this aspect. Classical MADM 
methods can not effectively handle problems with such imprecise information. To 
resolve this difficulty, fuzzy MADM methods are used.  

The purpose of this book is to demonstrate how graph theory and the matrix 
approach as well as fuzzy multiple attribute decision-making methods can be 
effectively used for decision making in various situations of the manufacturing 
environment. Some of the situations have been mentioned above. Further, the book 
presents the concept of group decision making, the process of making a judgment 
based upon the opinion of different individuals. Such decision-making is a key 
component to the functioning of an organization, because organizational 
performance involves more than just one individual’s action. Moving from a single 
decision maker to a multiple decision maker setting introduces a great deal of 
complexity into the analysis. However, this book suggests simple and efficient 
methods to make the analysis less complex.    

The book documents the latest research works related to each of the 
manufacturing situations listed. Further, it presents the real case studies under most 
of the topics, as well as results of application of the proposed methods and the 
comparisons. The methods described in this book will be very useful to the 
decision makers in the manufacturing sector, as these methods make decision 
making easier, logical, systematic, efficient, and effective.        

The next chapter describes the graph theory and matrix approach as a decision-
making method in the manufacturing environment.  



2
__________________________________________________________________ 

Graph Theory and Matrix Approach 
as a Decision- aking Method 

2.1 Introduction 

A graph G = (V, E) consists of a set of objects V = {v1, v2, ….} called vertices or 
nodes, and another set E = {e1, e2, ….}, of which the elements are called edges, 
such that each edge ek is identified with a pair of vertices. The vertices vi and vj
associated with edge ek are called the end vertices of ek. The most common 
representation of a graph is by means of a diagram, in which the vertices are 
represented by small points or circles, and each edge as a line segment joining its 
end vertices. 

The application of graph theory was known centuries ago, when the long-
standing problem of the Konigsberg bridge was solved by Leonhard Euler in 1736 
by means of a graph. Since then, graph theory has proved its mettle in various 
fields of science and technology such as physics, chemistry, mathematics, 
communication science, computer technology, electrical engineering, sociology, 
economics, operations research, linguistics, internet, etc. Graph theory has served 
an important purpose in the modeling of systems, network analysis, functional 
representation, conceptual modeling, diagnosis, etc. Graph theory is not only 
effective in dealing with the structure (physical or abstract) of the system, 
explicitly or implicitly, but also useful in handling problems of structural 
relationship. The theory is intimately related to many branches of mathematics 
including group theory, matrix theory, numerical analysis, probability, topology, 
and combinatorics. The advanced theory of graphs and their applications are well 
documented (Harary, 1985; Wilson and Watkins, 1990; Chen, 1997; Deo, 2000; 
Jense and Gutin, 2000; Liu and Lai, 2001; Tutte, 2001; Pemmaraju and Skiena, 
2003; Gross and Yellen, 2005; Biswal, 2005). 

This chapter presents the details of graph theory and the matrix approach as a 
decision-making method in the manufacturing environment. To demonstrate the 
approach, an example of machinability evaluation of work materials for a given 
machining operation is considered. Machinability is a measure of ease with which 
a work material can satisfactorily be machined. The machinability aspect is of 
considerable importance for the manufacturing engineer to know in advance, so 

m
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that the processing can be planned in an efficient manner. The study can also be a 
basis for cutting tool and cutting fluid performance evaluation, and machining 
parameter optimization. In the process of product design, material selection is 
important for realizing the design objective, and for reducing the production cost. 
The machinability of engineering materials, owing to the marked influence on the 
production cost, needs to be taken into account in the product design, although it 
will not always be a criterion considered top priority in the process of material 
selection. If there is a finite number of work materials from among which the best 
material is to be chosen, and if each work material satisfies the required design and 
functionality of the product, then the main criterion to choose the work material is 
its operational performance during machining, i.e., machinability. 

Machinability evaluation is based on the evaluation of certain economic and 
technical objectives (e.g., higher production rate, low operational cost, good 
product quality, etc.), which are the consequences of the machining operation on a 
given work material. Machining process output variables (e.g., cutting tool life, 
cutting tool wear, cutting forces, power consumption, processed surface finish, 
processed dimensional accuracy, etc.) are nothing but the behavioral properties of 
the work materials during machining operations in terms of economic and technical 
consequences and are directly related to machining operations, and hence to 
machinability. Thus, the machining process output variables are the pertinent and 
most commonly accepted measures of machinability, and are also called pertinent 
machinability attributes. 

2.2 Machinability Attributes Digraph 

A directed graph (or a digraph) is nothing but a graph with directed edges. A 
machinability attributes digraph models the machinability attributes and their 
interrelationship for a given machining operation. This digraph consists of nodes 
and edges. A node {Vi} represents presence or measure of an i-th machinability 
attribute. The number of nodes considered is equal to the number of machinability 
attributes considered for a given machining operation. The directed edge represents 
the relative importance among the attributes. If node ‘i’ has a relative importance 
over another anode ‘j’ in the machinability evaluation of work materials for the 
given machining operation, then a directed edge or arrow is drawn from node i to 
node j (i.e., eij). If j has relative importance over i, then the directed edge or arrow 
is drawn from node j to node i (i.e., eji).  

To demonstrate a machinability attributes digraph, an example of 
machinability evaluation of work materials in cylindrical grinding operation is 
considered. Grinding is a machining process of material removal in the form of 
small chips by the mechanical action of abrasive particles bonded together in a 
grinding wheel. In this operation, wheel wear is most important, so as to reduce the 
cost of production. The wheel wear is measured in terms of a ratio known as 
‘grinding ratio’, which is defined as the ratio of amount of work material removed 
to the amount of wheel wear. Higher values of grinding ratio are desired for 
economic reasons. Two components of the cutting force, namely, normal force and 
tangential force, significantly affect the grinding process. Higher values of normal 
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force increase the roughness of the processed surfaces, and the geometric and 
dimensional inaccuracy of the processed parts. Tangential force affects the rating 
of the motors driving the wheel and the work piece, and higher values of tangential 
force mean increased power consumption. The grinding process imparts high-grade 
surface finish and good dimensional accuracy to the job. However, the temperature 
encountered in the grinding process is very high, and adversely affects the process. 
So, every care is to be taken to reduce the grinding temperature. All these variables 
described are the machining process output variables and are the pertinent 
machinability attributes and these attributes refer to the performance of work 
material during machining operations in terms of technical and economic 
consequences, and can be used for objective comparison. A work material is said to 
possess good machinability in cylindrical grinding operation if it offers higher 
grinding ratio, and lower values of normal force, tangential force, surface 
roughness, dimensional inaccuracy, and grinding temperature.  

Based on the above discussion, the machinability attributes considered for the 
cylindrical grinding operation are: grinding ratio (GR), normal force (NF), 
tangential force (TF), surface finish (SF), dimensional accuracy of the produced 
job (DA), and grinding temperature (GT). A machinability attributes digraph for 
the cylindrical grinding operation is shown in Figure 2.1. As six machinability 
attributes are considered here, there are six nodes in the machinability attributes 
digraph with nodes 1, 2, 3, 4, 5, and 6 representing the machinability attributes GR, 
NF, TF, SF, DA, and GT, respectively. The attribute GR is more important than the 
other machinability attributes in cylindrical grinding. Every effort should be made 
to increase the grinding ratio, as it greatly affects the cost of production. So, 
directed edges are drawn for the attribute GR (i.e., node 1) to the other attributes 
(i.e., nodes 2, 3, 4, 5, and 6). NF is more important than the attributes TF, SF, DA, 
and GT in cylindrical grinding operation, as it affects the surface roughness, and 
the geometric and dimensional accuracy of the processed parts. So, directed edges 
are drawn from node 2, representing NF, to the nodes 3, 4, 5, and 6. SF is more 
important than TF, so a directed edge is drawn from node 4 to node 3. DA is more 
important than TF, so a directed edge is drawn from node 5 to node 3. GT is more 
important than TF, SF, and DA in cylindrical grinding operation, so directed edges 
are drawn from node 6 to the nodes 3, 4, and 5 representing TF, SF, and DA, 
respectively.

A machinability attributes digraph gives a graphical representation of the 
attributes and their relative importance for quick visual appraisal. As the number of 
nodes and their interrelations increase, the digraph becomes more complex. In such 
a case, the visual analysis of the digraph is expected to be difficult and complex. 
To overcome this constraint, the digraph is represented in a matrix form. 
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Figure 2.1. Machinability attributes digraph for the cylindrical grinding operation 
(attributes: 1. grinding ratio, 2. normal force, 3. tangential force, 4. surface finish, 5. 
dimensional accuracy, and 6. grinding temperature)

2.3 Matrix Representation of the Digraph 

Matrix representation of the machinability attributes digraph gives one-to-one 
representation. A matrix called the machinability attributes relative importance 
matrix is defined. This is represented by a binary matrix (aij), where aij represents 
the relative importance between attributes i and j such that,  

aij = 1,  if the i-th machinability attribute is more important than the j-th 
machinability attribute for a given machining operation 

         = 0, otherwise. 
It is noted that aii = 0 for all i, as an attribute can not have relative importance 

over itself. The machinability attributes relative importance matrix (RIM) for the 
machinability attributes digraph shown in Figure 2.1 is written as: 

Attributes      GR NF TF SF DA GT 
        GR        0 1 1 1 1 1
        NF      0 0 1 1 1 1
B = TF    0 0 0 0 0 0
             SF   0 0 1 0 0 0
             DA       0 0 1 0 0 0
           GT    0 0 1 1 1 0
                                                                                                                              (2.1) 



Graph Theory and Matrix Approach        11 

The machinability attributes relative importance matrix (RIM) is analogous to 
the adjacency matrix in graph theory. It is noted from the RIM that all diagonal 
elements have value 0 and all off-diagonal elements have value either 0 or 1. This 
means that in this matrix only relative importance among the machinability 
attributes is considered, and the measures of the machinability attributes is not 
considered. To incorporate this, another matrix, called ‘characteristic machinability 
attributes presence and relative importance matrix (CPRIM)’, is defined and this, 
for the machinability attributes digraph of Figure 2.1, is written as C given by:  

         Attributes        GR NF TF SF DA GT 
              GR        A -1 -1 -1 -1 -1
              NF      0 A -1 -1 -1 -1
C = [AI-B] = TF    0 0 A  0 0 0
              SF   0 0 -1 A 0 0
              DA       0 0 -1 0 A 0
              GT    0 0 -1 -1 -1 A
                                                                                                                (2.2) 

where I is an identity matrix, and A is a variable representing the measure of 
the machinability attribute. Matrix C is analogous to the characteristic matrix in 
graph theory. Referring to the matrix in Equation 2.2, it is noted that the value of 
all diagonal elements is identical, i.e., the presence or measure of each 
machinability attribute is taken to be the same. In practice, this is not true. Also, the 
relative importance of one machinability attribute over the other machinability 
attribute, i.e., aij, may take any value other than the extreme value 0 or 1. Thus, 
there is a need for considering a general attribute value representing attribute 
presence or measure as well as relative importance value to develop a matrix 
equation leading to a broad-based machinability evaluation. To consider these 
aspects, another matrix, D, called ‘variable characteristic machinability attributes 
presence and relative importance matrix (VCPRIM)’, is developed.  

         Attributes        GR NF TF SF DA GT 
              GR        A1 -a12 -a13 -a14 -a15 -a16
              NF      0 A2 -a23 -a24 -a25 -a26
D = [E-F] = TF    0 0 A3  0 0 0
              SF   0 0 -a43 A4 0 0
              DA       0 0 -a53 0 A5 0
              GT    0 0 -a63 -a64 -a65 A6
                                                                                                                (2.3) 

where E is a diagonal matrix with diagonal element Ai representing a variable 
of presence or measure of the i-th machinablity attribute. If a machinability 
attribute is excellent, then it is assigned a maximum value. If a machinability 
attribute is not very significant, then it is assigned a minimum value. In general, 
most of the machinability attributes are assigned intermediate values of the interval 
scale, as attributes may be moderately present. These judgments are to be made 
based on an appropriate test of the machinability attribute. In the absence of this 
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test, a subjective value based on experience is assigned. F is a matrix of which the 
off-diagonal elements are represented as aij, instead of 1, wherever the i-th 
machinability attribute has more relative importance than the j-th machinability 
attribute. 

It may be noted that the matrix VCPRIM considers the presence or measures 
of the machinability attributes, and their relative importance for the given 
machining operation. The characteristic multinomial of the matrix VCPRIM is 
nothing but the determinant of the matrix VCPRIM, and may be written as:  

det (D) = A1 A2 A3 A4 A5 A6                                                                                (2.4) 

Equation 2.4 contains only one term, i.e., A1 A2 A3 A4 A5 A6, which is a set of 
six machinability attributes measures. It is evident that the relative importance 
among the machinability attributes is not represented by this characteristic 
multinomial. It is therefore necessary to look into the aspect of relative importance 
representation in the machinability attributes digraph and its matrix to identify the 
reasons. If the i-th machinablity attribute is more important than the j-th 
machinability attribute, then a directed edge is drawn from i to j to represent this 
relative importance. Similarly, if the j-th machinability attribute is more important 
than the i-th machinability attribute, then a directed edge is drawn from j to i to 
represent their relative importance. But if the i-th machinability attribute is less 
important than the j-th machinability attribute, then no directed edge is drawn from 
i to j, and vice versa. In that case, aij (or aji) becomes 0 in the matrix representation 
of the digraph. This 0 causes many terms of the characteristic multinomial to 
become 0 (as there are no relative importance loops in the corresponding 
machinability attributes digraph), thus leading to the loss of a fair amount of 
information useful during the machinability evaluation. Hence, the relative 
importance between i, j and j, i is distributed on a scale 0 to L and is defined as:  

aji  = L - aij                                                                                                             (2.5) 

It means that a scale is adapted from 0 to L on which the relative importance 
values are compared. If aij represents the relative importance of the i-th 
machinability attribute over the j-th machinability attribute, then the relative 
importance of the j-th machinability attribute over the i-th machinability attribute is 
evaluated using Equation 2.5. The modified machinability attributes digraph 
showing the presence or measures of the machinabilty attributes, and all the 
possible relative importance among these is shown in Figure 2.2.  
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Figure 2.2. Modified machinability attributes digraph for the cylindrical grinding operation 
(attributes: 1. grinding ratio, 2. normal force, 3. tangential force, 4. surface finish, 5. 
dimensional accuracy, and 6. grinding temperature) 

The modified VCPRIM for this digraph for the cylindrical grinding operation 
is represented as: 

           Attributes        GR NF TF SF DA GT 
              GR        A1 -a12 -a13 -a14 -a15 -a16
              NF      -a21 A2 -a23 -a24 -a25 -a26
  G = TF    -a31 -a32 A3  -a34 -a35 -a36
              SF   -a41 -a42 -a43 A4 -a45 -a46
              DA       -a51 -a52 -a53 -a54 A5 -a56
         GT    -a61 -a62 -a63 -a64 -a65 A6
                                                                                                                (2.6) 
        
       where Ai is the measure of the i-th machinability attribute represented by node 
vi, and aij the relative importance of the i-th machinability attribute over the j-th, 
represented by the edge eij. The characteristic multinomial of this matrix G is 
defined as ‘variable characteristic machinability function (VCF)’, and is written as 
Equation 2.6. 
                          6              5         6         3         4          5            6 

det (G) =  Ai -                             (aijaji )AkAlAmAn

                       i =1           i=1    j=i+1   k=1   l=k+1  m=l+1  n=m+1                                                 

k,l,m,n  pus
               4         5         6          4           5          6                 
            -                             (aijajkaki + aikakjaji)AlAmAn

                    i=1    j=i+1  k=j+1     l=1     m=l+1  n=m+1                                                                            
 k,l,m,n  pus
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                         3         6         5          6           5         6

            +[                            (aijaji) (aklalk )AmAn

                       i=1    j=i+1  k=i+1  l=i+2      m=1    n=m+1                                                           

k,l,m,n  pus
               3           5            6          6        5      6

            -                        (aijajkaklali + ailalkakjaji)AmAn]
             i=1    j=i+1       k=i+1  l=j+1  m=1   n=m+1                                                                                                                          

k,l,m,n  pus
                 4          5          6         5       6          6

            + [                         (aijajkaki + aikakjaji) (almaml)An
                 i=1   j=i+1     k=j+1   l=1    m=l+1  n=1                                                                                                                   

k,l,m,n  pus
               2        5          6          6         6          6

            -                     (aijajkaklalmami+ aimamlalkakjaji)An]
                     i=1    j=i+1  k=i+1  l=i+1  m=j+1   n=1                                                                                                                         

k,l,m,n  pus

                           3         5         6            6          5         6

            + [                         (aijajkaklali + ailalkakjaji) (amnanm)
                 i=1    j=i+1    k=i+1  l=j+1   m=1   n=m+1   

  k,l,m,n  pus

                      1        5          6        4      5          6

             +                  (aijajkaki + aikakjaji)(almamnanl + alnanmaml)
                       i=1  j=i+1   k=j+1    l=1  m=l+1  n=m+1 

k,l,m,n  pus

                        1       6          3         6           5              6

             -                            (aijaji) (aklalk ) (amnanm )
                       i=1  j=i+1  k=i+1    l=i+2   m=k+1   n=k+2                                                           

k,l,m,n  pus
               1        5          6          6           6          6

             -                         (aijajkaklalmamnani + ainanmamlalkakjaji)] 
               i=1   j=i+1  k=i+1  l=i+1   m=i+1 n=j+1

k,l,m,n  pus
                                                                                                                              (2.7) 

‘pus’ stands for ‘previously used subscripts’, i.e., in Equation 2.7, k, l, m and n 
take those subscripts that are other than previously used subscripts. The 
multinomial Equation 2.7 in symbolic form is a complete expression for the 
considered cylindrical grinding operation, as it considers measures of the attributes 
and all possible relative importance among the attributes. Mathematically, each 
term is a product of six different matrix elements. If this function is interpreted 
from a combinatorial point of view, it is found that different terms are the sets of 
distinct diagonal elements (Ai) and loops of off-diagonal elements of different sizes 
(i.e., aijaji, aijajkaki, etc.).

The variable characteristic machinability function (VCF) contains terms 
arranged in (6 + 1) groupings and these groupings represent the measures of 
attributes and the relative importance loops. The first grouping represents the 
measures of the machinability attributes. The second grouping is absent, as there is 
no self-loop in the digraph. The third grouping contains 2-attribute relative 
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importance loops and measures of four attributes. Each term of the fourth grouping 
represents a set of a 3-attribute relative importance loop, or its pair, and measures 
of three attributes. The fifth grouping contains two sub-groupings. Each term of the 
first sub-grouping is a set of two 2-attribute relative importance loops and the 
measures of two attributes. Each term of the second sub-grouping is a set of a 4-
attribute relative importance loop, or its pair, and the measures of two attributes. 
The sixth grouping contains two sub-groupings. Each term of the first sub-
grouping is a set of a 3-attribute relative importance loop, or its pair, and a 2- 
attribute relative importance loop and the measure of one attribute. Each term of 
the second sub-grouping is a set of 5-attribute relative importance loop, or its pair, 
and the measure of one attribute. The seventh grouping contains four sub-
groupings. Each term of the first sub-grouping is a set of a 4-attribute relative 
importance loop, or its pair, and a 2-attribute relative importance loop. Each term 
of the second sub-grouping is a set of a 3-attribute relative importance loop, or its 
pair, and another 3-attribute relative importance loop, or its pair. Each term of the 
third sub-grouping is a set of three 2-attribute relative importance loops. Each term 
of the fourth sub-grouping is a set of a 6-attribute relative importance loop, or its 
pair. After identifying these combinatorial terms, and by associating a proper 
physical meaning with these, a new mathematical meaning of the multinomial is 
obtained. 

The variable characteristic machinability function is the characteristic of the 
work material, and a powerful tool for machinability evaluation. However, a close 
look at the multinomial reveals that its various characteristic coefficients carry both 
positive and negative signs. The variable characteristic machinability function may 
not be able to provide the total objective value, when the numerical values for Ai
and aij are substituted in the multinomial, because some of the information is lost 
by subtraction and addition operations in the determinant function. Considering 
these factors, the ‘variable permanent machinability function (VPF)’ is defined. 
This function is derived from a new matrix called the ‘machinability permanent 
matrix’. The machinability permanent matrix, H, for the machinability attributes 
digraph (Figure 2.2) is written as Equation 2.8. 

     Attributes        GR NF TF SF DA GT 
              GR        A1 a12 a13 a14 a15 a16
              NF      a21 A2 a23 a24 a25 a26
  H= TF    a31 a32 A3  a34 a35 a36
              SF   a41 a42 a43 A4 a45 a46
              DA       a51 a52 a53 a54 A5 a56
         GT    a61 a62 a63 a64 a65 A6
                                                                                                             (2.8) 
       

The permanent of H may be called the ‘variable permanent machinability 
function (VPF)’. 
                          6              5         6         3         4          5            6 

per (H) =  Ai +                             (aijaji )AkAlAmAn

                       i =1           i=1    j=i+1   k=1   l=k+1  m=l+1  n=m+1                                                 

k,l,m,n  pus
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               4           5         6          4           5          6                 
            +                             (aijajkaki + aikakjaji)AlAmAn

                    i=1    j=i+1  k=j+1     l=1     m=l+1  n=m+1                                                                            
 k,l,m,n  pus

                         3         6         5          6           5         6

            +[                            (aijaji) (aklalk)AmAn

                       i=1    j=i+1  k=i+1  l=i+2      m=1    n=m+1                                                           

k,l,m,n  pus
               3           5            6          6        5      6

            +                        (aijajkaklali + ailalkakjaji)AmAn]
             i=1    j=i+1       k=i+1  l=j+1  m=1   n=m+1                                                                                                                          

k,l,m,n  pus
                 4          5          6         5       6          6

            + [                         (aijajkaki + aikakjaji) (almaml)An
                 i=1   j=i+1     k=j+1   l=1    m=l+1  n=1                                                                                                                   

k,l,m,n  pus
                2        5          6          6         6          6

            +                         (aijajkaklalmami+ aimamlalkakjaji)An]
                     i=1    j=i+1  k=i+1  l=i+1  m=j+1   n=1                                                                                                                         

k,l,m,n  pus

                           3         5         6            6          5         6

            + [                         (aijajkaklali + ailalkakjaji) (amnanm)
                 i=1    j=i+1    k=i+1  l=j+1   m=1   n=m+1   

  k,l,m,n  pus

                      1        5          6        4      5          6

             +                  (aijajkaki + aikakjaji)(almamnanl + alnanmaml)
                       i=1  j=i+1   k=j+1    l=1  m=l+1  n=m+1 

k,l,m,n  pus 

                        1       6           3         6           5              6

             +                            (aijaji) (aklalk) (amnanm)
                       i=1  j=i+1  k=i+1    l=i+2   m=k+1   n=k+2                                                           

k,l,m,n  pus
                 1        5          6         6           6          6

             +                         (aijajkaklalmamnani + ainanmamlalkakjaji)] 
               i=1   j=i+1  k=i+1  l=i+1   m=i+1   n=j+1

k,l,m,n  pus
                                                                            (2.9) 

It may be noted that the only difference between the VPF, i.e., per (H), and the 
determinant polynomial det (G), i.e., VCF, is that the former does not carry 
negative signs with its terms, while both positive and negative signs appear in the 
latter. Comparing Equations 2.8 and 2.9, it is noted that each term of the grouping/ 
sub-grouping is the same in both cases, the only difference being in the signs of the 
coefficients. Both the functions are basically the same, and have the same physical 
meaning, except for the difference in signs. It may be mentioned that the 
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permanent is a standard matrix function, and is used in combinatorial mathematics 
(Marcus and Minc, 1965; Jurkat and Ryser, 1966; Nijenhuis and Wilf, 1975).  

Use of the permanent concept in machinability evaluation will help in 
representing machinability attributes of work materials as obtained from 
combinatorial consideration. Application of the permanent concept will lead to a 
better appreciation of machinability attributes of the work materials. Moreover, 
using this, no negative sign will appear in the equation, and hence no information 
will be lost.  

The adjacency matrix, incidence matrix, characteristic matrix, etc., could also 
be used for machinability evaluation, but these matrices have their own drawbacks. 
The adjacency matrix makes no provision for parallel-directed edges in both 
directions (i.e., relative importance in both directions), and the elements of the 
matrix are either 0 or 1. On expanding the adjacency matrix, only some numbers 
can be obtained that do not reveal much physical information associated with the 
machinability attributes and their relative importance. The incidence matrix 
contains the elements either 0 or 1, and it requires more computer storage than 
needed for an adjacency matrix, as the number of edges is usually greater than the 
number of nodes. Moreover, as the incidence matrix is a non-square matrix, its 
further use for machinability evaluation is not possible. The characteristic matrix is 
not an invariant of the system, as a new matrix can be obtained by changing the 
labeling, but one matrix can be obtained from the other by proper permutations of 
rows and columns. The characteristic multinomial or characteristic function, which 
is nothing but the determinant of the characteristic matrix, contains both positive 
and negative signs, and may not be able to provide the total objective value when 
the numerical values for Ai and aij are substituted in the multinomial, because some 
of the information is lost by subtraction and addition operations in the determinant 
function, as explained above. Due to these reasons, researchers have used the 
permanent function of a matrix, which does not contain any negative terms, and 
thus provides the complete information without any loss (Gandhi et al., 1991; 
Gandhi and Agrawal, 1992, 1994; Venkatasamy and Agrawal, 1996, 1997; Rao 
and Gandhi, 2001, 2002a, 2002b; Rao, 2004, 2006a, 2006b, 2006c, 2006d; Grover 
et al., 2004; Rao and Padmanabhan, 2006). 

In general, if there is M number of machinability attributes, and the relative 
importance exists among all the machinability attributes, then the machinability 
attributes matrix, J, for the considered machinability attributes digraph is written as 
Equation 2.10. 

     Attributes        1 2 3 - - M 
              1        A1 a12 a13 - - a1M
              2      a21 A2 a23 - - a2M
  J= 3    a31 a32 A3  - - a3M
              -   - - - - - -
              -       - - - - - -
         M    aM1 aM2 aM3 - - AM
                                                                                                                            (2.10) 

The VPF for this matrix J contains factorial M (M!) number of terms. In sigma 
form, it is written as Equation 2.11. 
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                        M           M-1      M                         M                               

per (J) =  Ai +          ………     (aijaji)AkAlAmAnAo …..AtAM

                       i =1         i=1     j=i+1                   M=t+1                                                           

... , M  pus
              M-2     M-1     M                        M                  
            +             ..........   (aijajkaki + aikakjaji)AlAmAnAo …..AtAM

                     i=1    j=i+1  k=j+1     l=1       M=t+1                                                                           
     k, … , M  pus

                      M- 3    M        M-1      M                     M 

            +[               ………   (aijaji) (aklalk )AmAnAo …..AtAM

                       i=1    j=i+1  k=i+1  l=i+2                M=t+1                                                         

     k,l, … , M  pus
             M-3      M-1         M        M                    M                            

            +                  ………  (aijajkaklali + ailalkakjaji)AmAnAo …..AtAM]
              i=1      j=i+1      k=i+1  l=j+1           M=t+1                                                                                                                          

    k,l, ... , M  pus
               M-2     M-1        M        M-1   M                   M   

            + [                    ……… (aijajkaki + aikakjaji)(almaml)AnAo …..AtAM
                   i=1   j=i+1     k=j+1   l=1  m=l+1            M=t+1                                                                                                                  

      k,l,m, ... , M  pus
               M-4   M-1    M       M        M                  M

            +              .......... (aijajkaklalmami + aimamlalkakjaji)AnAo…..AtAM]
                      i=1    j=i+1  k=i+1  l=i+1  m=j+1           M=t+1                                                                                                                

     k,l,m, ... , M  pus 

    M-3   M-1    M    M      M-1  M                    M

            +[(              ……… (aijajkaklali + ailalkakjaji)(amnanm)Ao…..AtAM
                   i=1  j=i+1 k=i+1 l=j+1 m=1 n=m+1           M=t+1                                                                                                    

        k,l,m,n, ... , M  pus

                       M-5   M-1  M  M-2  M-1 M              M   

             +    ….… (aijajkaki + aikakjaji)(almamnanl + alnanmaml)Ao..AtAM

                      i=1 j=i+1 k=j+1 l=1 m=l+1 n=m+1   M=t+1 

      k,l,m,n, ... , M  pus

                      M-5   M         M- 3   M        M-1       M                M 

             +                     .........  (aijaji) (aklalk) (amnanm) Ao …..AtAM

                     i=1  j=i+1  k=i+1    l=i+2   m=k+1   n=k+2     M=t+1                                                   

     k,l,m,n, ... , M  pus
               M-5  M-1   M    M        M         M     M

             +                 ... (aijajkaklalmamnani + ainanmamlalkakjaji)Ao…..AtAM)]  
               i=1  j=i+1 k=i+1 l=i+1 m=i+1 n=j+1 M=t+1

   k,l,m,n, ... , M  pus
  + ----------                                                                                             (2.11) 

‘pus’ stands for ‘previously used subscripts’, i.e., in the Equation 2.11, k, l, m, 
n, … , M take those subscripts that are other than previously used subscripts. The 
VPF contains terms arranged in (M + 1) groups, and these groups represent the 
measures of attributes and the relative importance loops. The first group represents 
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the measures of M attributes. The second group is absent as there is no self-loop in 
the digraph. The third group contains 2-attribute relative importance loops and 
measures of (M-2) attributes. Each term of the fourth group represents a set of a 3-
attribute relative importance loop, or its pair, and measures of (M-3) attributes. The 
fifth group contains two sub-groups. The terms of the first sub-group is a set of two 
2-attribute relative importance loops and the measures of (M-4) attributes. Each 
term of second sub-group is a set of a 4-attribute relative importance loop, or its 
pair, and the measures of (M-4) attributes. The sixth group contains two sub-
groups. The terms of the first sub-group is a set of a 3-attribute relative importance 
loop, or its pair, and 2-attribute relative importance loop and the measures of (M-5) 
attributes. Each term of the second sub-group is a set of a 5-attribute relative 
importance loop, or its pair, and the measures of (M-5) attributes. Similarly other 
terms of the equation are defined. Thus, the VPF fully characterizes the considered 
machinability evaluation problem, as it contains all possible structural components 
of the attributes and their relative importance. It may be mentioned that this 
equation is nothing but the determinant of an M * M matrix but considering all the 
terms as positive. 
       The computer program written in C++ language to calculate the permanent 
function of a square matrix of M * M size is given in Appendix A. 

2.4 Machinability Index 

The machinability index is a measure of the ease with which a work material can 
satisfactorily be machined in a given machining operation. The machinability 
function defined above, i.e., Equation 2.11, contains measures of attributes and 
their relative importance, and is hence appropriate, and can be used for evaluation 
of the machinability index. As the machinability function contains only positive 
terms, higher values of Ai and aij will result in increased value of the machinability 
index. To calculate this index, the required information is the values of Ai and aij.

The value of Ai should preferably be obtained from a standard or specific test. 
If such objective value is not available, then a ranked value judgment on a scale, 
e.g., 0 to 1, is adapted. Table 2.1 represents the machinability attribute on a 
subjective scale. It holds for a given machining operation, some of the Ai will be 
subjective, and the others objective. Moreover, these objective values will have 
different units. It is therefore desirable to convert, or normalize, the objective 
values of Ai on the same scale as the subjective values, i.e., 0 to 1. If Ai has range 
Ail and Aiu, the value 0 is assigned to the lowest range value Ail and 1 is assigned to 
the highest range value Aiu. The other, intermediate value Aii of the machinability 
attribute is assigned a value in between 0 and 1, as per the following:  

Ai = (Aii - Ail) / (Aiu - Ail)                                                       (2.12) 

Equation 2.12 is applicable for general beneficial attributes only. A beneficial 
attribute (e.g., grinding ratio) is one of which higher attribute value is more 
desirable for the given machining operation. A non-beneficial attribute (e.g.,
normal force) is one of which the lower attribute value is desirable. Therefore, in 
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the case of non-beneficial machinability attributes, the attribute value 0, on scale 0 
to 1, is assigned to the highest range value Aiu, and the value 1 is assigned to the 
lower range value Ail. The other intermediate value Aii of the machinability 
attribute is assigned a value in between 0 and 1, as per the following:  

Ai = (Aiu - Aii) / (Aiu - Ail)                                                        (2.13) 

Alternatively, the normalized value Ai can be calculated by Aii /Aiu in the case 
of the beneficial attribute, and by Ail /Aii in the case of the non-beneficial attribute. 
This alternative method is better than the method described by Equations 2.12 and 
2.13 as it does not contain ‘0’ as the normalized attribute value, and hence no 
information will be lost subsequently in machinability index calculation.   

The relative importance between two attributes (i.e., aij) for a given machining 
operation is also assigned value on the scale 0 to 1, and is arranged into six classes. 
The relative importance implies that an attribute ‘i’ is compared with another 
attribute ‘j’ in terms of relative importance for the given machining operation. The 
relative importance between i, j and j, i is distributed on the scale 0 to 1, and is 
defined similarly to Equation 2.5 in which L is taken as 1. If aij represents the 
relative importance of the i-th attribute over the j-th attribute, then the relative 
importance of the j-th attribute over the i-th attribute is evaluated using Equation 
2.5. For example, if the i-th attribute is slightly more important than the j-th 
attribute, then aij = 6 and aji = 4.  

Table 2.2 aids in assigning aij values based on the above. The relative 
importance is expressed in six classes, which lead to minimization of subjectivity 
while deciding the relative importance between machinability attributes. 

Table 2.1. Value of attribute 
________________________________________________________________
Subjective measure of attribute                     Assigned value 
________________________________________________________________
Exceptionally low     0.0 
Extremely low     0.1 
Very low      0.2 
Low      0.3 
Below average     0.4 
Average                  0.5 
Above average      0.6 
High      0.7 
Very high      0.8 
Extremely high              0.9 
Exceptionally high                 1.0 
________________________________________________________________
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Table 2.2. Relative importance of attributes 
______________________________________________________________________
Class description                              Relative importance 

aij aji = 1 - aij
______________________________________________________________________
Two attributes are equally important    0.5 0.5 
One attribute is slightly more important over the other  0.6 0.4 
One attribute is strongly more important over the other  0.7 0.3 
One attribute is very strongly important over the other  0.8 0.2 
One attribute is extremely important over the other  0.9 0.1 
One attribute is exceptionally more important over the other 1.0 0.0 
______________________________________________________________________

It may be mentioned that one may choose any scale, e.g., 0 to 1, 0 to 5, 1 to 5, 
0 to 10, 1 to 10, 1 to 11, 0 to 50, 0 to 100, 1 to 100, 1 to 110, 0 to 1000, 1 to 1000, 
or any other scale for Ai and aij. But the final ranking will not change, as these are 
relative values. It is, however, desirable to choose a lower scale for Ai and aij to
obtain a manageable value of machinability index. It may be further mentioned that 
the scales adapted for Ai and aij can be independent of each other. Whenever the 
machinability index is calculated for a work material, only the diagonal elements 
will change, i.e., (Ai), and the off-diagonal elements (aij) remain the same. 

The machinability index for each material is evaluated using Equation 2.11, 
and substituting the value of Ai and aij. The work materials are arranged in the 
descending or ascending order of the machinability index to rank these for a given 
machining operation. These are called the machinability ranking values of the work 
materials for the given machining operation. The work material, for which the 
value of machinability index is highest, is the best choice for the machining 
operation considered. However, the final decision depends on factors such as cost, 
availability, environmental constraints, economical constraints, political 
constraints, etc. Compromise, however, should be made to select the work material 
having the highest value of machinability index.  

The next section describes the identification and comparison of work 
materials. 

2.5 Identification and Comparison of Work Materials 

2.5.1 Identification of Work Materials 

The variable permanent machinability function, i.e., Equation 2.11, is useful for the 
identification and comparison of work materials for a given machining operation. 
The number of terms in each grouping of the machinability function for all the 
work materials for a given machining operation will be the same. However, their 
values will be different. This aspect is used for the purpose. Let Tij represent the 
total value of terms of the j-th sub-grouping of i-th grouping of the machinability 
function. In case there is no sub-grouping, then Tij = Ti, i.e., total value of terms of 
the i-th grouping. The identification set for a work material for the given 
machining operation is: 
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/ T1 / T2 / T3 / T4 / T51 + T52 / T61 + T62 / ………            (2.14) 
Two work materials can be compared using Equation 2.14. 

2.5.2 Comparison of Work Materials 

In general, two work materials are never identical from the performance (i.e.,
machinability) point of view. If two work materials are similar, then they must be 
similar in performance, and vice versa. Comparison of two work materials is also 
carried out by evaluating the coefficient of similarity/dissimilarity based on the 
numerical value of the terms of the machinability function in its grouping/sub-
grouping. The coefficient of similarity/dissimilarity lies in the range 0 – 1. If two 
work materials are of similar performance, then the coefficient of similarity is 1 
and coefficient of dissimilarity is 0. In the same manner, if two work materials are 
of dissimilar performance, then the coefficient of dissimilarity is 1 and coefficient 
of similarity is 0. Based on performance dissimilarity, the coefficient of 
dissimilarity for two work materials is proposed as Equation 2.15. 
                    M-1    M                                                                                                                           
Cd = (1/Q) (     ij)                                                                                       (2.15) 
                      i=1    j=i+1 

                                           M-1    M                    M-1    M                                                                                                                           
where, Q = maximum of       Tij and       T’ij
                                            i=1    j=i+1             i=1    j=i+1 

Tij and T’ij denote the values of the terms for the machinability function of the 
two work materials under comparison, and ij = Tij - T’ij . It may be noted that 
the absolute difference between the values of the terms for the machinability 
function of the two work materials is considered for proposing Cd. The coefficient 
of similarity is proposed as: 

Cs = 1 - Cd                             (2.16) 

Equations 2.15 and 2.16 are useful for comparing two work materials, based 
upon their performance in a given machining operation. The coefficients of 
similarity and dissimilarity, and the identification sets are also useful for work 
materials documentation, and for easy storage and retrieval of the work materials 
data for various machining operations.  

Thus, graph theory and the matrix approach can be used as a decision-making 
method for choosing an appropriate alternative work material from amongst the 
given alternatives, based on machinability. The proposed method offers a general 
procedure that can be used for any type of decision-making problem involving any 
number of selection attributes and alternatives. The next section describes the 
general methodology of graph theory and matrix approach as a decision-making 
method.  
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2.6 Methodology of GTMA as a Decision- aking Method   

The main steps are given below: 
Step 1: Identify the pertinent attributes and the alternatives involved in the 

decision-making problem under consideration. Obtain the values of the attributes 
(Ai) and their relative importance (aij). An objective or subjective value, or its 
range, may be assigned to each identified attribute as a limiting value or threshold 
value for its acceptance for the considered decision-making problem. An 
alternative with each of its selection attributes, meeting the acceptance value, may 
be short-listed. After short-listing the alternatives, the main task in choosing the 
alternative is to see how it serves the considered attributes. 

Step 2:  
1. Develop the attributes digraph considering the identified pertinent 

attributes and their relative importance. The number of nodes shall be 
equal to the number of attributes considered in Step 1 above. The edges 
and their directions will be decided upon based on the interrelations 
among the attributes (aij). Refer to Section 2.2 for details. 

2. Develop the attributes matrix for the attributes digraph. This will be the 
M*M matrix with diagonal elements as Ai and off-diagonal elements as 
aij. Refer to Section 2.3 for details.  

3. Obtain the permanent function for the attributes matrix, on the lines of 
Equation 2.11. 

4. Substitute the values of Ai and aij, obtained in step 1, in Equation 2.11 
above to evaluate the index for the short-listed alternatives. 

5. Arrange the alternatives in the descending order of the index. The 
alternative having the highest value of index is the best choice for the 
decision-making problem under consideration. 

6. Obtain the identification set for each alternative, using Equation 2.14. 
Refer to Section 2.5 for details. 

7. Evaluate the coefficients of dissimilarity and similarity using Equations 
2.15 and 2.16. List also the values of the coefficients for all possible 
combinations.  

8. Document the results for future analysis/reference.    
Step 3: Take a final decision, keeping practical considerations in mind. All 

possible constraints likely to be experienced by the user are looked into during this 
stage. These include constraints such as: availability or assured supply, 
management constraints, political constraints, economic constraints, environmental 
constraints, etc. However, compromise may be made in favor of an alternative with 
a higher index. 

From the above, it is clear that the graph theory and matrix approach as a 
decision-making method is relatively new, and offers a generic, simple, easy, and 
convenient decision-making method that involves less computation. The method 
lays emphasis on decision-making methodology, gives much attention to the issues 
of identifying the attributes, and to associating the alternatives with the attributes, 
etc. The method enables a more critical analysis and any number of objective and 
subjective attributes can be considered. In the permanent procedure, even a small 
variation in attributes leads to a significant difference in the selection index, and 

m
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hence it is easy to rank the alternatives in the descending order, with clear-cut 
difference in the selection index. Further, the proposed procedure not only provides 
the analysis of alternatives, but also enables the visualization of various attributes 
present and their interrelations, using graphical representation. The measures of the 
attributes and their relative importance are used together to rank the alternatives, 
and hence provides a better evaluation of the alternatives. The permanent concept 
fully characterizes the considered selection problem, as it contains all possible 
structural components of the attributes and their relative importance.    

The decision-making capability of graph theory and the matrix approach can 
be utilized for making decisions in the manufacturing environment, and Chapters 
5-30 of this book present those details. 

The next chapter gives an introduction to the multiple attribute decision-
making methods. 
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__________________________________________________________________ 

Introduction to Multiple Attribute Decision- aking 
(MADM) Methods 

3.1 Introduction 

Multiple criterion decision making (MCDM) refers to making decisions in the 
presence of multiple, usually conflicting criteria. The problems of MCDM can be 
broadly classified into two categories: multiple attribute decision making (MADM) 
and multiple objective decision making (MODM), depending on whether the 
problem is a selection problem or a design problem. MODM methods have 
decision variable values that are determined in a continuous or integer domain, 
with either an infinitive or a large number of choices, the best of which should 
satisfy the decision maker’s constraints and preference priorities. MADM methods, 
on the other hand, are generally discrete, with a limited number of predetermined 
alternatives. MADM is an approach employed to solve problems involving 
selection from among a finite number of alternatives. An MADM method specifies 
how attribute information is to be processed in order to arrive at a choice. MADM 
methods require both inter- and intra-attribute comparisons, and involve 
appropriate explicit tradeoffs. 

Each decision table (also called decision matrix) in MADM methods has four 
main parts, namely: (a) alternatives, (b) attributes, (c) weight or relative importance 
of each attribute, and (d) measures of performance of alternatives with respect to 
the attributes. The decision table is shown in Table 3.1. The decision table shows 
alternatives, Ai (for i = 1, 2, ….. , N), attributes, Bj (for j = 1, 2, ….. , M), weights 
of attributes, wj (for j=1, 2, ….., M) and the measures of performance of 
alternatives, mij (for i= 1, 2, ….., N; j=1, 2, ….., M). Given the decision table 
information and a decision-making method, the task of the decision maker is to 
find the best alternative and/or to rank the entire set of alternatives. It may be 
added here that all the elements in the decision table must be normalized to the 
same units, so that all possible attributes in the decision problem can be considered. 

m
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Table 3.1. Decision table in MADM methods 
________________________________________________________________
Alternatives    Attributes 

B1 B2 B3 - - BM
(w1)        (w2)         (w3)         (-)             (-)            (wM)

________________________________________________________________
A1 m11 m12 m13 - - m1M
A2       m21 m22 m23 - - m2M
A3     m31 m32 m33  - - m3M
-     - - - - - -
-        - - - - - -
AN     mN1 mN2 mN3 - - mNM
________________________________________________________________

Of the many MADM methods reported in the literature (Saaty, 1980, 2000; 
Hwang and Yoon, 1981, Chen and Hwang, 1992; Yoon and Hwang 1995; Olson, 
1996; Triantaphyllou and Sanchez, 1997; Zanakis et al., 1998; Gal et al., 1999; 
Triantaphyllou, 2000; Figueira et al., 2004), few important methods that have a 
higher potential to solve decision-making problems in the manufacturing 
environment are presented in this chapter. 

3.2 Multiple Attribute Decision- aking Methods 

3.2.1 Simple Additive Weighting (SAW) Method 

This is also called the weighted sum method (Fishburn, 1967) and is the simplest, 
and still the widest used MADM method. Here, each attribute is given a weight, 
and the sum of all weights must be 1. Each alternative is assessed with regard to 
every attribute. The overall or composite performance score of an alternative is 
given by Equation 3.1. 
         M                                                                                                                           
Pi =  wj mij                                                                                                         (3.1) 
         j=1 

Previously, it was argued that SAW should be used only when the decision 
attributes can be expressed in identical units of measure (e.g., only dollars, only 
pounds, only seconds, etc.). However, if all the elements of the decision table are 
normalized, then SAW can be used for any type and any number of attributes. In 
that case, Equation 3.1 will take the following form: 
         M                                                                                                                           
Pi =  wj (mij)normal                                                                                               (3.2)                      
         j=1 

where (mij)normal represents the normalized value of mij, and Pi is the overall or 
composite score of the alternative Ai. The alternative with the highest value of Pi is 
considered as the best alternative. 

The attributes can be beneficial or non-beneficial. When objective values of 
the attribute are available, normalized values are calculated by (mij)K/(mij)L, where 
(mij)K is the measure of the attribute for the K-th alternative, and (mij)L is the 
measure of the attribute for the L-th alternative that has the highest measure of the 

m
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attribute out of all alternatives considered. This ratio is valid for beneficial 
attributes only. A beneficial attribute (e.g., profit) means its higher measures are 
more desirable for the given decision-making problem. By contrast, non-beneficial 
attribute (e.g., cost) is that for which the lower measures are desirable, and the 
normalized values are calculated by (mij)L/(mij)K.

If the restriction that the sum of all weights is to be equal to 1 is relaxed, then 
Equation 3.3 can be used and this method is called simple multiple attribute rating 
technique (SMART). 
          M                                        M                                                                                
Pi = [  wj (mij)normal ] /  wj                                                                                 (3.3)                     
           j=1                                     j=1 

Edwards et al. (1982) proposed a simple method to assess weights for each 
attribute to reflect its relative importance to the decision. For a start, the attributes 
are ranked in order of importance and 10 points are assigned to the least important 
attribute. Then, the next-least important attribute is chosen, more points are 
assigned to it, and so on, to reflect their relative importance. The final weights are 
obtained by normalizing the sum of the points to one.  

3.2.2 Weighted Product Method (WPM) 

This method is similar to SAW. The main difference is that, instead of addition in 
the model, there is multiplication (Miller and Starr, 1969). The overall or 
composite performance score of an alternative is given by Equation 3.4. 
         M                                                                                                                           
Pi =  [(mij)normal]wj                                                                                             (3.4)                       
         j=1 

The normalized values are calculated as explained under the SAW method. 
Each normalized value of an alternative with respect to an attribute, i.e., (mij)normal,
is raised to the power of the relative weight of the corresponding attribute. The 
alternative with the highest Pi value is considered the best alternative.  

3.2.3 Analytic Hierarchy Process (AHP) Method 

One of the most popular analytical techniques for complex decision-making 
problems is the analytic hierarchy process (AHP). Saaty (1980, 2000) developed 
AHP, which decomposes a decision-making problem into a system of hierarchies 
of objectives, attributes (or criteria), and alternatives.  

An AHP hierarchy can have as many levels as needed to fully characterize a 
particular decision situation. A number of functional characteristics make AHP a 
useful methodology. These include the ability to handle decision situations 
involving subjective judgements, multiple decision makers, and the ability to 
provide measures of consistency of preference (Triantaphyllou, 2000). Designed to 
reflect the way people actually think, AHP continues to be the most highly 
regarded and widely used decision-making method. AHP can efficiently deal with 
tangible (i.e., objective) as well as non-tangible (i.e., subjective) attributes, 
especially where the subjective judgements of different individuals constitute an 
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important part of the decision process. The main procedure of AHP using the 
radical root method (also called the geometric mean method) is as follows: 

Step 1: Determine the objective and the evaluation attributes. Develop a 
hierarchical structure with a goal or objective at the top level, the attributes at the 
second level and the alternatives at the third level. 

Step 2: Determine the relative importance of different attributes with respect to 
the goal or objective. 

Construct a pair-wise comparison matrix using a scale of relative 
importance. The judgements are entered using the fundamental scale of 
the analytic hierarchy process (Saaty 1980, 2000). An attribute compared 
with itself is always assigned the value 1, so the main diagonal entries of 
the pair-wise comparison matrix are all 1. The numbers 3, 5, 7, and 9 
correspond to the verbal judgements ‘moderate importance’, ‘strong 
importance’, ‘very strong importance’, and ‘absolute importance’ (with 2, 
4, 6, and 8 for compromise between these values). Assuming M attributes, 
the pair-wise comparison of attribute i with attribute j yields a square 
matrix BM x M where aij denotes the comparative importance of attribute i 
with respect to attribute j. In the matrix, bij = 1 when i = j and bji = 1/bij.

    Attributes       B1 B2 B3 - - BM
              B1        1 b12 b13 - - b1M
              B2      b21 1 b23 - - b2M
               BMxM =  B3    b31 b32 1  - - b3M
              -   - - - - - -
              -       - - - - - -
              BM    bM1 bM2 bM3 - - 1
                                                                                                                 (3.5) 

Find the relative normalized weight (wj) of each attribute by (i) 
calculating the geometric mean of the i-th row, and (ii) normalizing the 
geometric means of rows in the comparison matrix. This can be 
represented as: 

                      M                                                                                                                           
GMj = [  bij ]1/M                                                                     (3.6)                      
                     j=1 

                      and 
                           M
wj = GMj /  GMj                                                                                                         (3.7)                                 
                           j=1

The geometric mean method of AHP is commonly used to determine the 
relative normalized weights of the attributes, because of its simplicity, 
easy determination of the maximum Eigen value, and reduction in 
inconsistency of judgements. 
Calculate matrices A3 and A4 such that A3 = A1 * A2 and A4 = A3 / A2, 
where A2 = [w1, w2, ….. , wj]T.
Determine the maximum Eigen value max that is the average of matrix 
A4. 
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Calculate the consistency index CI = ( max - M) / (M - 1). The smaller the 
value of CI, the smaller is the deviation from the consistency. 
Obtain the random index (RI) for the number of attributes used in decision 
making. Refer to Table 3.2 for details. 
Calculate the consistency ratio CR = CI/RI. Usually, a CR of 0.1 or less is 
considered as acceptable, and it reflects an informed judgement 
attributable to the knowledge of the analyst regarding the problem under 
study. 

Step 3: The next step is to compare the alternatives pair-wise with respect to 
how much better (i.e., more dominant) they are in satisfying each of the attributes, 
i.e., to ascertain how well each alternative serves each attribute. If there is N 
number of alternatives, then there will be M number of N x N matrices of 
judgements, since there are M attributes. Construct pair-wise comparison matrices 
using a scale of relative importance. The judgements are entered using the 
fundamental scale of the AHP method (Saaty, 1980, 2000). The steps are the same 
as those suggested under main step 2. 

Table 3.2. Random index (RI) values 
__________________________________________________________________________
Attributes 3 4 5 6 7 8 9 10 
RI  0.52 0.89 1.11 1.25 1.35 1.4 1.45      1.49 
__________________________________________________________________________      

In the AHP model, both the relative and absolute modes of comparison can be 
performed. The relative mode can be used when decision makers have prior 
knowledge of the attributes for different alternatives to be used, or when objective 
data of the attributes for different alternatives to be evaluated are not available. The 
absolute mode is used when data of the attributes for different alternatives to be 
evaluated are readily available. In the absolute mode, CI is always equal to 0, and 
complete consistency in judgements exists, since the exact values are used in the 
comparison matrices.  

Step 4: The next step is to obtain the overall or composite performance scores 
for the alternatives by multiplying the relative normalized weight (wj) of each 
attribute (obtained in step 2) with its corresponding normalized weight value for 
each alternative (obtained in step 3), and summing over the attributes for each 
alternative. This step is similar to the SAW method.   

Kwiesielewicz and Uden (2004) stated that even if the pair-wise comparison 
matrix BMxM is of acceptable consistency, the matrix may still be contradictory. If a 
matrix is contradictory, then it is difficult to derive weights that satisfy all the 
judgements expressed in BMxM. Hence, it is imperative to remove any such 
contradictory matrix from the decision-making process. For example, if bij = 1 and 
bik = 1, then bjk must be equal to 1. If any judgement is made such that bjk > 1, then 
contradiction is present in the matrix, and needs to be removed. Kwiesielewicz and 
Uden (2004) formulated an algorithm to check for the presence of any 
contradiction in BMxM.
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It may be added here that the AHP method can also be used for assigning the 
values of relative importance (aij) to the attributes in graph theory and the matrix 
approach (GTMA). Refer to Sections 2.3 and 2.4. 

3.2.4 Revised Analytic Hierarchy Process (RAHP) Method 

The revised AHP (RAHP) method was suggested by Belton and Gear (1983). They 
observed that sometimes it is possible for AHP to yield unjustifiable ranking 
reversals. The problem is that if a new alternative, identical to a non-optimal 
alternative, is introduced, then the ranking of the existing alternatives changes. 
Belton and Gear (1983) argued that the reason for this ranking inconsistency was 
that the relative performance measures of all alternatives in terms of each attribute 
(obtained in step 3 of Section 3.2.3) summed to one. Instead of having the relative 
performance values sum up to one, dividing each relative performance value by the 
maximum value in the corresponding vector of relative values was suggested. This 
avoids the rank reversals when a new non-optimal alternative is introduced. This 
method is also called ‘ideal mode AHP’. Saaty, the author of the original AHP, had 
accepted this revised version.    

3.2.5 Multiplicative Analytic Hierarchy Process (MAHP) Method 

Barzilai and Lootsma (1994) and Lootsma (1999) proposed a multiplicative 
version of the AHP. In this MAHP method, the normalized weight value for each 
alternative (obtained in step 3 of Section 2.2.3) is raised to the power of the relative 
normalized weight (wj) of each attribute (obtained in step 2 of Section 3.2.3), with 
multiplication over all the attributes for each alternative. This step is similar to 
WPM.  

3.2.6 Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) Method 

The TOPSIS method was developed by Hwang and Yoon (1981). This method is 
based on the concept that the chosen alternative should have the shortest Euclidean 
distance from the ideal solution, and the farthest from the negative ideal solution. 
The ideal solution is a hypothetical solution for which all attribute values 
correspond to the maximum attribute values in the database comprising the 
satisfying solutions; the negative ideal solution is the hypothetical solution for 
which all attribute values correspond to the minimum attribute values in the 
database. TOPSIS thus gives a solution that is not only closest to the hypothetically 
best, that is also the farthest from the hypothetically worst. The main procedure of 
the TOPSIS method for the selection of the best alternative from among those 
available is described below: 

Step 1: The first step is to determine the objective, and to identify the pertinent 
evaluation attributes. 

Step 2: This step represents a matrix based on all the information available on 
attributes. This matrix is nothing but the decision table shown in Table 3.1. Each 
row of this matrix is allocated to one alternative, and each column to one attribute. 



MADM Methods        33 

Therefore, an element mij of the decision table ‘D’ gives the value of the j-th 
attribute in original real values, that is, non-normalized form and units, for the i-th 
alternative.  

In the case of a subjective attribute (i.e., objective value is not available), a 
ranked value judgement on a scale is adopted. Table 2.1, as explained in Chapter 2, 
may be used for this purpose. Once a subjective attribute is represented on a scale, 
then the normalized values of the attribute assigned for different alternatives are 
calculated in the same manner as that for objective attributes.                                                         

Step 3: Obtain the normalized decision matrix, Rij. This can be represented as 
    M                                                                                                                           

Rij = mij / [ m2
ij ]1/2                                                                                               (3.8)                      

   j=1 

Step 4: Decide on the relative importance (i.e., weights) of different attributes 
with respect to the objective. A set of weights wj (for j=1, 2, ….. , M) such that wj
=1 may be decided upon. 

Step 5: Obtain the weighted normalized matrix Vij. This is done by the 
multiplication of each element of the column of the matrix Rij with its associated 
weight wj. Hence, the elements of the weighted normalized matrix Vij are 
expressed as: 

Vij = wj Rij                               (3.9) 

Step 6: Obtain the ideal (best) and negative ideal (worst) solutions in this step. 
The ideal (best) and negative ideal (worst) solutions can be expressed as: 

           max              min          
V+ = {( Vij / j J), ( Vij / j J’) / i = 1,2, …, N},   
             i                   i   
           ={V1

+, V2
+, V3

+, ……, VM
+}                                                                   (3.10) 

       
          min               max          
V- = {( Vij / j J), ( Vij / j J’) / i = 1,2, …, N},   
            i                    i   
         = {V1

-, V2
-, V3

-, ……, VM
-}                                                                      (3.11) 

where J = (j = 1, 2, …, M) /j is associated with beneficial attributes, and 
            J’ = (j = 1, 2, …, M) /j is associated with non-beneficial attributes. 

Vj
+ indicates the ideal (best) value of the considered attribute among the values 

of the attribute for different alternatives. In the case of beneficial attributes (i.e.,
those of which higher values are desirable for the given application), Vj

+ indicates 
the higher value of the attribute. In the case of non-beneficial attributes (i.e., those 
of which lower values are desired for the given application), Vj

+ indicates the lower 
value of the attribute. 

Vj
- indicates the negative ideal (worst) value of the considered attribute among 

the values of the attribute for different alternatives. In the case of beneficial 
attributes (i.e., those of which higher values are desirable for the given 
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application), Vj
- indicates the lower value of the attribute. In the case of non-

beneficial attributes (i.e., those of which lower values are desired for the given 
application), Vj

- indicates the higher value of the attribute. 
Step 7: Obtain the separation measures. The separation of each alternative 

from the ideal one is given by the Euclidean distance in the following equations. 
           M
Si

+ = {  (Vij - Vj
+ )2 }0.5 ,                             i = 1, 2, …., N                               (3.12) 

          J=1

          M
Si

- = {  (Vij - Vj
- )2 }0.5 ,                             i = 1, 2, …., N                                (3.13) 

          J=1

Step 8: The relative closeness of a particular alternative to the ideal solution, 
Pi, can be expressed in this step as follows. 

Pi = Si
- / (Si

+ + Si
-)                                                                    (3.14) 

Step 9: A set of alternatives is generated in the descending order in this step, 
according to the value of Pi indicating the most preferred and least preferred 
feasible solutions. Pi may also be called the overall or composite performance 
score of alternative Ai.
 It may be added here that in step 4 of the TOPSIS method, even though 
the weights of different attributes with respect to the objective, wj (for j=1, 2, ….. , 
M), are decided by the decision maker rather arbitrarily, only few systematic 
methods can be used. The systematic methods of deciding the weights of attributes 
are explained below. 

3.2.6.1 Entropy Method 
Shannon and Weaver (1947) proposed the entropy concept and this concept has 
been highlighted by Zeleny (1982) for deciding the objective weights of attributes. 
Entropy is a measure of uncertainty in the information formulated using probability 
theory. It indicates that a broad distribution represents more uncertainty than does a 
sharply peaked one. To determine weights by the entropy measure, the normalized 
decision matrix Rij, given by Equation 3.8, is considered. The amount of decision 
information contained in Equation 3.8 and associated with each attribute can be 
measured by the entropy value ej as: 

   N                                                                                                                           
ej = -k Rij ln Rij                                                                                               (3.15)                      

  i=1 

where k = 1/ln N is a constant that guarantees 0  ej 1. The degree of 
divergence (dj) of the average information contained by each attribute can be 
calculated as: 
dj = 1 - ej                                                                                                             (3.16) 

The more divergent the performance ratings Rij  (for i = 1, 2, ….., N) for the 
attribute Bj, the higher its corresponding dj, and the more important the attribute Bj
for the decision-making problem under consideration (Zeleny, 1982).  
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The objective weight for each attribute Bj (for j = 1, 2, ….., M) is thus given 
by: 

     M                                                                                                                           
wj = dj / dk                                                                                                       (3.17)                     

    k=1 

3.2.6.2 Standard Deviation Method 
The standard deviation (SD) method calculates objective weights of the attributes 
by Equation 3.18. 
               M                                                                                                                           
wj = j / k                                                                                                        (3.18)                     
                    k=1 

where j is the standard deviation of the normalized vector Rj = (R1j, R2j, R3j, ….. , 
RNj) in Equation 3.8.  

Both the entropy method and standard deviation method calculate the 
objective weights of the attributes without giving any consideration to the 
preferences of the decision maker. 

3.2.6.3 AHP Method 
Step 2 of the AHP method, described in Section 3.2.3, can be used for deciding the 
weights of attributes. In this case, the weights obtained are not objective but 
subjective, giving consideration to the preferences of the decision maker.  

3.2.7 Modified TOPSIS Method 

In the TOPSIS method, the normalized decision matrix Rij is weighted by 
multiplying each column of the matrix by its associated attribute weight. The 
overall performance of an alternative is then determined by its Euclidean distance 
to Vj

+ and Vj
-. However, this distance is interrelated with the attribute weights, and 

should be incorporated in the distance measurement. This is because all 
alternatives are compared with Vj

+ and Vj
-, rather than directly among themselves. 

Deng et al. (2000) presented the weighted Euclidean distances, rather than creating 
a weighted decision matrix. In this process, the positive ideal solution (R+) and the 
negative ideal solution (R-), which are not dependent on the weighted decision 
matrix, are defined as: 

           max              min          
R+ = {( Rij / j J), ( Rij / j J’) / i = 1,2, …, N},   
             i                   i   
           ={R1

+, R2
+, R3

+, ……, RM
+}                                                                    (3.19) 

           min               max          
R- = {( Rij / j J), ( Rij / j J’) / i = 1,2, …, N},   
            i                    i   
         = {R1

-, R2
-, R3

-, ……, RM
-}                                                                       (3.20) 

where J = (j = 1, 2, …, M) /j is associated with beneficial attributes, and 
            J’ = (j = 1, 2, …, M) /j is associated with non-beneficial attributes. 
The weighted Euclidean distances are calculated as 
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            M
Di

+ = {  wj(Rij - Rj
+ )2 }0.5 ,                       i = 1, 2, …., N                                 (3.21) 

           J=1 

                                                                                                                                         
           M
Di

- = {  wj (Rij - Rj
- )2 }0.5 ,                        i = 1, 2, …., N                                (3.22) 

           J=1

                                                             
The relative closeness of a particular alternative to the ideal solution, Pi-mod,

can be expressed in this step as follows. 

Pi-mod = Di
- / (Di

+ + Di
-)                                                       (3.23) 

A set of alternatives is made in the descending order, according to the value of 
Pi-mod indicating the most preferred and least preferred feasible solutions. 

It may be mentioned here that instead of using vector normalization in the 
TOPSIS (or modified TOPSIS) method, linear normalization may be used (Lai et
al., 1994). In that case, normalization is carried out as per Equation 3.24. 

Rij = mij / [(mij)max -  (mij)min]                                                                               (3.24) 

where (mij)max is the best value and (mij)min the worst value of an attribute 
corresponding to the considered alternatives.    

3.2.8 Compromise Ranking Method (VIKOR) 

The foundation for compromise solution was established by Yu (1973) and Zeleny 
(1982) and later advocated by Opricovic and Tzeng (2002, 2003, 2004, 2007) and 
Tzeng et al. (2002a, 2002b, 2005). The compromise solution is a feasible solution 
that is the closest to the ideal solution, and a compromise means an agreement 
established by mutual concession. The compromise solution method, also known 
as the VIKOR (VIšekriterijumsko KOmpromisno Rangiranje) method, was 
introduced as one applicable technique to implement within MADM. The multiple 
attribute merit for compromise ranking was developed from the Lp-metric used in 
the compromise programing method (Zeleny, 1982).  

         M

Lp,i = {  (wj [(mij)max -  (mij )] / [(mij)max -  (mij)min])p}1/p                                   (3.25)                      
                   j=1 

1 p ; i = 1, 2, ….. , N 

Within the VIKOR method L1,i (as Ei in Equation 3.26) and L ,i (as Fi in 
Equation 3.27) are used to formulate the ranking measure. The main procedure of 
the VIKOR method is described below: 

Step 1: The first step is to determine the objective, and to identify the pertinent 
evaluation attributes. Also determine the best, i.e., (mij)max, and the worst, i.e., 
(mij)min, values of all attributes.  

Step 2: Calculate the values of Ei and Fi:                
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 M

Ei =  wj [(mij)max -  (mij )] / [(mij)max -  (mij)min]                                                 (3.26) 
            j=1 

Fi = Maxm of {wj [(mij)max -  (mij )] / [(mij)max -  (mij)min] | j = 1, 2, ….., M}       (3.27)                      

Step 3: Calculate the values of Pi:

Pi = v ((Ei - Ei-min) / (Ei-max - Ei-min)) + (1 - v) ((Fi - Fi-min) / (Fi-max - Fi-min))        (3.28) 

where Ei-max is the maximum value of Ei, and Ei-min the minimum value of Ei;
Fi-max is the maximum value of Fi, and Fi-min is the minimum value of Fi.. v is 
introduced as weight of the strategy of ‘the majority of attributes’. Usually, the 
value of v is taken as 0.5. However, v can take any value from 0 to 1.  

Step 4: Arrange the alternatives in the ascending order, according to the values 
of Pi. Similarly, arrange the alternatives according to the values of Ei and Fi
separately. Thus, three ranking lists can be obtained. The compromise ranking list 
for a given v is obtained by ranking with Pi measures. The best alternative, ranked 
by Pi, is the one with the minimum value of Pi.

Step 5: For given attribute weights, propose a compromise solution, alternative 
Ak, which is the best ranked by the measure P, if the following two conditions are 
satisfied (Tzeng et al., 2005): 

Condition 1: ‘Acceptable advantage’ P(Ak) - P(Al)  (1/(N-1)). Al is the 
second-best alternative in the ranking by P.  
Condition 2: ‘Acceptable stability in decision making’ aternative Ak must also 
be the best ranked by E and/or F. This compromise solution is stable within a 
decision-making process, which could be: ‘voting by majority rule’ (when v > 
0.5 is needed) or ‘by consensus’ (when v  0.5) or ‘with veto’ (when v > 0.5).  
If one of the conditions is not satisfied, then a set of compromise solutions is 

proposed, which consists of: 
Alternatives Ak and Al if only condition 2 is not satisfied 
Alternatives Ak, Al, ….. , Ap if condition 1 is not satisfied; Ap is determined by 
the relation P(Ap) - P(Al)  (1/(N-1)).  
VIKOR is a helpful tool in MADM, particularly in a situation where the 

decision maker is not able, or does not know how to express preference at the 
beginning of system design. The obtained compromise solution could be accepted 
by the decision makers because it provides a maximum ‘group utility’ (represented 
by Ei-min) of the ‘majority’, and a minimum of individual regret (represented by Fi-

min) of the ‘opponent’ (Opricovic and Tzeng, 2002, 2003, 2004, 2007). The 
compromise solutions could be the basis for negotiations, involving the decision 
makers’ preference by attribute weights. 

3.3 Sensitivity Analysis 

In sensitivity analysis, the ranking reversal of the alternatives is checked by 
changing the weights of relative importance of the attributes. The decision maker 
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can check the ranking reversals by changing the weights (of relative importance) of 
the attributes by a percentage. However, it is obvious that if the assigned weights 
are changed, then the chances for rank reversals of the alternatives increase. Once 
the decision maker is clear about the relative importance of the attributes and 
assigns accordingly, then there is no need to check the ranking reversals simply by 
changing the weights. Hence, this is not developed further in this book. If the 
decision maker wishes to conduct sensitivity analysis, then he or she can do so.  

3.4 Group Decision Making (GDM) 

Group decision making is the process of making a judgement based upon the 
opinion of different individuals. Such decision making is a key component to the 
functioning of an organization, because organizational performance involves more 
than only one individual’s action. Moving from a single decision maker to a 
multiple decision-maker setting introduces a great deal of complexity into the 
analysis. Various methods of group decision making are used on a wide set of 
attributes ranging from the strictly technical, to the psychophysical and social, and 
finally to the logical and scientifically valid. The group decision-making concept 
can be applied to the MADM techniques described in Section 3.2. There are 
different ways in which GDM can be carried out (Yu, 1973; Chen and Hwang, 
1992; Dyer and Forman, 1992; Csáki et al., 1995; Forman and Penewati, 1998; 
Chen, 2000; Lai et al., 2002; Jaganathan et al., 2006). Two ways were described by 
Forman and Peniwati (1998) and Jaganathan et al. (2006) for achieving group 
consensus in AHP. The two ways are:  

1. Aggregation of individual judgements (AIJ), and 
2. Aggregation of individual priorities (AIP). 
In the first case, it is assumed that several individuals act as one individual and 

their judgements, i.e., the opinions expressed regarding the relative importance (or 
weights) of the attributes, are aggregated using the weighted geometric mean to 
form a single composite attribute weight representing the total view of the group. 
In the second case, the group members act individually, and their final priorities are 
aggregated using the weighted arithmetic mean or weighted geometric mean. If 
there are n decision makers (g(k), k = 1, 2, ….. , n), then mathematically   
                             n                                                                                                                           
bij (AIJ) =   (bij g(k))lg(k)                                                                                     (3.29) 
                           k=1                                                                                                                                      
                            n                                          n                                                                                   
Pi (AIP) =  (Pi g(k))lg(k)   or  lg(k) Pi g(k)                                                           (3.30)                      
                           k=1                         k=1                                                                                           
where lg(k) is the importance of the decision maker in the group, and lg(k)= 1. Pi is 
the performance score of alternative Ai.

The same approaches can be extended to other MADM methods, where group 
consensus is required. Csáki et al. (1995) presented a group decision support 
system. In this system, the method of calculating the group utility (group 
composite performance score) of alternative Ai (for i = 1, 2, ….., N) is as follows. 
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For each attribute Bj (for j = 1, 2, ….., M), the individual weights of 
importance of the attributes are aggregated into the group weights wj (for j = 1, 2, 
….. , M): 
           n                        n                                                                                
wj = [  lg(k) wj  /  lg(k) j = 1, 2, ….., M                                                        (3.31)                     
           k=1                     k=1 

The group qualification Qij of alternative Ai against attribute Bj is:
            n                           n                                                                                
Qij  = [  lg(k) mij  /  lg(k)    j = 1, 2, ….., M; i = 1, 2, ….., N                             (3.32)                      
             k=1                     k=1 

lg(k) need not be equal to 1 in Equations 3.31 and 3.32. 
The group utility Pi of alternative Ai is determined as the weighted algebraic 

mean of the aggregated qualification values with the aggregated weights: 
           M                    M                                                                                
Pi  = [  wj Qij  /  wj    i = 1, 2, ….., N                                                        (3.33)                      
             j=1                 j=1 

In addition to the weighted algebraic means used in the above aggregations, 
weighted geometric means can be used. The best alternative of group decision is 
the one associated with the highest value of Pi.

The MADM methods described in this chapter can efficiently deal with 
objective attributes. But most of the real-world MADM problems involve objective 
(i.e., crisp) as well as subjective (i.e., fuzzy and/or linguistic) attributes. Hence 
fuzzy MADM methods have been proposed by different researchers that can deal 
with fuzzy as well as crisp data of the attributes. However, Table 2.1, as explained 
in Chapter 2, may be used for the purpose of assigning a crisp value to the 
subjective attribute. Once a subjective attribute is represented by a crisp value, then 
the decision table contains only crisp data, and any MADM method can be applied. 

The next chapter presents a logical approach to solve fuzzy MADM problems.                       
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__________________________________________________________________ 

A Logical Approach to Fuzzy MADM Problems

4.1 Introduction 

The classical MADM methods assume all measures of performance of alternatives 
(mij) and weights of attributes (wj) values are crisp numbers. The alternatives with 
higher overall or composite performance scores are considered to be preferred by 
the decision maker. Since the final scores are real numbers, the preferred 
alternatives are those with higher overall or composite performance scores. In 
reality, measure of performance (mij) can be crisp, fuzzy and/or linguistic. For 
example, let a material be chosen for making an engineering component and the 
attributes considered are: cost of material, tensile strength, hardness, density, and 
corrosion resistance. The last attribute, corrosion resistance, is not quantifiable; 
rather, it is represented by linguistic terms such as ‘low’, ‘average’, ‘high’, etc. The 
other attributes can be crisp numbers. This MADM problem contains a mixture of 
fuzzy and crisp data. Most of the real-world MADM problems are of this type.  

Fuzzy MADM methods are proposed to solve problems that involve fuzzy 
data. Bellman and Zadeh (1970) were the first to relate fuzzy set theory to 
decision-making problems. Yager and Basson (1975) proposed fuzzy sets for 
decision making. Bass and Kwakernaak (1977) proposed a fuzzy MADM method 
that is widely regarded as the classic work of fuzzy MADM methods. During the 
last three decades, several fuzzy MADM methods have been proposed and 
reviewed (Chen and Hwang, 1992; Triantaphyllou and Lin, 1996; Triantaphyllou, 
2000; Figueira et al., 2004). After a systematic and critical study of the existing 
fuzzy MADM methods, it has been found that the majority of the approaches 
require cumbersome computations. As a result, none of them are suitable for 
solving problems with more than 10 alternatives associated with more than 10 
attributes. That drawback certainly limits their applicability to real-world problems. 
Further, most approaches require that the elements in the decision matrix be 
presented in a fuzzy format, though they are crisp in nature. Such an assumption 
violates the original intent of fuzzy set theory. If the data is precisely known, there 
is no subjectivity involved in the decision problem. Such data should never be 
represented in any fuzzy format. The conversion of crisp data into fuzzy format 
will increase the computational requirements. This, in turn, makes these fuzzy 



44        Decision Making in the Manufacturing Environment 

methods cumbersome to use, and incapable of solving problems that contain more 
than 10 alternatives and 10 attributes.       

Chen and Hwang (1992) proposed an approach to avoid the abovementioned 
difficulties, so that MADM problems can be meaningfully and efficiently solved in 
a fuzzy environment. The approach is composed of two phases. The first phase 
converts fuzzy data into crisp scores. The result of the first phase is a decision 
matrix that contains only crisp data. In the second phase, MADM methods, 
described in Chapter 3, can be utilized to determine the ranking order of 
alternatives. The easy-to-use and easy-to-understand characteristics of this 
approach make it valuable to management and system analysts. 

4.2 Method Proposed by Chen and Hwang (1992) 

The method proposed by Chen and Hwang (1992) first converts linguistic terms 
into fuzzy numbers and then the fuzzy numbers into crisp scores. The method is 
described below. 

4.2.1 Converting Linguistic Terms to Fuzzy Numbers 

This method systematically converts linguistic terms into their corresponding fuzzy 
numbers. It contains eight conversion scales. The conversion scales were proposed 
by synthesizing and modifying the works of Wenstop (1976), Bass and 
Kwakernaak (1977), Efstathiou and Rajkovic (1979), Bonissone (1982), Efstathiou 
and Tong (1982), Kerre (1982), and Chen (1988), 

To demonstrate the method, a 5-point scale having the linguistic terms low, 
fairly low, medium, fairly high, and high, as shown in Figure 4.1 (Chen and 
Hwang, 1992), is considered. These linguistic terms can be equated to other terms 
like low, below average, average, above average, and high. 

4.2.2 Converting Fuzzy Numbers to Crisp Scores 

The method uses a fuzzy scoring approach that is a modification of the fuzzy 
ranking approaches proposed by Jain (1976, 1977), and Chen (1985). The crisp 
score of fuzzy number ‘M’ is obtained as follows: 

max (x) = x, 0  x  1 
  0, otherwise                                                                             (4.1)                

min (x) = 1 - x, 0  x  1 
  0, otherwise                                                                             (4.2) 

The fuzzy max and fuzzy min of fuzzy numbers are defined in a manner such 
that absolute locations of fuzzy numbers can be automatically incorporated in the 
comparison cases. The left score of each fuzzy number ‘Mi’ is defined as 

L(Mi) = Sup[ min(x) ^ Mi(x)]                             (4.3) 
                  x
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Figure 4.1. Linguistic terms to fuzzy numbers conversion (5-point scale) (from Chen and 
Hwang 1992; with kind permission of Springer Science and Business Media) 

The L(Mi) score is a unique, crisp, real number in (0, 1). It is the maximum 
membership value of the intersection of fuzzy number Mi and the fuzzy min. The 
right score may be obtained in a similar manner: 

R (Mi) = Sup[ max(x) ^ Mi(x)]                             (4.4) 
                   x

Again, R (Mi) is a crisp number [0,1]. Given the left and right scores, the total 
score of a fuzzy number Mi is defined as: 

T (Mi) = [ R(Mi) + 1 - L(Mi)] / 2               (4.5) 

4.3 Demonstration of the Method 

Now, the 5-point scale is considered to demonstrate the conversion of fuzzy 
numbers into crisp scores (Figure 4.1).  

Linguistic term  Fuzzy number 
Low   M1
Below average  M2
Average   M3
Above average  M4
High   M5

The maximizing and minimizing sets are defined as Equations 4.1 and 4.2. 
From Figure 4.1, membership functions of M1, M2, M3, M4, and M5 are written as: 
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        M1(x) = 1, x = 0  
  (0.3-x) / (0.3), 0  x  0.3 

       M2(x) = (x-0)/ (0.25), 0  x  0.3   
  (0.5-x) / (0.25), 0.25  x  0.5 

       M3(x) = (x-0.3)/ (0.2), 0.3  x  0.5 
  (0.7-x)/ (0.2), 0.5  x  0.7 

       M4(x) = (x-0.5)/ (0.25), 0.5  x  0.75 
  (1.0-x)/ (0.25), 0.75  x  1.0 

       M5(x) = (x-0.7)/ (0.3), 0.7  x  1.0 
  1, x = 1 

The right, left, and total scores are computed as follows for M1:

       R (M1) = Sup [ max (x) ^ M1(x)] = 0.23                   
                          x
       L(M1) = Sup [ min (x) ^ M1(x)] = 1.0     
             x
       T (M1) = [ R (M1) + 1 - L(M1)] / 2 = 0.115 

Similarly, the right, left, and total scores are computed for M2, M3, M4, and M5
and are tabulated as follows: 

  i R (Mi)   L (Mi) T (Mi)
1 0.23  1.0  0.115 
2 0.39  0.8  0.295 
3 0.58  0.59  0.495 
4 0.79  0.4  0.695 
5 1.0  0.23  0.895 

Hence, the linguistic terms with their corresponding crisp scores are given in 
Table 4.1. Instead of assigning arbitrary values for various attributes, this fuzzy 
method reflects the exact linguistic descriptions in terms of crisp scores. Hence, it 
gives better approximation of linguistic descriptions that are widely used. 

It may be added here that this method can be used not only for assigning 
values to the attributes, but also for deciding the relative importance between the 
attributes. For example, using the same 5-point scale, the relative importance 
between two attributes can be described as given in Table 4.2. 



A Logical Approach        47 

Table 4.1. Conversion of linguistic terms into fuzzy scores (5-point 
scale) 
__________________________________________________________
Linguistic term   Fuzzy number Crisp score
__________________________________________________________
Low    M1  0.115 
Below average   M2  0.295 
Average     M3  0.495 
Above average   M4  0.695 
High    M5  0.895 
__________________________________________________________

Table 4.2. Conversion of linguistic terms into fuzzy scores (relative importance value on a 
5-point scale) 
________________________________________________________________________
Linguistic term     Fuzzy number Crisp score
________________________________________________________________________
One attribute is very less important than the other M1  0.115 
One attribute is less important than the other  M2  0.295 
Two attributes are equally important   M3   0.495 
One attribute is more important than the other  M4  0.695 
One attribute is much more important than the other M5  0.895 
________________________________________________________________________

The decision makers can appropriately make use of any of the eight scales 
suggested by Chen and Hwang (1992). For example, an 11-point scale is shown in 
Figure 4.2, and the corresponding crisp scores of the fuzzy numbers are given in 
Table 4.3.  

Table 4.3. Conversion of linguistic terms into fuzzy scores (11-point 
scale) 
__________________________________________________________
Linguistic term   Fuzzy number Crisp score 
__________________________________________________________
Exceptionally low   M1  0.045 
Extremely low   M2  0.135 
Very low    M3  0.255 
Low    M4  0.335 
Below average   M5  0.410 
Average                M6  0.500 
Above average    M7  0.590 
High    M8  0.665 
Very high    M9  0.745 
Extremely high            M10  0.865 
Exceptionally high               M11  0.955 
__________________________________________________________
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Figure 4.2. Linguistic terms to fuzzy numbers conversion (11-point scale) (from Chen and 
Hwang 1992; with kind permission of Springer Science and Business Media) 

Using the same 11-point scale, the relative importance between two attributes 
can be described as given in Table 4.4.

Table 4.4. Conversion of linguistic terms into fuzzy scores (relative importance value on an 
11-point scale) 
__________________________________________________________________________
Linguistic term        Fuzzy number Crisp score 
__________________________________________________________________________
One attribute is exceptionally less important than the other    M1 0.045
One attribute is extremely less important than the other    M2  0.135 
One attribute is very less important than the other     M3  0.255 
One attribute is less important than the other     M4   0.335 
One attribute is slightly less important than the other    M5  0.410 
Two attributes are equally important than the other    M6  0.500 
One attribute is slightly more important than the other    M7  0.590 
One attribute is more important than the other     M8  0.665 
One attribute is much more important than the other    M9  0.745 
One attribute is extremely more important than the other    M10  0.865 
One attribute is exceptionally more important than the other    M11  0.955 
__________________________________________________________________________

It may be remembered that Tables 2.1 and 2.2 are suggested in Chapter 2 for 
assigning the objective values to the subjective attributes, and for assigning the 
relative importance between the attributes, respectively. Now, Tables 4.1 (or 4.3) 
and 4.2 (or 4.4) may be used for the same purpose, as these give better 
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approximation of the linguistic terms. The case studies presented in Chapters 5–30 
of this book utilize Tables 4.3 and 4.4. 
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Applications of GTMA and Fuzzy MADM 
Methods in the Manufacturing Environment



5
__________________________________________________________________ 

Material Selection for a Given Engineering Application 

5.1 Introduction 

An ever increasing variety of materials is available today, each having its own 
characteristics, applications, advantages, and limitations. When selecting materials 
for engineering designs, a clear understanding of the functional requirements for 
each individual component is required, and various important criteria or attributes 
need to be considered. Material selection attribute is defined as a factor that 
influences the selection of a material for a given application. These attributes 
include: physical properties, electrical properties, magnetic properties, mechanical 
properties, chemical properties, manufacturing properties (machinability, 
formability, weldability, castability, heat treatability, etc.), material cost, product 
shape, material impact on environment, performance characteristics, availability, 
fashion, market trends, cultural aspects, esthetics, recycling, target group, etc.

The selection of an optimal material for an engineering design from among 
two or more alternative materials on the basis of two or more attributes is a 
multiple attribute decision-making problem. Various approaches have been 
proposed in the past to help address the issue of material selection. Liao (1996) 
presented a fuzzy multicriteria decision-making method for material selection. 
However, the method is complicated and requires much more computation. Farag 
(1997) proposed a simple mathematics-based weighted properties method that can 
be used when several properties should be taken into consideration. Giachetti 
(1998) described a prototype material and manufacturing process selection system 
that integrates a formal multiple attribute decision model with a relational database. 
The decision model enables the representation of the designer's preferences over 
the decision attributes. A compatibility rating between the product profile 
requirements and the alternatives stored in the database for each decision attribute 
was generated using possibility theory. The vectors of compatibility ratings were 
aggregated into a single rating of that alternative's compatibility. A ranked set of 
compatible material and manufacturing process alternatives was the output by the 
system.  

Ashby (2000) proposed multi-objective optimization in materials design and 
selection, using ‘utility’ functions. Ashby et al. (2004) provided a comprehensive 
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review of the strategies or methods for materials selection, from which three types 
of materials selection methodology were identified: (i) free searching based on 
quantitative analysis, (ii) checklist/questionnaire based on expertise capture, and 
(iii) inductive reasoning and analog procedure. All of these methods use materials 
data in either a non-computerized or computerized form. 

For the free-searching method, there are already a number of well-documented 
methods, the best known being the graphical engineering selection method or the 
ranking method (Ashby, 1992; Ashby and Johnson, 2002). A 
checklist/questionnaire method has been proposed by a number of researchers, the 
most recent described by Edwards (2005), where the author developed a structured 
set of questions to improve the likelihood of achieving an optimal design solution. 
The inductive reasoning and analog procedure resulted from the rapid development 
of information technology tools, and the application of artificial intelligence. Some 
of representative examples include a knowledge-based system for materials 
management that involves materials selection (Trethewey et al., 1998), a 
knowledge-based system for materials selection (Sapuan, 2001), integrated 
information technology approach (Jalham, 2006), fuzzy knowledge-based decision 
support system for selection of manufacturing processes and materials (Zha, 2005) 
and a case-based reasoning method (Amen and Vomacka, 2001). However, these 
systems and methods are complex and necessitate knowledge extensive. 

A framework to represent and deal with the relationships between design 
variables of both materials parameters and system-level parameters was proposed 
by Raj (2000) and Raj et al. (2000). The idea of an integrated approach for 
materials selection and structural design had been advocated by Edwards (2002). 
The materials parameters could be material properties, or they could be parameters 
describing the micro/nanostructure of the materials. Ermolaeva et al. (2002) 
studied materials selection combined with structural optimization. However, the 
elaborate materials selection method proposed by these authors was limited to 
selecting from a limited number of specific materials. Lin and Lin (2003) discussed 
state-of-art research on environmentally conscious material selection 
methodologies. Ljungberg (2005) presented guidelines for sustainable product 
development with special regard to materials, design and ecology. Giudice et al.
(2005) proposed a method to integrate mechanical and environmental 
performances for materials selection in the life-cycle design process. Kuo et al.
(2006) presented an innovative method, namely, green fuzzy design analysis 
(GFDA), which involves simple and efficient procedures to evaluate product 
design alternatives based on environmental consideration using fuzzy logic. The 
hierarchical structure of environmentally conscious design indices was constructed 
using the analytical hierarchy process (AHP), which includes five aspects: (1) 
energy, (2) recycling, (3) toxicity, (4) cost, and (5) material. After weighting 
factors for the environmental attributes are determined, the most desirable design 
alternative can be selected using a fuzzy MADM method.   

Edwards and Deng (2006) discussed the aspects of supporting design decision 
making when applying materials in combination. Deng and Edwards (2007) 
presented an overview of recent research in materials identification and materials 
selection. Shanian and Savadogo (2006a) had presented a material selection model 
using an MADM method known as ELECTRE. However, the ELECTRE method 
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uses the concept of outranking relationship, and the procedure is rather lengthy. 
Only a partial prioritization of alternative materials is computed in ELECTRE 
models. As the number of alternatives increases, the amount of calculations rises 
quite rapidly, and the computational procedures are elaborate. In their other works 
(Shanian and Savadogo, 2006b, 2006c), the authors had proposed ELECTRE IV 
and TOPSIS methods for material selection of metallic bipolar plates for polymer 
electrolyte fuel cell. 

Matos and Simplicio (2006) presented a practical example concerning the 
selection of materials to substitute polyvinyl chloride in automobile interiors. 
Bovea and Gallardo (2006) tested five life-cycle impact assessment methods, and 
applied to different polymer materials used for packaging purposes. The aim of the 
study was to demonstrate the need to perform a sensitivity analysis when a single 
environmental score is applied during the process of selecting materials, in order to 
enhance the environmental performance of products. Chan and Tong (2006) 
proposed a multicriteria weighted average method using gray relational analysis to 
rank the materials. Rao (2006) presented a material selection model using graph 
theory and the matrix approach. A ‘material suitability index’ was proposed that 
evaluates and ranks the materials for a given engineering component. Kumar and 
Singh (2006) presented an intelligent system for selection of materials for 
progressive die components. Cheng et al. (2006) used the fuzzy AHP method for 
selection of technological forecasting methods for predictuion of new materials 
development.  

Manshadi et al. (2007) proposed a numerical method for materials selection 
combining non-linear normalization with a modified digital logic method. 
Guisbiers and Wautelet (2007) presented the details of materials selection for thin 
films for radio frequency micro-electromechanical systems (MEMS). Rao and 
Davim (2007) used the TOPSIS method for selection of materials for a given 
application.   

A good amount of research work has been carried out in the past on materials 
selection. However, there is a need for a simple, systematic, and logical scientific 
method or mathematical tool to guide user organizations in taking a proper material 
selection decision. The objective of a material selection procedure is to identify the 
material selection attributes, and obtain the most appropriate combination of 
material selection attributes in conjunction with the real requirement. Thus, efforts 
need to be extended to determine attributes that influence material selection, using 
a simple logical approach, to eliminate unsuitable materials and to select a proper 
material to strengthen the existing material selection procedure. This is considered 
in this chapter using graph theory and the matrix approach (GTMA) and fuzzy 
MADM methods described in Chapters 2–4 of the book. 

5.2 Examples 

To demonstrate and validate the application of decision-making methods, two 
examples are considered. In both, GTMA is applied first, and subsequently a few 
MADM methods are applied to rank and select the materials for the given 
applications.  



56        Decision Making in the Manufacturing Environment 

5.2.1 Example 1 

Manshadi et al. (2007) proposed a numerical method for materials selection 
combining nonlinear normalization with a modified digital logic method. This 
example problem is related with selection of a suitable material for a cryogenic 
storage tank for transportation of liquid nitrogen. The material selection problem 
considers seven alternative materials and seven attributes, and the data are given in 
Table 5.1.  

Table 5.1. Objective data of the attributes of example 5.2.1(from Manshadi et
al., 2007; reprinted with permission from Elsevier) 
_______________________________________________________________
Material Material selection attributes 
         TI YS YM D TE TC SH  
_______________________________________________________________
1  75.5 420 74.2 2.8 21.4 0.37 0.16 
2  95 91 70 2.68 22.1 0.33 0.16 
3  770 1,365 189 7.9 16.9 0.04 0.08 
4  187 1,120 210 7.9 14.4 0.03 0.08 
5  179 875 112 4.43 9.4 0.016 0.09 
6  239 1,190 217 8.51 11.5 0.31 0.07 
7  273 200 112 8.53 19.9 0.29 0.06  
_______________________________________________________________
TI = Toughness index (based on UTS, yield strength YS, and ductility e at         
-196°C) = (UTS + YS)e/2; YS = Yield strength (MPa); YM = Young’s 
modulus (GPa); D= Density (g/cm3); TE = Thermal expansion (given in 10-

6/°C); TC = Thermal conductivity (cal/cm2/cm/°C/s); SH = Specific heat 
(cal/g/°C) 
Material 1:Al 2024-T6; Material 2:Al 5052-O; Material 3:SS 301-FH; 
Material 4:SS310-3AH; Material 5:Ti-6Al-4V; Material 6:Inconel 718; 
Material 7:70Cu-30Zn  

     
5.2.1.1 Application of Graph Theory and Matrix Approach (GTMA) 
Various steps of the methodology, proposed in Section 2.6, are carried out: 

Step 1: In the present work, the attributes considered are the same as those of 
Manshadi et al. (2007) and these are: toughness index (TI), yield strength (YS), 
Young’s modulus (YM), density (D), thermal expansion (TE), thermal 
conductivity (TC) and specific heat (SH). The quantitative values of the material 
selection attributes, which are given in Table 5.1, are normalized. TI, YS, and YM 
are considered as beneficial attributes, and the remaining attributes as non-
beneficial. Values of these seven attributes are normalized, as explained in Section 
2.4, and are given in Table 5.2 in the respective columns. 
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Table 5.2. Normalized data of the attributes of example 5.2.1 
__________________________________________________________
Material Normalized values of material selection attributes 
        TI YS YM      D          TE         TC      SH  
__________________________________________________________
1 0.0981   0.3077   0.3419   0.9571   0.4393   0.0432    0.375 
2 0.1234   0.0667   0.3226   1            0.4253   0.0485    0.375 
3 1   1        0.8709   0.3392   0.5562   0.4          0.75 
4 0.2429   0.8205   0.9677   0.3392   0.6528   0.5333    0.75  
5 0.2325   0.6410   0.5161   0.6049   1            1             0.6667 
6 0.3104   0.8718   1            0.3149   0.8174   0.0516    0.8571 
7 0.3546   0.1465   0.5161   0.3142   0.4724   0.0552    1  
__________________________________________________________

Relative importance of attributes (aij) is also assigned the values, as explained 
in Section 2.4, using Table 4.4. Let the decision maker (i.e., designer) select the 
following assignments: 

         TI YS YM D TE TC SH  
 TI - 0.745 0.865 0.590 0.665 0.865 0.865  
 YS 0.255 - 0.665 0.335 0.335 0.665 0.665  
 YM 0.135 0.335 - 0.745 0.255 0.500 0.500  
A17x7 =  D 0.410 0.665 0.255 - 0.590 0.745 0.745  

TE 0.335 0.665 0.745 0.410 - 0.665 0.665  
TC 0.135 0.335 0.500 0.255 0.335 - 0.500  
SH 0.135 0.335 0.500 0.255 0.335 0.500 -  

                                                                                                   (5.1) 

However, it may be added that, in actual practice, the designer can judiciously 
decide these values of relative importance depending on the requirements. The 
assigned values are for demonstration purpose only.       

Step 2:  
1. The material selection attributes graph, showing the presence as well as relative 
importance of the above attributes, is similar to Figure 2.2 but with seven attributes 
is drawn. It is not shown here for obvious reasons. 
2. The material selection attributes matrix of this graph can be written based on 
Equation 2.10. It is similar to matrix Equation 5.1 but also with the presence of 
diagonal elements Ai.
3. The material selection attributes function is written. However, it may be added 
that as a computer program is developed for calculating the permanent function 
value of a matrix, this step can be skipped. 
4 & 5. The material selection index is calculated using the values of Ai and aij for 
each alternative material. The material selection index values of different materials 
are given below in descending order: 

Material 3: SS 301-FH 39.1123 
Material 5: Ti-6Al-4V 34.0554 
Material 4: SS 310-3AH 30.6316 
Material 6: Inconel 718 29.0377 
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Material 7: 70Cu-30Zn 20.0377 
Material 1: Al 2024-T6 17.2897 
Material 2: Al 5052-O 16.2634 

From the above values of the material selection index, it is understood that the 
material designated as 3, i.e., SS 301-FH, is the right choice for the given problem 
of selection of a suitable material for a cryogenic storage tank for transportation of 
liquid nitrogen. The second choice is Ti-6Al-4V, and the last choice is Al 5052-O. 
These results match those suggested by Manshadi et al. (2007) using nonlinear 
normalization and a modified digital logic method. However, it may be mentioned 
that the ranking depends upon the judgements of relative importance made by the 
designer. The ranking presented may change if the designer assigns different 
relative importance values to the attributes. The same is true for the approach 
proposed by Manshadi et al. (2007). However, the GTMA method is superior to 
the method used by Manshadi et al. (2007) in that it enables a more critical 
analysis than the digital logic method, since any number of quantitative and 
qualitative attributes can be considered. Also, the proposed method can deal with 
material selection attributes on a qualitative scale using fuzzy logic. Such a 
provision is missing in the method suggested by Manshadi et al. (2007). Further, 
the proposed method assigns the values of relative importance based on a fuzzy 
scale, whereas the weights assigned to various attributes by Manshadi et al. (2007) 
were rather arbitrary and too simplistic. The use of permanent concept helps in 
better appreciation of the attributes, and it characterizes the considered material 
selection problem, as it contains all possible structural components of the attributes 
and their relative importance (from a combinatorial point of view). The coefficients 
of similarity are calculated and are given in Table 5.3. 

Table 5.3. Values of coefficient of similarity for the alternative materials of 
example 5.2.1 
___________________________________________________________________
Material  2 3 4 5 6 7 
___________________________________________________________________
1   0.94 0.442 0.564 0.508 0.595 0.863 
2    0.416 0.531 0.531 0.56 0.812 
3     0.783 0.871 0.742 0.512 
4      0.899 0.948 0.654 
5       0.853 0.588 
6                        0.69 
___________________________________________________________________

5.2.1.2 SAW Method 
Using the same weights of the attributes as those of Manshadi et al. (2007), the 
overall performance score (i.e., material selection index, in this example) for each 
material is calculated using the normalized data of the attributes given in Table 5.2, 
and Equation 3.2. For example, the value of Pi for the material designated as 1 is 
calculated as: 0.28x0.0981 + 0.14x0.3077 + 0.05x0.3419 + 0.24x0.9571 + 
0.19x0.4393 + 0.05x0.0432 + 0.05x0.0432 = 0.421722. The values of Pi are 
arranged in descending order as given below: 
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Material 3: SS 301-FH 0.4217 
Material 5: Ti-6Al-4V 0.5991 
Material 6: Inconel 718 0.5352 
Material 4: SS 310-3AH 0.5008 
Material 1: Al 2024-T6 0.4217 
Material 2: Al 5052-O 0.4020 
Material 7: 70Cu-30Zn 0.3635 

The SAW method also suggests the material designated as 3, i.e., SS 301-FH, 
as the right choice for the given problem of selection of a suitable material for a 
cryogenic storage tank for transportation of liquid nitrogen. The second choice is 
Ti-6Al-4V, and the last choice is the material designated as 7, i.e., 70Cu-30Zn. 
However, comparing the attribute data of the materials of the last two choices, i.e.,
materials 2 and 7, it may not be logical to propose 7 as the last choice. 

5.2.1.3 WPM 
The overall performance score (i.e., material selection index, in this example) for 
each material is calculated using the normalized data of the attributes given in 
Table 5.2 for the given weights of the attributes, and Equation 3.4. For example, 
the value of Pi for the material designated as 1 is calculated as: 0.09810.28 + 
0.30770.14 + 0.34190.05 + 0.95710.24 + 0.43930.19 + 0.04320.05 + 0.04320.05 = 0.2889. 
The values of Pi are arranged in the descending order as given below: 

Material 3: SS 301-FH 0.6843 
Material 5: Ti-6Al-4V 0.5248 
Material 4: SS 310-3AH 0.4440 
Material 6: Inconel 718 0.4412 
Material 1: Al 2024-T6 0.2889 
Material 2: Al 5052-O 0.2505 
Material 7: 70Cu-30Zn 0.1809 

WPM also suggests the material designated as 3, i.e., SS 301-FH, as the right 
choice for the given material selection problem. The second choice is Ti-6Al-4V, 
and the last choice is material designated as 7, i.e., 70Cu-30Zn.  

5.2.1.4 AHP and its Versions  
As the weights of the attributes are already available, the alternatives are compared 
pair-wise with respect to how much better they are in satisfying each of the 
attributes. This means ascertaining how well each alternative serves each attribute. 
In this example, as there are seven alternatives and seven attributes, there will be 
seven numbers of 7 x 7 matrices of judgements.       

The absolute mode is used, as data of the attributes for different alternatives to 
be evaluated are readily available. Comparison of alternative materials is shown in 
Table 5.4 with respect to TI (a beneficial attribute), and D (a non-beneficial 
attribute) only for demonstration purpose. Similar comparisons can be shown with 
respect to the other five attributes. Since the exact values are used in these 
comparison matrices, CI is always equal to 0, as there is complete consistency in 
judgements. 
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Table 5.4. Pair-wise comparison matrices for the alternative materials of example 5.2.1 
__________________________________________________________________________
 1 2 3 4 5 6 7 R        I  
__________________________________________________________________________
TI
1 1 0.7947 0.098 0.4037 0.4218 0.316 0.2765 0.0415  0.0981 
2 1.258 1 0.123 0.508 0.531 0.397 0.348   0.0522  0.1234 
3 10.2 8.13 1 4.12 4.3 3.22 2.82     0.4235  1 
4 2.477 1.97 0.243 1 1.045 0.782 0.685   0.1028  0.2429 
5 2.37 1.883 0.233 0.957 1 0.75 0.656   0.0984  0.2325 
6 3.1645 2.52 0.31 1.28 1.33 1 0.875   0.1314  0.3104 
7 3.62 2.87 0.355 1.46 1.524 1.143 1          0.1501  0.3546 

D
1 1 0.957 2.82 2.82 1.58 3.04 0.046   0.2473  0.9571 
2 1.045 1 2.95 2.95 1.653 3.17 3.18     0.2584  1 
3 0.355 0.339 1 1 0.561 1.077 1.079   0.0877  0.3392 
4 0.355 0.339 1 1 0.561 1.077 1.079   0.0877  0.3392 
5 0.633 0.605 1.78 1.78 1 1.92 1.926   0.1563  0.6049 
6 0.329 0.315 0.929 0.929 0.521 1 1.002   0.0815  0.3149 
7 0.329 0.315 0.929 0.929 0.521 1 1.002   0.0812  0.3142 
__________________________________________________________________ 
R: Relative weight  I: Ideal weight 

In the above table, both relative (R) and idealized (I) weight vectors of the 
seven alternatives are given. The idealized vector is obtained by dividing each 
element of the relative weight vector by its largest element. The advantage of using 
idealized weights is that the ranking of the existing alternatives does not change 
even if a new alternative, identical to a non-optimal alternative, is introduced.  

It may be observed that the idealized weights of the alternatives obtained for 
the attributes in Table 5.4 are nothing but the normalized data given in Table 5.2. 
This means that whenever quantitative data of the attributes are available, the data 
can be normalized directly as explained in Section 3.2.1.   

The overall or composite performance scores (i.e., material selection indexes, 
in this example) for the alternatives are obtained by multiplying the relative 
normalized weight (wj) of each attribute with its corresponding normalized weight 
value (relative weight or ideal weight) for each alternative, and summing over all 
the attributes for each alternative. This step is similar to the SAW method. The 
alternative materials are arranged in the descending order of the material selection 
index. The results of the revised AHP and relative AHP are shown below: 

Material      Ideal mode Relative mode 
Material 3: SS 301-FH 0.4217  0.2246 
Material 5: Ti-6Al-4V 0.5991  0.1691 
Material 6: Inconel 718 0.5352  0.1449 
Material 4: SS 310-3AH 0.5008  0.1397 
Material 1: Al 2024-T6 0.4217  0.1105 
Material 2: Al 5052-O 0.4020  0.1062 
Material 7: 70Cu-30Zn 0.3635  0.1049 
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Both the AHP and revised AHP methods give the same material rankings in 
this example. 

The application of the multiplicative AHP method gives the ranking of 
materials in the sequence of 3-5-4-6-1-2-7 for the given weights of the attributes. 
This ranking is the same as that obtained using WPM.  

5.2.1.5 TOPSIS Method  
Step 1:  The objective is to evaluate the seven alternative materials, and the 
attributes are: toughness index (TI), yield strength (YS), Young’s modulus (YM), 
density (D), thermal expansion (TE), thermal conductivity (TC), and specific heat 
(SH). For this particular material selection problem, TI, YS, and YM are 
considered as beneficial attributes, and remaining attributes as non-beneficial.   

Step 2: The next step is to represent all the information available for the 
attributes in the form of a decision matrix. The data given in Table 5.1 are 
represented as matrix D7x7. However, the matrix is not shown here, as it is simply 
the repetition of data given in Table 5.1 but represented in a matrix form.   

Step 3: The quantitative values of the material selection attributes, which are 
given in Table 5.1, are normalized as explained in Section 3.2.6 and the normalized 
matrix R7x7 is shown below: 

0.0843     0.1787    0.1842     0.1604   0.4719     0.5660     0.5640 
0.1058     0.0387    0.1738     0.1535   0.4873     0.5040     0.5640 
0.8575     0.5808    0.4690     0.4526   0.3727     0.0610     0.2820 
0.2083     0.4765    0.5212     0.4526   0.3176     0.0458     0.2820 
0.1994     0.3723    0.2780     0.2538   0.2073     0.0244     0.3170 
0.2662     0.5064    0.5384     0.4875   0.2537     0.4734     0.2466 
0.3040     0.0851    0.2780     0.4888   0.4389     0.4430     0.2114 

Step 4: Relative importance of attributes (aij) can be assigned the values as 
explained in Section 3.2.6. However, to make a comparison of the proposed 
method with that of Manshadi et al. (2007), the same weights considered by those 
authors are assigned in the present work. These are: WTI = 0.28, WYS = 0.14, WYM
= 0.05, WD = 0.24, WTE = 0.19, WTC = 0.05, and WSH = 0.05.  

Step 5: The weighted normalized matrix, V7x7, is calculated. 

0.0236     0.0250     0.0092     0.0385   0.0896     0.0283     0.0282 
0.0296     0.0054     0.0087     0.0368   0.0926     0.0252     0.0282 
0.2401     0.0813     0.0234     0.1086   0.0708     0.00305   0.0141 
0.0583     0.0667     0.0260     0.1086   0.0603     0.0022     0.0141 
0.0558     0.0521     0.0139     0.0609   0.0393     0.0012     0.0158 
0.0745     0.0708     0.0269     0.1170   0.0482     0.0236     0.0123 
0.0851     0.0119     0.0139     0.1173   0.0834     0.0221     0.0105 

Step 6: The next step is to obtain the ideal (best) and negative ideal (worst) 
solution. These are calculated as: 
VTI

+ = 0.24011   VTI
- = 0.02362 

VYS
+ = 0.08131   VYS

- = 0.00542 
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VYM
+ = 0.02692   VYM

- = 0.00869 
VD

+ = 0.03685   VD
- = 0.11730 

VTE
+ = 0.03938   VTE

- = 0.09260 
VTC

+ = 0.00122   VTC
- = 0.02830 

VSH
+ = 0.01057   VSH

- = 0.02820 
Step 7: The next step is to obtain the separation measures, and these are 

calculated as: 
S1

+ = 0.23222   S1
- = 0.08126 

S2
+ = 0.23263   S2

- = 0.08073 
S3

+ = 0.07854   S3
- = 0.23287 

S4
+ = 0.19715   S4

- = 0.08516 
S5

+ = 0.18865   S5
- = 0.10071 

S6
+ = 0.18583   S6

- = 0.09724 
S7

+ = 0.19456   S7
- = 0.06547 

Step 8: The relative closeness of a particular alternative to the ideal solution is 
calculated and these are:  
P1 = 0.25922  P2 = 0.25763  P3 = 0.74779   
P4 = 0.30165  P5 = 0.34804  P6 = 0.34352 
P7 = 0.25178                                            

This relative closeness to ideal solution can be considered as the ‘material 
selection index ’. 

Step 9: The alternative materials are arranged in descending order of their 
material selection index. This can be arranged as: 3-5-6-4-1-2-7. From these values 
of index, it is understood that the material designated as 3 is the first right choice, 
material 5 the second choice, and material 7 the last choice for the given 
application under the given conditions. These results match with those suggested 
by Manshadi et al. (2007) regarding the first five choices. Manshadi et al. (2007) 
proposed a preference order of 3-5-6-4-1-7-2 for the same weights assigned to the 
attributes. A close look at the data presented in Table 5.1 suggests that material 7 is 
better than 2 with respect to six attributes (it may be remembered that the total 
number of attributes is seven). Thus, it is not logical to propose material 7 as the 
last choice in the TOPSIS method. Rather, proposing material 2 as the last choice 
is the right decision. Thus, the proposal of material 2 as the last choice by 
Manshadi et al. (2007) is logical.  

5.2.1.6 Modified TOPSIS Method  
In this process, the positive ideal solution (R+) and the negative ideal solution (R-), 
which are not dependent on the weighted decision matrix, are given by using 
Equations 3.19 and 3.20. 

RTI
+ = 0.8575   RTI

- = 0.0843 
RYS

+ = 0.5808   RYS
- = 0.0387 

RYM
+ = 0.5384   RYM

- = 0.1738 
RD

+ = 0.1535   RD
- = 0.4888 

RTE
+ = 0.2073   RTE

- = 0.4873 
RTC

+ = 0.0244   RTC
- = 0.5660 

RSH
+ = 0.2114   RSH

- = 0.5640 
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The weighted Euclidean distances are calculated as 
D1

+ = 0.4801  D1
- = 0.1693 

D2
+ = 0.4885  D2

- = 0.1652 
D3

+ = 0.1650  D3
- = 0.4821 

D4
+ = 0.3789  D4

- = 0.2459 
D5

+ = 0.3657  D5
- = 0.2563 

D6
+ = 0.3688  D6

- = 0.2497 
D7

+ = 0.4117  D7
- = 0.1476 

The relative closeness of a particular alternative to the ideal solution is 
calculated (i.e., material selection index) and these are:  
P1-mod = 0.26067  P2-mod = 0.25268  P3-mod = 0.74505   
P4-mod = 0.39345  P5-mod = 0.41196  P6-mod = 0.40376 
P7-mod = 0.26392                                            

The alternative materials are arranged in descending order of their material 
selection index. This can be arranged as: 3-5-6-4-7-1-2. It can be observed that 
material 2 can be proposed as the last choice. Thus, the modified TOPSIS method 
has provided a more logical selection procedure, compared to the simple TOPSIS 
method.   

5.2.1.7 Compromise Ranking Method (VIKOR)  
Step 1: The objective is to evaluate the seven alternative materials, and the 
attributes are: toughness index (TI), yield strength (YS), Young’s modulus (YM), 
density (D), thermal expansion (TE), thermal conductivity (TC), and specific heat 
(SH). For this particular material selection problem, TI, YS, and YM are 
considered as beneficial attributes, and remaining attributes as non-beneficial. The 
best, i.e., (mij)max, and the worst, i.e., (mij)min values of all attributes are also 
determined.  

Step 2: The values of Ei and Fi are calculated using Equations 3.26 and 3.27, 
and are given below. The same weights as those considered by Manshadi et al.
(2007) are assigned in the present work. The weights are: wTI = 0.28, wYS = 0.14,
wYM = 0.05, wD = 0.24, wTE = 0.19, wTC = 0.05, and wSH = 0.05.  
E1 = 0.28 + 0.1039 + 0.0486 + 0.0049 + 0.1795 + 0.05 + 0.05 = 0.7169 
E2 = 0.2721 + 0.14 + 0.05 + 0 + 0.19 + 0.0443 + 0.05 = 0.7464 
E3 = 0 + 0 + 0.0095 + 0.2142 + 0.1122 + 0.0034 + 0.001 = 0.3403 
E4 = 0.2351 + 0.0269 + 0.0024 + 0.2142 + 0.0748 + 0.00198 + 0.001 = 0.5564 
E5 = 0.2383 + 0.0538 + 0.0357 + 0.0718 + 0 + 0 + 0.015 = 0.4146 
E6 = 0.2141 + 0.0192 + 0 + 0.2392 + 0.0314 + 0.0415 + 0.005 = 0.5504 
E7 = 0.2004 + 0.1280 + 0.0357 + 0.24 + 0.1571 + 0.0387 + 0 = 0.7999 
Ei-min = 0.3403 Ei-max = 0.7999 
R1 = 0.28 R2 = 0.2721 R3 = 0.2142 R4 = 0.2351  
R5= 0.2383 R6 = 0.2392 R7 = 0.24 
Fi-min = 0.2142 Fi-max = 0.28 
       Step 3: The values of Pi are calculated using Equation 3.28 and for v = 0.5. 
P1 = 0.9095  P2 = 0.8817 P3 = 0  P4 = 0.3938 
P5 = 0.2639  P6 = 0.4185 P7 = 0.696  
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Step 4: The alternatives are arranged in ascending order, according to the 
values of Pi. Similarly, the alternatives are arranged according to the values of Ei
and Fi separately. Thus, three ranking lists are obtained. The best alternative, 
ranked by Pi, is the one with the minimum value of Pi.
P3 = 0  E3 = 0.3403 F3 = 0.2142 
P5 = 0.2639 E5 = 0.4146 F4 = 0.2351 
P4 = 0.3938 E6 = 0.5504 F5 = 0.2383 
P6 = 0.4185 E4 = 0.5564 F6 = 0.2392 
P7 = 0.696  E1 = 0.7169 F7 = 0.24 
P2 = 0.8817 E2 = 0.7464 F2 = 0.2721 
P1 = 0.9095 E7 = 0.7999 F1 = 0.28 

Step 5: For the given attribute weights, the compromise solution, alternative 
material 3, which is the best ranked by the measure P is suggested, as it satisfies 
both conditions discussed in Section 3.2.7.  

It may be noted here that for the same weights of importance of the attributes, 
all decision-making methods described in the example suggest material 3 as the 
first right choice. The choice may change when different weights are used.   

5.2.2 Example 2 

Now, another example is considered to demonstrate the application of the GTMA 
and fuzzy MADM methods. This example problem is related with selection of a 
suitable work material for a product that needs to be designed for operating in a 
high-temperature oxygen-rich environment. This selection problem considers six 
alternative materials and four attributes and the data are shown in Table 5.5.  

Table 5.5. Quantitative data of the attributes of example 5.2.2 
__________________________________________________________________________
Material    Material selection attributes 
          Hardness (HB) MR (%) Cost ($/lb) Corrosion resistance 
__________________________________________________________________________
1  420  25 5                             Extremely high (0.865) 
2  350  40 3                High (0.665) 
3  390  30 3                Very high (0.745) 
4  250  35 1.3                High (0.665) 
5  600  30 2.2                High (0.665) 
6  230  55 4                Average (0.5)  
__________________________________________________________________________
MR: Machinability rating is based upon machining AISI 1112 steel with a rating of 100%  

5.2.2.1 Application of Graph Theory and Matrix Approach (GTMA)  
Step 1: In this example, the attributes considered are: hardness (H), machinability 
rating of work material based on cutting speed (MR), cost of the material (C), and 
corrosion resistance (CR). The quantitative values of the material selection 
attributes, which are given in Table 5.5, are to be normalized. For the given 
material selection problem, H, M, and CR are considered as beneficial attributes 
and C as a non-beneficial attribute. Cost is not considered that important in the 
present example. Corrosion resistance (CR) is expressed qualitatively, and hence 
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ranked value judgements on fuzzy conversion scale, as shown in Table 2.3, are 
made and given in parentheses in Table 5.5. Values of the four attributes are 
normalized, and are given in Table 5.6 in the respective columns.   

Table 5.6. Normalized data of example 5.2.2 
___________________________________________________________________
Material Normalized values of material selection attributes 
  H  M  C  R 
___________________________________________________________________
1  0.7  0.4545  0.26  1 
2  0.5833  0.7273  0.4333  0.7688 
3  0.65  0.5454  0.4333  0.8613 
4  0.4167  0.6364  1  0.7688 
5  1  0.5454  0.5909  0.7688 
6  0.3833  1  0.325  0.578 
___________________________________________________________________

Step 2: The relative importance of attributes (aij) is also assigned. Let the 
decision maker (i.e., designer) select the following assignments: 

  H M C CR 
H - 0.335 0.665 0.665 
M 0.665 - 0.745 0.745 

A24x4 =   C 0.335 0.255 - 0.335 
CR 0.335 0.255 0.335 -  

It may be added once again that the assigned values in this example are for 
demonstration purpose only. Following the remaining steps given in the 
methodology, the material selection index is calculated using the values of Ai and 
aij for each alternative material. The material selection index values of different 
materials are given below in descending order: 

Material 5: 1.635251 
Material 4:  1.616897 
Material 2:  1.335821 
Material 3:  1.316612 
Material 1:  1.201707 
Material 6:  1.125037 

From the above values of the material selection index, it is understood that the 
material designated as 5 is the right choice for the given material selection 
problem.  The second choice is material 4, and the last choice is material 6. 

5.2.2.2 SAW Method 
The procedure suggested by Edwards et al. (1982) to assess weights for each of the 
attributes to reflect its relative importance in the material selection decision is 
followed here. First, the attributes are ranked in order of importance and 10 points 
are assigned to the least important attribute CR. Cost C is also considered least 
important, and equal to CR in this example. Then, the next-least important attribute 
H is chosen, 20 points are assigned to it, and the attribute M is given 30 points to 
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reflect the relative importance. The final weights are obtained by normalizing the 
sum of the points to one. For example, the weight for attribute M is calculated by 
30/(30+20+10+10) = 0.4286. The weights of H, C, and CR are calculated as 
0.2857, 0.1428, and 0.1428 respectively. Using these weights and the normalized 
data of the attributes for different alternative materials, the material selection index 
values are calculated, and are arranged in descending order of the index.

Material 5: 0.7786 
Material 2:  0.6295 
Material 3:  0.6193 
Material 4:  0.6130 
Material 1:  0.6098 
Material 6:  0.5789 

This method also suggests material 5 as the first choice. 

5.2.2.3 WPM 
The weights used in the SAW method are used in this method and the values of Pi
are calculated. The values of Pi are arranged in descending order as given below: 

Material 5: 0.7514 
Material 2:  0.6194 
Material 3:  0.6074 
Material 4:  0.5817 
Material 1:  0.5652 
Material 6:  0.5222 

The ranking suggested by both the SAW method and WPM is the same for this 
example. 

5.2.2.4 AHP and its Versions 
The AHP method may use the same weights as those in the SAW method. In that 
case, the ranking of the materials will be same as that suggested by the SAW 
method. However, if the decision maker decides to use the AHP method rather than 
SAW and the weights used in it, then he or she has to make pair-wise comparisons 
of the attributes to determine the weights (wj) of the attributes. Let the decision 
maker prepares the following matrix: 

  H M C CR 
H 1 1/3 2 2 
M 3 1 4 4 

A34x4 =   C 1/2 1/4 1 1 
CR 1/2 1/4 1 1  

Following the procedure given in Section 3.2.3 of Chapter 3, the relative 
normalized weights (wj) of the attributes are calculated, and these are WH = 0.2195, 
WM = 0.5376, WC = 0.1214, and WCR = 0.1214. The value of max is 4.0206, and 
CR is 0.0077. As the calculated value of CR is less than the allowed CR value of 
0.1, there is good consistency in the judgements made. Also there is no 
contradiction in the judgements. 
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The value of the material selection index is now calculated using the above 
weights, and the normalized data of the attributes given in Table 5.6. This leads to 
the ranking given by the revised AHP or ideal mode of AHP. The materials are 
arranged in the descending order of the material selection index. 

Material 6: 0.7314 
Material 5:  0.6777 
Material 2:  0.6650 
Material 3:  0.5931 
Material 4:  0.6483 
Material 1:  0.5509 

It may be observed that the above ranking is for the given preferences of the 
decision maker. The ranking depends upon the judgements of relative importance 
of attributes made by the decision maker.   

For the weights of attributes used in this method, the simple AHP as well as 
the multiplicative AHP methods give the same ranking of materials, i.e., 6-5-2-4-3-
1.     

5.2.2.5 TOPSIS Method 
The quantitative values of the material selection attributes, which are given in 
Table 5.5, are normalized as explained in Section 3.2.6 and the normalized matrix 
R6x4 is shown below: 

0.1868 0.0786 0.0883 0.0730 
 0.1556 0.1258 0.0530 0.0560 

R6x4 =  0.1734 0.0940 0.0530 0.0628 
 0.1112 0.1100 0.0229 0.0560 
 0.2668 0.0943 0.0389 0.0560 
 0.1023 0.1729 0.0707 0.0421 

The relative importance of attributes (aij) can be assigned values as explained 
in Section 3.2.6. Using the same weights as those used in SAW method, the 
ranking of materials is 5-3-2-1-6-4. Using the same weights as those used in the 
AHP method, the ranking of materials is 6-2-5-4-3-1.                                                                    

5.2.2.6 Modified TOPSIS Method  
Using the same weights as those used in the SAW method, the ranking of materials 
is 5-2-3-4-6-1. Using the same weights as those used in the AHP method, the 
ranking of materials is 6-5-2-4-3-1. 

It may be noted here that for the same weights of importance of the attributes, 
all decision-making methods described in this example suggest material 5 as the 
first right choice. The choice may change when different weights are used.   

 It is observed, from the application of GTMA and various MADM methods 
for material selection problems, that the relative importance (i.e., weights) of the 
material selection attributes decides the ranking of the alternative materials to a 
significant extent. The decision maker has to be clear about his or her preferences, 
and choose a particular decision-making method to select the best material for the 
given engineering application.    
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6
__________________________________________________________________ 

Evaluation of Product Designs

6.1 Introduction 

Today’s world is characterized by major changes in market and economic 
conditions coupled with rapid advances in technology. As a natural result of this, 
companies have been forced to develop new products for current markets, 
principally technology-driven or high-tech markets. The changing economic 
conditions and technologies combined with increased domestic and global 
competition, changing customer needs, rapid product obsolescence and emergence 
of new markets require a very fast innovation process (Ayag, 2005). The final 
decision to select a particular design for a given product is perhaps the most critical 
stage in product design development. Obviously, such a decision is influenced by 
many factors, the specifics of which are not known a priori during the design 
stage. As such, a quantitative basis for comparison and selection of the best design 
solution among a host of alternatives could greatly impact on the eventual success 
or failure of a product in the market. The importance of this issue calls for more 
sophisticated design selection criteria, and methods to incorporate all important 
factors of interest into the selection of a single final design (Besharati et al., 2006). 

Thurston (1991) presented a more formal theory and methodology for design 
by mathematically modeling the functional relationships between design decisions 
and the ultimate overall worth of a design. A formal methodology for the 
evaluation of design alternatives (MEDA) was presented which could be used to 
evaluate design alternatives in the iterative design/redesign process. Multi-attribute 
utility analysis was employed to compare the overall utility or value of alternative 
designs as a function of the levels of several performance characteristics of a 
manufactured system. The evaluation function reflected the designer's preferences 
for sets of multiple attributes. A case study of materials selection and design in the 
automotive industry was presented, which illustrated the steps followed in 
application of the method. 

Hsiao (1998) proposed a fuzzy decision-making method for selecting an 
optimum design from various design alternatives. The development of a juicer was 
taken as an example in the study. The evaluation objectives were arranged in a 
hierarchical structure with several levels. The relative contribution of each 
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objective to the overall value of the solution, and the rating or degree of 
approximation of a solution with respect to a given objective were quantified with 
the membership functions of a fuzzy set. A computer program based on a weighted 
generalized mean method was used to calculate the fuzzy probability level by level 
from the lowest-level objectives. After the fuzzy expected values of the top-level 
objectives were calculated, they were used to make a decision quantitatively on 
selecting the optimal design alternative.  

Matsatsinis and Siskos (1999) presented a new methodology for the 
development of new products, and an intelligent decision support system, named 
MARKEX, which was an implementation of the methodology. The system acted as 
a consultant for marketers, providing visual support to enhance understanding and 
to overcome lack of expertise. The databases of the system were the results of 
consumer surveys, as well as financial information of the enterprises involved in 
the decision-making process.  

Calantone et al. (1999) illustrated the use of the analytic hierarchy process 
(AHP) as a decision support model to aid managers in selecting new product ideas 
to pursue. The authors then presented an in-depth example of an actual application 
of AHP in new product screening, and discussed the usefulness of this process in
gathering and processing knowledge for making new product screening decisions. 
Ozer (1999) conducted a survey on new product evaluation models. 

Several market-based decision support methodologies have been reported in the 
literature to aid product selection (Parameswaran et al., 2001; Choi et al., 2004), 
single product design selection (Balakrishnan and Jacob, 1995, 1996), and product 
line design (Alexouda, 2005). The selection criteria in these methods were mostly 
based on either maximization of the market share, or of the seller’s return or 
minimization of job completion time.  

Haque et al. (2000) described the development and application of case-based 
reasoning (CBR) to provide decision support for project managers and engineers 
during the early phases of new product development in a concurrent engineering 
(CE) environment. Suh (2001) introduced a metric known as a probability of 
success in product design which combined the uncertainty in each attribute level 
with a customer’s acceptable range. Edwards (2002) discussed the priorities for 
concurrent engineering towards more strategic product design for manufacture and 
assembly. 

Hsiao and Chou (2004) presented a creativity-based design process for 
innovative product design. Gulcin and Orhan (2004a) identified the decision points 
in the NPD process, and the uncertainty factors affecting those points. Next, the 
necessary decision models and techniques were determined to help the decision 
makers to reduce their risks. Finally, an integrated approach based on fuzzy logic 
to shape the decisions was presented, with an application in software development. 
In another work, Gulcin and Orhan (2004b) presented the uncertainty factors 
related to NPD, and proposed an integrated approach based on fuzzy logic, neural 
networks, and multi-criteria decision making to enable the most appropriate 
decision making. A case study in a toy manufacturing firm served to demonstrate 
the potential of the methodology.  

Petrick and Echols (2004) proposed that firms adopt a broader heuristic for 
making new product development choices. The heuristic approach required moving 
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beyond traditional finance-based thinking, and suggested that firms concentrate on 
technological trajectories by combining technology roadmapping, information 
technology (IT), and supply chain management to make more sustainable new 
product development decisions.  

Pan and Santner (2004) considered applications where the product design or 
process design is considered to be seriously flawed if its performance is inferior at 
any level of the environmental factor. The authors developed a theory for a class of 
subset selection procedures that identify product designs maximizing the worst-
case performance over environmental conditions for general combined array 
experiments. 

Ozer (2005) presented an integrated framework for understanding how various 
factors affect decision making in new product evaluation, and provided guidelines 
for reducing their negative impacts on new product decisions. The results indicated 
that the quality of new product evaluation decisions was affected by four major sets 
of factors, namely, the nature of the task, the type of individuals who are involved 
in the decisions, the way the individuals’ opinions are elicited, and the way the 
opinions are aggregated.  

Lo et al. (2006) reported a new idea-screening method for new product 
development (NPD), with a group of decision makers having imprecise, 
inconsistent and uncertain preferences. The authors presented a new method for 
new product screening in the NPD process by relaxing a number of assumptions, 
so that imprecise, inconsistent and uncertain ratings could be considered. In 
addition, a new similarity measure for vague sets was introduced to produce a 
ratings aggregation for a group of decision makers. The method was able to 
provide decision makers with consistent information and to model situations where 
vague and ill-defined information exists in the decision process.  

Maddulapalli et al. (2006) conducted sensitivity analysis for product design 
selection with an implicit value function. Besharati et al. (2006) proposed a 
generalized purchase modeling approach that considered three important factors 
(anticipated market demand for the design, designers’ preferences, and uncertainty 
in achieving predicted design attribute levels under different usage conditions and 
situations), and developed a customer-based expected utility metric that formed the 
basis for a decision support system for supporting the selection in product design.  

The objective of a product design selection procedure is to identify the product 
design selection attributes, and obtain the most appropriate combination of the 
attributes in conjunction with the real requirements. A product design selection 
attribute is defined as a factor that influences the selection of a product design for a 
given application. Efforts need to be made to determine attributes which influence 
product design selection for a given industrial application, using a logical 
approach, to eliminate unsuitable product designs, and to select a proper product 
design to strengthen the existing product design selection procedure. Pertinent 
attributes and the alternative product designs involved are to be identified. Values 
of the attributes and their relative importance are to be obtained. An objective or 
subjective value, or its range, may be assigned to each identified attribute as a 
limiting value, or threshold value, for its acceptance for the considered product 
design selection problem. An alternative product design with each of its selection 
attributes, meeting the acceptance value, may be short-listed. After short-listing the 
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alternative product designs, the main task in choosing the alternative product 
design is to see how it serves the attributes considered. 

The next section presents the applications of the GTMA and fuzzy MADM 
methods for product design selection for a given application. 

6.2 Example 

Now, to demonstrate and validate the application of proposed decision-making 
methods, the case study presented by Besharati et al. (2006) is considered. 
Besharati et al. (2006) generated a number of product alternatives within the design 
process. The product attributes are both performance- and market- related, and 
were obtained using design simulation tools and marketing models. The objective 
of their work was to present a decision support system (DSS) that aggregates the 
three factors (market demand, uncertainty in achieving nominal attribute levels and 
designer’s preferences) into a single valued metric. The authors considered the 
problem of design and selection of a power electronic device based on three 
performance attributes. The attributes were: manufacturing cost, junction 
temperature, and thermal cycles to failure. Ten design alternatives were considered 
that had tradeoffs with respect to one another. Table 6.1 presents the data of the 
design alternatives. 

Table 6.1. Description of design alternatives (from Besharati et al., 2006; reprinted with 
permission from Elsevier) 
__________________________________________________________________________
Design no. Junction temperature (°C) Cycles to failure Manufacturing cost($) 
__________________________________________________________________________
1   126  22,000  85 
2   105  38,000  99 
3   138  14,000  65 
4   140  13,000  60 
5   147  10,600  52 
6   116  27,000  88 
7   112  32,000  92 
8   132  17,000  75 
9   122  23,500  85 
10   135  15,000  62 
__________________________________________________________________________

6.2.1 Graph Theory and Matrix Approach (GTMA) 

The attributes considered are the same as those of Besharati et al. (2006), and these 
are: manufacturing cost (MC), junction temperature (JT), and thermal cycles to 
failure (CF). The quantitative values of the product design selection attributes, 
given in Table 6.1, are to be normalized. In this example, CF is a beneficial 
attribute, and MC and JT are non-beneficial attributes. The values of these 
attributes are normalized, and are given in Table 6.2 in the respective columns.  
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Table 6.2. Normalized values of the product design selection 
attributes
___________________________________________________
Design no. JT  CF  MC 
___________________________________________________
1  0.8333  0.5789  0.6118  
2  1  1  0.5253  
3  0.7609  0.3684  0.8  
4  0.75  0.3421  0.8667  
5  0.7143  0.2789  1  
6  0.9052  0.7105  0.5909  
7  0.9375  0.8421  0.5652  
8  0.7955  0.4474  0.6933  
9  0.8607  0.6184  0.6118  
10  0.7778  0.3947  0.8397  
___________________________________________________

Let the designer chooses the following preferences (i.e., relative importance):  
 JT CF MC 
JT --- 0.335 0.255 
CF 0.665 --- 0.335 
MC 0.745 0.665 --- 

Manufacturing cost (MC) is considered more important to the designer than 
cycles to failure (CF), than junction temperature (JT). The product design selection 
attributes digraph, product design selection attributes matrix of the digraph and 
product design selection function for the matrix can be prepared. However, these 
are not shown here.  

The value of the product design selection index (PDSI) is calculated using the 
values of Ai and aij for each product design. The product design selection index 
values of different product designs are given below in descending order: 

2 1.2514 
7 1.1373 
6 1.0447 
9 0.9675 
1 0.9234 
10 0.8890 
8 0.8598 
4 0.8439 
3 0.8383 
5 0.8305 

From the values of the product design selection index, it is understood that the 
product design designated as 2 is the best choice among the considered ten product 
designs for the given power electronic device. The next choice is 7, and the last 
choice is 5. However, the ranking obtained using GTMA differs from that obtained 
by Besharati et al. (2006), according to which the first choice was 5. The ranking 
proposed by Besharati et al. (2006) was 5-10-4-3-7-6-2-8-9-1.  

A close look at the values of the attributes of the alternative product designs 2 
and 5 reveal that 2 is much better than 5 in the case of JT and CF attributes, and 5 
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is better in the case of the MC attribute. In fact, the values of JT and CF for 5 are 
worst among all alternative product designs. At the same time, the values are best 
for 2 among all the alternative product designs considered. It appears that the 
results obtained by Besharati et al. (2006) are biased towards the MC attribute.  

In the above case, only the designer’s preferences are accounted. Besharati et
al. (2006) presented a second scenario in which the market information was also 
accounted for in terms of customer’s purchase decision. The specific conditions are 
given below: 

The device has to endure at least 25,000 cycles, or its junction 
temperature must remain less than 130°C. 

or
The customer is willing to purchase the device if the price is less than 
$170 (i.e., manufacturing cost less than $70), and it lasts at least 20,000 
cycles.

Applying the above conditions to the data in Table 6.2 gives only five product 
designs, 1, 2, 6, 7, and 9. These designs can be ranked as 2-7-6-9-1 using graph 
theory and the matrix approach. However, the ranking proposed by Besharati et al.
(2006) was 7-6-9-1-2. Again, it appears that Besharati et al. (2006) had given much 
more importance to the MC attribute than to CF and JT.  

Besharati et al. (2006) presented a third scenario 3 with multiple segments. 
Four customer segments were assumed. The purchase decisions were defined as 
follows: 

Segment I: The device needs to tolerate at least 20,000 cycles. Its junction 
temperature should not exceed 130°C. The available budget for this 
purchase is no more than $185 per product item. 
Segment II: The desired device needs to have one of the following 
criteria: endure more than 35,000 cycles, junction temperature lower than 
110°C, price less than $160. 
Segment III: The budget does not exceed $185 per product item, and the 
eligible device needs to satisfy either one of the following criteria: lasting 
more than 20,000 cycles, junction temperature lower than 130°C. 
Segment IV: The desired device should tolerate at least 30,000 cycles, and 
its junction temperature should not exceed 110°C. 

From Table 6.1, it can be understood that product design alternatives 1 and 9 
lie within the customer’s range of segments I and III; 2 lies within the customer’s 
range of segments II and IV, and 4 and 5 lie within the customer’s range of 
segment II. Of these, product design 2 obtains the higher PDSI.    

6.2.2 AHP Method 

Let the decision maker prepares the following relative importance matrix:  

 JT CF MC 
JT 1 1/3 1/5 
CF 3 1 1/3 
MC 5 3 1 
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In this example, MC is given comparatively higher importance, and CF is 
given high importance. The normalized weights of each attribute are calculated, 
and these are: WJT = 0.1047, WCF = 0.2582, and WMC = 0.6371. The value of max
is 3.0387 and CR = 0.0372, which is much less than the allowed CR value of 0.1. 
Thus, there is good consistency in the judgements made. 

The value of PDSI is now calculated using the above weights and the 
normalized data of the attributes given in Table 6.2. This leads to the ranking given 
by the revised AHP or ideal mode of AHP methods. The alternative product 
designs are arranged in descending order of the PDSI: 

5 0.7837 
4 0.7186 
10 0.7172 
2 0.6962 
3 0.6839 
7 0.6744 
6 0.6534 
8 0.6396 
9 0.6384 
1 0.6254 

The AHP method suggests product design 5 as the preferred design when no 
market information is considered. When market information is also considered, 
then the ranking will be 2-7-6-9-1 (which is the same as that given by GTMA).   

It may be noted that the ranking depends upon the judgements of relative 
importance of attributes made by the decision maker.   

6.2.3 TOPSIS Method  

Various steps of TOPSIS methodology using the AHP method for assigning the 
relative importance of attributes are described below:   

Step 1:  The objective is to evaluate the alternative product designs for the 
power electronic device. The attributes considered are the same as those of 
Besharati et al. (2006), and these are: manufacturing cost (MC), junction 
temperature (JT), and thermal cycles to failure (CF).    

Step 2: The next step is to represent all the information available on attributes 
in the form of a decision matrix. The data are shown in Table 6.1.   

Step 3: The quantitative values of the product design selection attributes, 
which are given in Table 6.1, are to be normalized. CF is a beneficial attribute, and 
higher values are desirable. MC and JT are non-beneficial attributes, and lower 
values are desirable. The values of these attributes for different product designs are 
normalized but are not shown here. 

Step 4: Let the decision maker assigns the relative importance weights using 
the AHP method described in Section 6.2.2. The normalized weights of each 
attribute are calculated, and these are: WJT = 0.1047, WCF = 0.2582, and WMC = 
0.6371. The value of max is 3.0387 and CR = 0.0333, which is much less than the 
allowed CR value of 0.1. Thus, there is good consistency in the judgements made. 
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Step 5: The weighted normalized matrix is calculated. 

0.0326 0.0786 0.2202 
0.0272 0.1357 0.2565 
0.0357 0.0500 0.1684 
0.0362 0.0464 0.1555 
0.0380 0.0373 0.1347 
0.0300 0.0964 0.2280 
0.0289      0.1143   0.2384 
0.0342 0.0607 0.1943 
0.0316 0.0839 0.2202 
0.0349 0.0536 0.1607 

Step 6: The next step is to obtain the ideal (best) and negative ideal (worst) 
solutions. These are given as: 
V1

+ = 0.0272  V1
- = 0.0380 

V2
+ = 0.1357  V2

- = 0.0379 
V3

+ = 0.1347  V3
- = 0.2565 

Step 7: The next step is to obtain the separation measures, and these are: 
S1

+ = 0.1030  S1
- = 0.0548 

S2
+ = 0.1218  S2

- = 0.0985 
S3

+ = 0.0925  S3
- = 0.0889 

S4
+ = 0.0921  S4

- = 0.1014 
S5

+ = 0.0985  S5
- = 0.1218 

S6
+ = 0.1013  S6

- = 0.0656 
S7

+ = 0.1059  S7
- = 0.0791 

S8
+ = 0.0961  S8

- = 0.0664 
S9

+ = 0.1001  S9
- = 0.0590 

S10
+ = 0.0865  S10

- = 0.0972 
Step 8: The relative closeness of a particular alternative to the ideal solution is 

calculated, and these are:  
P1 = 0.3473; P2 = 0.4471; P3 = 0.4902; P4 = 0.5241;  
P5 = 0.5529; P6 = 0.3933; P7 = 0.4276; P8 = 0.4086; 
P9 = 0.3709; P10 = 0.5292  

This relative closeness to the ideal solution is named as the ‘product design 
selection index (PDSI)’ in the present example. 

Step 9: The scenarios are arranged in descending order of their PDSI. This can 
be arranged as 5-10-4-3-2-7-8-6-9-1. 

From the above values of PDSI, it is understood that product design 5 is the 
first choice when no market information is considered. When market information is 
also considered, then the ranking will be 2-7-6-9-11 (which is the same as that 
given by the GTMA and AHP methods).   
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6.2.4 Modified TOPSIS Method 

For using the same weights of attributes as those used in the AHP and TOPSIS 
methods, the modified TOPSIS method leads to the following ranking order: 

2 0.5311 
7 0.4104 
6 0.4154 
5 0.4272 
10 0.3522 
4 0.4382 
9 0.3747 
3 0.4673 
1 0.5618 
8 0.3913 

The modified TOPSIS method suggests product design 2 as the first choice for 
the given power electronic device when no market information is considered. 
When market information is also considered, then the ranking will be 2-7-6-9-1 
(which is the same as that given by the GTMA, AHP, and TOPSIS methods).   
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7
__________________________________________________________________ 

Machinability Evaluation of Work Materials

7.1 Introduction 

Machining operations have been the core of the manufacturing industry since the 
industrial revolution. Machining is a process of material removal using cutting 
tools and machine tools to accurately obtain the required product dimensions with 
good surface finish. The manufacturing industries strive to achieve either a 
minimum cost of production or a maximum production rate, or an optimum 
combination of both, along with better product quality in machining. Appropriate 
selection of work piece and tool materials, machine tools, cutting fluids, cutting 
conditions, and sequences is a key factor in achieving these goals. Moreover, these 
goals have gained importance within the context of economic liberalization and    
globalization. 

In general, a manufacturing process for a product consists of several phases 
such as product design, process planning, machining operations, and quality 
control. The machinability aspect is related to all phases of manufacturing, 
especially to process planning and machining operations. The general objective of 
current research on machinability is to improve all phases of manufacturing by 
optimizing cost, productivity, and quality. Machinability is a measure of ease with 
which a work material can satisfactorily be machined. The machinability aspect is 
of considerable importance for production engineers to know in advance the 
machinability of work materials so that the processing can be planned in an 
efficient manner. The study can also be a basis for cutting tool and cutting fluid 
performance evaluation, and machining parameter optimization. 

In the process of product design, material selection is important for realizing 
the design objective and for reducing production costs. The machinability of 
engineering materials, owing to the marked influence on the production cost, needs 
to be taken into account in the product design, although it will not always be a 
criterion considered top priority in the process of material selection. If there are a 
finite number of work materials from among which the best material is to be 
chosen, and if each work material satisfies the required design and functionality of 
the product, then the main criterion to choose the work material is its operational 
performance during machining, i.e., machinability. 
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The basis of machinability evaluation depends on the manufacturer’s interest, 
and many other aspects. For instance, some manufacturers consider tool life as the 
most important criterion to evaluate machinability, while others consider quality of 
surface cut the dominant factor. The solution to these difficulties has eluded 
practicing engineers for decades. Since there is no universally accepted 
methodology for evaluating machinability, and numerous new materials enter the 
market every year, many manufacturers are encountering difficulties in selecting 
the most appropriate material for their products. 

Machinability is influenced by the machining process input variables, Xr (r = 
1, 2, …… , k), and the output variables, Yq (q = 1, 2, … , n), and the output 
variables are the functions of the input variables. 

Yq =  f(X1,X2, … , Xk)                                                                                           (7.1) 

The machining process is influenced by a number of variables. One may 
consider any number of machining process input or output variables for the 
purpose of machinability evaluation of work materials. Table 7.1 presents the most 
common machining process input and output variables.  

Table 7.1. Machining process variables 
__________________________________________________________________________

Machining process input and output variables 
__________________________________________________________________________
Machining process input variables (process-independent variables): 

1. Machine tool (rigidity, capacity, accuracy, etc.)
2. Cutting tool (material, coating, geometry, nature of engagement with the work 

material, tool rigidity, etc.)
3. Cutting conditions (speed, feed, and depth of cut) 
4. Work material properties (hardness, tensile strength, chemical composition, 

microstructure, method of production, thermal conductivity, ductility, shape and 
dimensions of the job, work piece rigidity, etc.)

5. Cutting fluid properties and characteristics 

Machining process output variables (process-dependent variables): 
1. Cutting tool life/tool wear/tool wear rate 
2. Cutting forces/specific cutting forces 
3. Power consumption/specific power consumption  
4. Processed surface finish 
5. Processed dimensional accuracy 
6. Metal removal rate 
7. Noise
8. Vibrations
9. Cutting temperature 
10. Chip characteristics 

__________________________________________________________________________

However, it may be added that the machining process input variables may not 
precisely represent machinability. For example, materials of same composition but 
different metallographic structure may have different machinability characteristics. 
Machinability evaluation is based on the evaluation of certain economic and 
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technical objectives (such as higher production rate, low operational cost, good 
product quality, etc.), which are the consequences of the machining operation on a 
given work material. Machining process output variables are nothing but the 
behavioral properties of the work materials during machining operations in terms 
of economic and technical consequences, and are directly related to machining 
operations, and hence to machinability. These machining process output variables 
are expressed in quantitative terms for the purpose of comparison. As the 
machining process output variables are directly related to the machining 
operations, it is quite appropriate to consider the output variables as the pertinent 
representatives of the machinability of work materials. Moreover, as the machining 
process output variables are functions of machining process input variables, the  
majority of researchers have preferred the machining process output variables for 
the machinability evaluation of work materials. Thus, the machining process output 
variables are the pertinent, and most commonly accepted measures of 
machinability. 

A machinability attribute is defined as a machining process variable. It can be 
any machining process input or output variable that affects the machinability. 
Machinability evaluation of work materials can be carried out using both types of 
variables. However, as mentioned above, machining process output variables are 
the pertinent machinability attributes (Table 7.1). These attributes are common to 
all machining operations, and only the terminology may vary for cutting tools and 
cutting forces in the machining operations. For example, the cutting tool is called 
single point tool in turning/shaping/planning/boring operations, drill in drilling 
operations, reamer in reaming operations, tap in tapping operations, milling cutter 
in milling operations, grinding wheel in grinding operations, etc. Similarly, the 
cutting forces are named differently in different machining operations: main 
cutting force, feed force, and thrust force in turning/shaping/planning/boring 
operations, torque and thrust in drilling/reaming/tapping operations, tangential 
force and axial force in milling operations, normal force and tangential force in 
grinding operations, etc.

It is also noted from a literature review on machinability evaluation (Bech, 
1963; Konig and Erinski, 1983; Mills and Redford, 1983; Ostafev et al. 1989; 
Malakooti et al. 1990; Notoya et al. 1990; Trent, 1991; Eyada, 1992; Kato et al.
1992; Shanmugam and Krishnamurthy, 1992; Jin and Sandstrom, 1994; 
Yoshikawa et al. 1994; Enache et al. 1995; Hung et al. 1995; Liao, 1996; 
Arunachalam and Mannan, 2000; Ong and Chew, 2000; Dravid and Utpat, 2001; 
Kim et al. 2002; Rao and Gandhi, 2002; Boubekri et al. 2003; Davim and Reis, 
2004; Rech et al. 2004; Davim and Mata, 2005; Manna and Bhattacharya, 2005; 
Rao, 2005; Stoi et al. 2005; Özdemir and Özek, 2006; Šalak et al. 2006; eker 
and Hasirci, 2006; Morehead et al. 2007) that the criteria, in general, for the 
machinability assessment of different work materials include tool life, tool 
wear/tool wear rate, cutting forces/specific cutting forces, power 
consumption/specific energy consumption, processed surface finish, dimensional 
accuracy of the processed surface, etc. So far, research has been based mainly on 
experimental work to characterize the machinability of work materials. Some 
researchers have evaluated the machinability of different work materials 
considering ‘any one’ of the above criteria only (Ostafev et al. 1989; Notoya et al.
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190; Eyada, 1992; Kato et al. 1992; Jin and Sandstrom, 1994; Yoshikawa et al.
1994; Hung et al. 1995; Dravid and Utpat, 2001). Depending on the techno-needs 
of a process, some criteria may play a primary or secondary role in the 
machinability evaluation. However, realistic estimation of the machinability can be 
carried out only by considering all the criteria and their interrelations. The selection 
procedures suggested by other researchers considered a number of (i.e., more than 
one) machining process output variables, and these output variables were examined 
with respect to the work material properties and characteristics. So far, work 
materials have been evaluated by researchers considering their performance with 
respect to each machining process output variable separately, and then the final 
decision regarding the selection of work material (i.e., machinability evaluation) 
was taken, in a subjective manner, keeping in mind the overall performance.  

It is clear that there is a need to develop a scientific/mathematical tool for 
machinability evaluation that is capable of considering the requirements of a given 
machining operation. Considerable work in this direction, i.e., simultaneous 
consideration of machinability attributes using mathematical models, has been 
reported by a few researchers (Malakooti et al. 1990; Enache et al. 1995; Liao, 
1996; Ong and Chew, 2000; Rao and Gandhi, 2002; Rao, 2005).  

It was recommended by Rao (2005) to short-list various work materials on the 
basis of satisfying the required design and functionality of the product. Machining 
process input variables such as work material variables play an important role in 
short-listing. After short-listing the materials, the main criterion to choose the work 
material is its operational performance while being machined, i.e., the resulting 
machining process output variables.  

7.2 Examples 

Now, to demonstrate and validate the application of decision making-methods, two 
examples are considered. In both examples, GTMA is applied first, and 
subsequently a few MADM methods are applied to rank and select the work 
materials from a machinability point of view. 

7.2.1 Example 1 

Konig and Erinski (1983) listed and discussed the general machining 
characteristics of aluminum pressure die-cast and die-cast alloys under various 
machining conditions for turning, face milling, and drilling operations. The authors 
used the results of turning data (Bech, 1963) of non-ferrous and ferrous alloys 
machined with high-speed machining tools. The results are given in Table 7.2. 
One-hour cutting speeds determined from machining tests on aluminum-
magnesium die-cast alloy (GK-A1Mg5) and magnesium-aluminum die-cast alloy 
(GK-MgA19Zn) are the highest compared with the corresponding values for 
aluminum-silicon die-cast alloys, gray cast iron (GG26) and carbon steel (C35). 
The one-hour cutting speeds for aluminum-silicon die-cast alloys are higher than 
for GG26 and C35. The specific cutting forces (i.e., cutting force per unit area of 
the material removed) when machining aluminum-silicon die-cast alloys and GK-
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A1Mg5 are very low compared to those for GG26 and C35, and for GK-
MgA19Zn, the specific cutting force is the lowest. Machining of aluminum-silicon 
die-casting alloys required power 3 to 4.5 times higher than for GG26, and 1.5 to 2 
times higher than C35. The alloys GK-A1Mg5 and GK-MgA19Zn required 
comparatively very high power. 

This example is considered to demonstrate the application of the GTAM and 
MADM methods. 

Table 7.2. Objective data of the attributes of example 7.2.1
_________________________________________________________________
Work material  VC (m/min) CF (N/m2) PI (kW)  
_________________________________________________________________
W1   710  400  28 
W2   900  415  38 
W3   1630  440  59 
W4   1720  235  43 
W5   120  1150  8 
W6   160  1750  19 
_________________________________________________________________
W1: GK-AlSi10Mg (aluminum-silicon die-cast alloy) 
W2: GK-AlSi6Cu4 (aluminum-silicon die-cast alloy) 
W3: GK-AlMg5 (aluminum-magnesium die-cast alloy) 
W4: GK-MgAl9Zn (magnesium-aluminum die-cast alloy) 
W5: GG26 (gray cast iron with lamellar graphite); W6: C35 (low-carbon steel) 
VC: One-hour cutting speed;    CF = Specific cutting force;         CI = Cutting 
power input
Cutting conditions: dry, tool material–K10, feed–0.175 mm/rev, and depth of 
cut–2 mm

7.2.1.1 Application of Graph Theory and the Matrix Approach (GTMA) 
Pertinent machinability attributes are identified. The attributes considered are: one-
hour cutting speed (VC), specific cutting force (CF), and cutting power input (PI). 
The quantitative values of these attributes are given in Table 7.2, and these are to 
be normalized. One-hour cutting speed (VC) is a beneficial attribute. A work 
material is said to possess higher machinability if it allows very high cutting speeds 
for a specified tool life. So, higher values are desired. Specific cutting force (CF) 
and cutting power input (PI) are non-beneficial attributes, and lower values are 
desirable. The values of the three attributes are normalized, and are given in Table 
7.3 in their respective columns. Table 7.3 shows the values of Ai for different work 
materials. 
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Table 7.3. Normalized data of the attributes of example 7.2.1 
____________________________________________________
Work material VC  CF  PI 
____________________________________________________
W1  0.4128  0.5875  0.2857 
W2  0.5233  0.5663  0.2105 
W3  0.9477  0.5341  0.1356 
W4  1  1  0.1860 
W5  0.0698  0.2043  1 
W6  0.0932  0.1343  0.4211 
____________________________________________________

The relative importance of attributes (i.e., aij) is assigned values as explained 
in Section 2.4. Let the decision maker select the following assignments: 

   VC    CF    PI 
VC     -    0.745    0.745 
CF    0.255     -    0.5 
PI    0.255    0.5     - 

For example, one-hour cutting speed is considered much more important than 
the specific cutting force in turning operations. This is because the one-hour cutting 
speed is related to high cutting speeds for a specified tool life of one-hour. If a 
work material permits high cutting speeds for a specified tool life then production 
time will be reduced, and production costs will also be reduced. Thus, a one-hour 
cutting speed is considered very important, compared to the other attributes, i.e.,
specific cutting force and the cutting power input, and thus a relative importance 
value of 0.745 is assigned to a one-hour cutting speed over specific cutting force 
and cutting power input (i.e., a12 = 0.745 and a13 = 0.745), and a relative 
importance value of 0.255 is assigned to the specific cutting force (i.e., a21 = 0.255) 
and cutting power input (i.e., a31 = 0.255). The specific cutting force and cutting 
power input are considered as equally important in turning operations and thus 
equal relative importance is assigned to these attributes (i.e., a23 = a32 = 0.5). It may 
be added that these values can be decided by the decision maker, depending on the 
requirements. 

The machinability attributes digraph, machinability attributes matrix of the 
digraph, and machinability function for the matrix can be prepared. The value of 
the machinability index is calculated using the values of Ai and aij for each work 
material. 

The machinability index values of different work materials are given below in 
descending order: 

W4: 0.8513 
W3: 0.6228 
W2: 0.5308 
W1: 0.5284 
W5: 0.4504 
W6: 0.3241 
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From the above values of the machinability index, it is clear that the work 
material W4 (i.e., GK – Mg A19Zn: magnesium-aluminum die-cast alloy) is the 
best choice among the considered materials for the turning operation under the 
given conditions. The next choice is W3 (i.e., GK-AlMg5: aluminum-magnesium 
die-cast alloy), and W6 (i.e., low-carbon steel) is the last choice.  

Following graph theory and the matrix approach, the coefficients of 
similarity/dissimilarity are also calculated for different work materials using 
Equations 2.15 and 2.16. The coefficient of similarity values are given in Table 
7.4. These are useful for work materials documentation, and for easy storage and 
retrieval of the work materials data for turning operations under the given 
conditions. 

Table 7.4. Values of the coefficient of similarity for the work 
materials of example 7.2.1 
________________________________________________________
Work material W2 W3 W4 W5 W6  
________________________________________________________
W1  0.9955 0.8483 0.6206 0.8524 0.6134 
W2   0.8522 0.6234 0.8486 0.6106  
W3    0.7316 0.7232 0.5204  
W4     0.5291 0.3807  
W5      0.7196  
________________________________________________________

7.2.1.2 SAW Method 
The procedure suggested by Edwards et al. 1982) to assess weights for each of the 
attributes to reflect their relative importance to the work material selection decision 
is as follows. The attributes are ranked in order of importance, and 10 points are 
assigned to the least important attribute PI. CF is also considered least important 
and equal to PI in this example. The attribute VC is given 50 points to reflect its 
relative importance. The final weights are obtained by normalizing the sum of the 
points to one. For example, the weight for attribute VC is calculated by 
50/(50+10+10) = 0.7142. The weights of CF and PI are calculated as 0.1429 each. 
Using these weights, and the normalized data of the attributes for different work 
materials, the machinability index values are calculated, and are arranged in 
descending order of the index.

W4: 0.8838 
W3: 0.7726 
W2: 0.4848 
W1: 0.4196 
W5: 0.2219 
W6: 0.1458 

The SAW method also suggests W4 as the best machinable work material.  

7.2.1.3 WPM 
The same weights as were used in the SAW method are selected for this method 
and the values of machinability index are calculated. The values are arranged in 
descending order. 
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W4: 0.7863 
W3: 0.5693 
W2: 0.4646 
W1: 0.4119 
W5: 0.1190 
W6: 0.1216 

The ranking of work materials suggested by both the SAW and WPM methods 
is the same in this example. 

7.2.1.4 AHP and its Versions 
If the same weights as were used in the SAW method are selected for in this 
method, then the ranking of work materials obtained by using the relative as well 
as ideal mode AHP will be same.  The multiplicative AHP method also yields the 
same ranking. 

7.2.1.5 TOPSIS Method 
Rao (2005) applied the TOPSIS and AHP methods together for machinability 
evaluation of work materials. The AHP method was used for finding the weights of 
importance of the attributes. The procedure is given below: 

Step 1: The objective is to evaluate the machinability of different non-ferrous 
and ferrous alloys. The attributes considered are: VC, CF, and PI.  VC is the 
beneficial attribute, and CF and PI are non-beneficial attributes. 

Step 2: The next step is to represent all the information available on attributes 
in the form of a decision matrix. The data given in Table 7.2 are represented as a 
matrix D16x3, but not shown here. 

Step 3: The quantitative values of the machinability attributes, which are given 
in Table 7.2, are normalized as explained in Section 3.2.6. 

Step 4: The relative importance of attributes (aij) are assigned values using the 
AHP method as explained in Section 7.2.4. Let the decision maker select the 
following assignments: 

   VC    CF     PI 
VC       1      5      5 
CF       1/5      1      1 
PI       1/5      1      1 

Once again, it may be added that, in actual practice, these values of relative 
importance can be judiciously decided upon by the user/experts, depending on the 
requirements. The assigned values in this chapter are for demonstration purposes 
only. 

The normalized weight for each attribute is: WVC = 0.7142, WCF = 0.1429, and 
WPI = 0.1429. The value of max is 3.0 and CR = 0.0, and there exists absolute 
consistency in the judgements made. 

Step 5: The weighted normalized matrix V16x3 is calculated. 
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0.1921     0.0256     0.0448 
0.2435     0.0266     0.0608 
0.4410     0.0282     0.0943 
0.4654     0.0151     0.0688 
0.0325     0.0737     0.0128 
0.0433     0.1122     0.0304 

Step 6: The next step is to obtain the ideal (best) and the negative ideal (worst) 
solutions, and these are given as: 
VVC

+ = 0.4654  VVC
- = 0.0325 

VCF
+ = 0.0151  VCF

- = 0.1122 
VPI

+ = 0.0128  VPI
- = 0.0943 

Step 7: Here, the separation measures are obtained as: 
SW1

+ = 0.2753  SW1
- = 0.1882 

SW2
+ = 0.2273  SW2

- = 0.2302 
SW3

+ = 0.0861  SW3
- = 0.4171 

SW4
+ = 0.0559  SW4

- = 0.4444 
SW5

+ = 0.4368  SW5
- = 0.0902 

SW6
+ = 0.4335  SW6

- = 0.0649 
Step 8: The relative closeness of a particular alternative to the ideal solution 

(i.e., machinability index) is calculated, and these are: 
P W1 = 0.4060 P W2 = 0.5032 P W3 = 0.8289 P W4 = 0.8882 
PW5 = 0.1711 P W6 = 0.1302 

Step 9: The work materials are arranged in descending order of their 
machinability index, and this can be arranged as W4-W3-W2-W1-W5-W6.

Thus, the TOPSIS method also suggests W4 as the first right-choice work 
material from the machinability point of view. 

7.2.1.6 Modified TOPSIS Method 
In this process, the positive ideal solution (R+) and the negative ideal solution (R-), 
which are not dependent on the weighted decision matrix, are given by using 
Equations 3.19 and 3.20. 
RVC

+ = 0.6515  RVC
- = 0.0455 

RCF
+ = 0.1055  RCF

- = 0.7853 
RPI

+ = 0.0895  RPI
- = 0.6603 

The weighted Euclidean distances are calculated as 
DW1

+ = 0.3354  DW1
- = 0.3245 

DW2
+ = 0.2932  DW2

- = 0.3486 
DW3

+ = 0.2205  DW3
- = 0.5320 

DW4
+ = 0.1481  DW4

- = 0.5770 
DW5

+ = 0.5352  DW5
- = 0.2386 

DW6
+ = 0.5636  DW6

- = 0.1697 
The relative closeness of a particular alternative to the ideal solution is 

calculated (i.e., machinability index), and these are:  
PW1-mod = 0.4918  PW2-mod = 0.5432  PW3-mod = 0.7070    
PW4-mod = 0.7958  PW5-mod = 0.3083  PW6-mod = 0.2315 
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The alternative materials are arranged in descending order of their 
machinability index. This can be arranged as W4-W3-W2-W1-W5-W6.  

7.2.2 Example 2 

Enache et al. (1995) conducted turning experiments on titanium alloys using 
different cutting tools of different geometries, and presented a mathematical model 
for assessing the machinability of various work-tool combinations. The work-tool 
combinations, experimental conditions, and test results are given in Table 7.5. The 
various steps of the methodology are carried out as described below. 

Table 7.5. Objective data of the machinability attributes of example 7.2.2 (from 
Enache et al., 1995; with permission from CIRP) 
___________________________________________________________________
Work-tool   Tool wear rate Specific energy Surface roughness 
combination        (m/min)  consumed (N)         ( m)
___________________________________________________________________
1   0.061     219.74  5.8 
2   0.093  3,523.72  6.3 
3   0.064  2,693.21  6.8 
4   0.028     761.46  5.8 
5   0.034  1,593.48  5.8 
6   0.013  2,849.15  6.2 
___________________________________________________________________
1: TiAl6V4-P20; 2: TiMo32-P20; 3: TiAl5Fe2.5-P20; 4: TiAl6V4-P20 (TiN); 5: 
TiAl6V4-K20;  6: TiAl6V4-K20* (K20* is a special form of tool without top in 
contrast with other tools). Cutting conditions: dry, cutting speed–150 m/min, feed–
0.15 mm/rev, and depth of cut–0.5 mm 

7.2.2.1 Application of SAW Method 
Pertinent machinability attributes are identified. The attributes considered are the 
same as those of Enache et al. (1995), and these are tool wear rate (TW), specific 
energy consumed (SE), and processed surface roughness (SR). These three 
attributes are non-beneficial, and low values are most desired. In other words, a 
work material is said to possess higher machinability if it produces very low values 
of tool wear rate, specific energy consumption, and surface roughness in the 
turning operation. The objective values of these attributes, given in Table 7.5, are 
to be normalized. The values of the three attributes are normalized, and are given 
in Table 7.6 in their respective columns. 
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Table 7.6. Normalized data of the attributes of example 7.2.2 
________________________________________________________________
Work-tool combination  TW  SE  SR 
________________________________________________________________
1    0.2131  1  1 
2    0.1398  0.0624  0.9206 
3    0.2031  0.0816  0.8529 
4    0.4643  0.2886  1 
5    0.3824  0.1379  1 
6    1  0.0771  0.9355 
________________________________________________________________

The same weights as those selected by Enache et al. (1995) are used in this 
method, and the values of machinability index are calculated. The values are 
arranged in descending order as given below: 

6: 0.8213 
4: 0.4747 
1: 0.4248 
5: 0.3865 
3: 0.2329 
2: 0.1885 

The above ranking obtained using the SAW method matches very well with 
the results presented by Enache et al. (1995). These show that TiAl6V4 possesses 
better machinability than TiMo32 and TiAl5Fe2.5. Comparing the machinability of 
the same work material with different tools, the maximum machinability is 
obtained with tool K20*, followed by P20 (TiN), P20, and K20. 

7.2.2.2 WPM 
The same weights as those selected by Enache et al. (1995) are used in this 
method, and the values of the machinability index are calculated. The values are 
arranged in descending order as given below: 

6: 0.6143 
4: 0.4518 
5: 0.3412 
1: 0.3230 
3: 0.1922 
2: 0.1399 

WPM also suggests that work-tool combination designated by 6 possesses 
better machinability than the other work-tool combinations in this example. 

7.2.2.3 AHP and its Versions 
If the same weights as those used in the SAW method are selected in this method, 
then the ranking of work-tool combinations obtained by using the relative as well 
as ideal mode AHP will be same.  The multiplicative AHP method also yields the 
same ranking as that given by WPM. 



92        Decision Making in the Manufacturing Environment 

7.2.2.4 TOPSIS Method 
Rao (2005) applied the TOPSIS and AHP methods together for machinability 
evaluation of work materials. The AHP method was used to determine the weights 
of importance of the attributes. The procedure is given below: 

Step 1: The objective is to evaluate the machinability of different titanium 
work materials and work-tool combinations. The attributes considered are the same 
as those of Enache et al. (1995), namely, tool wear rate (TW), specific energy 
consumed (SE), and processed surface roughness (SR). 

Step 2: The next step is to represent all the information available on attributes 
in the form of a decision matrix. The data given in Table 7.5 are represented as 
matrix D26x3, but not shown here. 

Step 3: The quantitative values of the machinability attributes, given in Table 
7.5, are normalized as explained in Section 3.2.6.

0.4476   0.0395   0.3862 
0.6824   0.6333   0.4195 
0.4696   0.4841   0.4528 
0.2054   0.1369   0.3862 
0.2495   0.2864   0.3862 
0.0954   0.5121   0.4129 

Step 4: The relative importance of attributes (aij) is assigned. Let the decision 
maker select the following assignments: 

   TW    SE    SR 
TW     1    5    7 
SE    1/5    1    3 
SR    1/7    1/3    1 

Once again, it may be added that the assigned values in this example are for 
demonstration purposes only.The normalized weights of each attribute are WTW = 
0.7306, WSE = 0.1884, and WSR = 0.0810. The value of max is 3.0649 and CR = 
0.0624, which is much less than the allowed CR value of 0.1. Thus, there is good 
consistency in the judgements made. 

Step 5: The weighted normalized matrix V26x3 is calculated. 

0.3270     0.0074 0.0313 
0.4986     0.1193 0.0339 
0.3431     0.0912 0.0367 
0.1501     0.0258 0.0313 
0.1823     0.0539 0.0313 
0.0697     0.0965 0.0334 

Step 6: The next step is to obtain the ideal (best) and negative ideal (worst) 
solutions, and these are given as: 
VTW

+ = 0.0697  VTW
- = 0.4986 

VSE
+ = 0.0074  VSE

- = 0.1193 
VSR

+ = 0.0313  VSR
- = 0.0367 
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Step 7: Here, the separation measures are obtained as: 
SNr1

+ = 0.2573  SNr1
- = 0.2049 

SNr2
+ = 0.4432  SNr2

- = 0.0027 
SNr3

+ = 0.2860  SNr3
- = 0.1579 

SNr4
+ = 0.0825  SNr4

- = 0.3608 
SNr5

+ = 0.1218  SNr5
- = 0.0891 

SNr6
+ = 0.3230  SNr6

- = 0.4295 
Step 8: The relative closeness of a particular alternative to the ideal solution 

(i.e., machinability index) is calculated, and these are: 
PNr1 = 0.4433 PNr2 = 0.0060 PNr3 = 0.3558 PNr4 = 0.8139 
PNr5 = 0.7262 PNr6 = 0.8252 

Step 9: The work-tool combinations are arranged in descending order of their 
machinability index, and this can be arranged as 6-4-5-1-3-2. 

Thus, the TOPSIS method also suggests Nr6 as the best work-tool 
combination from the machinability point of view. 

7.2.2.5 Modified TOPSIS Method 
In this process, the positive ideal solution (R+) and the negative ideal solution (R-), 
which are not dependent on the weighted decision matrix, are used. 
RTW

+ = 0.0954  RTW
- = 0.6824 

RSE
+ = 0.0395  RSE

- = 0.6333 
RSR

+ = 0.3862  RSR
- = 0.4528 

The weighted Euclidean distances are calculated as: 
DNr1

+ = 0.3009  DNr1
- = 0.3280 

DNr2
+ = 0.5645  DNr2

- = 0.0094 
DNr3

+ = 0.3743  DNr3
- = 0.1931 

DNr4
+ = 0.1032  DNr4

- = 0.4618 
DNr5

+ = 0.1700  DNr5
- = 0.4000 

DNr6
+ = 0.2061  DNr6

- = 0.5044 
The relative closeness of a particular alternative to the ideal solution is 

calculated (i.e., machinability index),  and these are:  
PNr1-mod = 0.5216  PNr2-mod = 0.01642 PNr3-mod = 0.3403   
PNr4-mod = 0.8174  PNr5-mod = 0.7017  PNr6-mod = 0.7099 
                             

The alternative work-tool combinations are arranged in descending order of 
their machinability index. This can be arranged as 4-6-5-1-3-2. Thus, the modified 
TOPSIS method suggests 4 as the first right choice, and 6 as the second choice. 
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8
__________________________________________________________________ 

Cutting Fluid Selection for a Given Machining 
Application

8.1 Introduction 

Much heat is generated in metal cutting operations due to plastic deformation of 
work materials, friction at the tool-chip interface, and friction between the 
clearance face of the tool and the work piece. The heat generation increases the 
temperature of both the work piece and the tool point, resulting in decrease in 
hardness, and hence tool life. The machined surface will also be less smooth, and 
the possibility of built-up edge increases. So, the use of a cutting fluid during a 
machining operation very essential. The major factors that govern the selection of 
cutting fluids are: (i) the machining process, (ii) cutting tool material, and (iii) 
work piece material. Other factors, such as compatibility with the machine tool, 
performance requirements, operator interaction, environment friendliness, and 
economy must also be looked into. 

Nowadays, ever increasing environmental problems are becoming a serious 
threat to the survival and development of society. After the publishing of ISO 9000 
quality management standards, the ISO 14000 environmental management system 
standards, and the OHSAS 18001 occupational health and safety assessment series, 
one of our greatest strategic challenges is to apply the three series integrated into a 
management system in enterprises, not only from an engineering but also from a 
business and marketing perspective. The manufacturing industry is one of the main 
roots of environmental pollution. Therefore, minimizing the environmental impact 
of the manufacturing industry has become an important topic for all manufacturers. 
During these critical times, an advanced manufacturing mode - green 
manufacturing - suitable for a sustainable development strategy has been presented. 
Green manufacturing is a modern manufacturing strategy, essential for 21st century 
manufacturing industries, integrating all issues of manufacturing, its ultimate goal 
being to reduce and minimize environmental impact and resource consumption 
during a product’s life cycle, which includes design, synthesis, processing, 
packaging, transportation, and the use of products in continuous or discrete 
manufacturing industries. 
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As cutting fluids are widely used in industrial machining operations, and 
because of their negative effects on health, safety, and environment, legislation and 
public environmental concerns now have great impacts on their development. Dry 
machining and minimum quantity lubrication (MQL) machining have been 
successfully applied in some kinds of machining processes. However, in others, 
such as grinding, it is very difficult to obtain good results without the help of 
cutting fluids, because of the high amount of heat generated during grinding. As for 
MQL machining, although progress is being made, we have a long way to go 
before this problem is solved in applications workshops. Therefore, research on the 
composition, supply techniques, selection, cleaning, and maintenance of cutting 
fluids is still active at present.    

The selection of cutting fluids is more an art, than a science, because there is 
almost no standardized method available for this purpose. Numerous methods have 
been proposed in the past, yet very few of these gave reasonably satisfactory 
results. Different metal cutting operations have been used to evaluate cutting fluids. 
Nagpal and Sharma (1973) presented the results of a series of short- and long-run 
cylindrical turning tests for the evaluation of most common, commercially 
available metal cutting fluids, namely, water soluble, straight mineral, chlorinated 
and sulfo-chlorinated oils. Peters and Aerens (1976) made an attempt to evaluate 
grinding fluids based on grinding charts obtained in cylindrical plunge grinding. 
The authors considered performance parameters, roughness, tangential force, 
normal force, grinding ratio, specific energy, metal removal rate, tool life, and cost 
for grinding conditions in the middle of the practical usable range. From the 
comparison, it appeared that the large variety of grinding fluids offered by the 
market was not justified commercially or technologically. The use of oils led to a 
significantly lower cost price, and an increased surface quality in external as well 
as internal grinding, especially when high wheel speed was used. 

de Chiffre (1978) studied a series of hole-making operations (drilling, boring, 
reaming, and tapping) in order to evaluate different types of cutting fluids. After 
measuring performance parameters such as number of holes to failure, cutting 
force, and surface finish, the author concluded that the effectiveness of a coolant 
greatly depended on the machining process and on the performance measures. 
Sutcliffe et al. (1979) used the criterion of catastrophic drill failure, or a maximum 
of 120 holes. Different feeds, speeds, and types of cutting fluids were tested, 
including a nitrite-free synthetic coolant that performed very well. 

Rowe (1982) performed cutting fluids testing for cylindrical grinding 
operations, involving the coordination of various chemical and physical properties 
of the grinding fluids, their physiological actions and their mechanical 
performance. A simplified databank was also proposed, allocating each result 
under one of seven categories, and combining these by means of a software 
program. Various weighting factors were also applied to the practical requirements 
of specific grinding processes. Rapp (1984) discussed the general criteria for the 
selection of cutting fluids for machine tools, and identified the advantages offered 
by an appropriate selection of cutting fluids (e.g., cost reduction, higher 
productivity, better safety, lower rate of rejects, and less frequent sharpening of 
tools). 
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Yuhta et al. (1984) carried out experiments on the grinding abilities of 
grinding fluids (water miscible and insoluble in water). The effects of each 
component of the grinding fluid on the grindability were discussed. The 
experimental results showed that when the commercial grinding fluid with the 
highest grindability was used, oxy-ferric hydroxide formed in the surface layer of 
the work piece, and the surface layer was thinner than that produced by means of 
other grinding fluids. This suggested that when grinding steel with a diamond 
wheel, grindability was improved under conditions in which oxy-ferric hydroxide 
was produced in the surface layer of the work piece. Lorenz (1985) compared 
various cutting fluids by tapping test, taking into consideration also the tapping 
speed. It was shown that the statistical treatment of torque measurements as a 
function of cutting speed provides a good comparative basis for assessing cutting 
fluids when machining a particular material, or a particular group of materials. The 
author discussed the selection of testing tools and test pieces, and also proposed the 
standardization of test procedure.  

Ghio (1986) studied cutting fluids for operations on metal with flexible 
abrasive belts. Compared with dry grinding, the use of a cutting oil ensured high 
production, economy, increased belt life, and a better finish. The author suggested 
the use of very low-viscosity straight mineral oils for materials that tend to clog the 
belt, and highly fluid compounded oils for carbon steels and non-ferrous metals. 
Bennett (1987) also presented results of testing of cutting fluids. The coolants 
tested were synthetic, semi-synthetic, soluble, and straight grinding oils. The three 
parameters monitored were grinding ratio, surface finish, and load on the wheel 
head. Narheim and Kendig (1987) evaluated the cutting fluid effectiveness in 
machining using electrochemical techniques. A correlation was found between the 
degree of electro-absorption of surfactants from cutting fluids at metal surfaces, 
and cutting forces in machining. The effectiveness of cutting fluids, as 
characterized by cutting forces, was assessed using rapid electrochemical 
techniques, thereby reducing the need for time-consuming and costly machinability 
tests.

Wakabayashi and Ogura (1990) evaluated cutting fluids in terms of 
consumption energy in tapping tests. The consumption energy was estimated by 
integration of the total torque-time curve as an alternative to the tapping torque 
commonly used to evaluate cutting fluids. It was pointed out that cutting fluids 
influence the overall cutting process, rather than causing only a reduction of 
friction on the interface. Based on consumption energy, it was possible to account 
for the overall cutting process. Cholakov et al. (1992) compared lubricating 
properties of 16 oil- and water-based fluids, tap water, and air in surface grinding 
of En9 steel specimens. The oils showed an overall better lubricity, which was less 
affected by changes of operation parameters. Some water-based fluids, under 
particular operating conditions, were equal to or better than the oils in lowering 
forces and in wheel protection, but none achieved the surface quality obtained with 
oil. 

Okuyama et al. (1993) studied the cooling action of grinding fluid in shallow 
grinding. A new method was proposed for measuring the heat transfer coefficient 
in the vicinity of the wheel-work piece contact zone. The experiments were 
performed under a variety of conditions during which grinding fluid was supplied 
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and the authors recommended certain measures for increasing the cooling 
efficiency (i.e., setting the velocity of the coolant higher than the critical value to 
penetrate the air flow layer formed around the wheel periphery, using a nozzle with 
a thin throat and attaching a scrapper plate above the nozzle outlet, choosing a 
wheel of larger grain size, and setting a higher wheel speed). de Chiffre et al.
(1994) used a reaming test for cutting fluid evaluation, as an alternative to tapping 
torque measurement and thread finish evaluation. Davinson (1995) provided some 
guidelines for choosing the correct cutting fluids, and disposing of the used 
coolants, including waste minimization and elimination. Research into the effects 
of a coherent cutting fluid jet as opposed to a dispersed jet, upon exit from the 
nozzle, was carried out by Webster et al. (1995). Compared with a dispersed jet, 
the authors reported that when a coherent jet was maintained, the grinding 
temperature was reduced. 

Sheng and Oberwalleney (1997) reviewed the basic components, performance 
and health effects, and post-processing options for non-water-miscible and water 
mixed fluids. Time-based degradation mechanisms for cutting fluid performance 
were examined, and disposal pre-treatment options for cutting fluids were 
discussed. Maekawa (1998) reviewed computational aspects of tribological 
phenomena in metal machining. Emphasis was laid on the interaction between the 
mechanical aspects of tribology, and the characteristics of the cutting process. 
Brinksmeier et al. (1999) discussed aspects of cooling lubrication reduction in 
machining advanced materials, e.g., titanium alloys and extreme low-sulfur steels. 
The authors focused the research on cutting tool performance and wear mechanism 
at high cutting speeds, while using different lubricants and cooling supply 
strategies. The investigations contributed to increasing process stability and tool 
life, improving of machined surface finish, and avoiding tensile residual stresses. 

Yamanaka et al. (1996) developed a new, easy, and accurate method to 
evaluate the performance of grinding fluids by means of a block-on test ring 
machine and an electro-plated CBN wheel. Based on this, the authors developed a 
new grinding fluid for the CBN wheel. In another work, Yamanaka et al. (1997) 
had provided reasons for the outstanding properties of extreme-pressure agents 
based on the analysis of specimen surfaces after the tests. Further, Yamanaka et al.
(1998) evaluated the grinding performances of 11 typical metal working additives, 
and found that sulfur-type EP additives and phosphorous-type EP additives showed 
excellent grinding performance, even at low concentration. Yamanaka et al.
(2000a), reported on whether or not any synergic effect can be observed in 
grinding performance when two different types of metal working additives are used 
together. The results showed that there was no synergic effect on grinding 
performance in a total of 12 cases. Further, Yamanaka et al. (2000b) studied the 
grinding performance of various types of carboxylic acids, and found that among 
those tested, straight chain saturated higher fatty acids with carbon atom numbers 
exceeding that of lauric acid are the best in grinding performance.  

Ebbrell et al. (2000) studied the effects of cutting fluid application method on 
the grinding process. Results from three experiments with different quantities of 
cutting fluid passing through the grinding zone were presented. Michigan 
Technological University developed a cutting fluid evaluation software test bed. 
Upton (2000) described a new drilling test for the evaluation of cutting fluids. The 



Cutting Fluid Selection        101 

technique was based on a procedure that relied on gathering performance data from 
tests using the same drill with different cutting fluids, or lubricant concentrations, 
rather than on the life time or wear rate of individual tools. Chen et al. (2001)
presented an analytical model for the prediction of shop floor aerosol generation 
rate, and particulate size distribution associated with the spin-off motion of cutting 
fluid from a rotational work piece in a turning operation. The predictive models 
developed can be used as a basis for human exposure and health hazard analysis. 

Belluco and de Chiffre (2001) presented the results of cutting fluid testing 
through subsequent hole-making operations. AISI 316L stainless steel specimens 
were machined with drilling, core drilling, reaming and tapping using HSS-E tools. 
The effect of different lubricants on cutting force and power was investigated in 
connection with the development of vegetable-based cutting oils. de Chiffre et al.
(2001) aimed to ream austenitic stainless steel using water-based fluids, and to 
evaluate the effect of cutting fluid on cutting forces, surface finish, and hole 
diameter. Results showed that torque and thrust measurements offer a reliable 
description of the lubricating properties of cutting fluids, while conventional 
surface roughness evaluation was associated with a large scatter in the data. Eppert 
et al. (2001) presented a methodology using the cluster analysis in a hierarchical 
agglomerative form, for the development of a classification scheme based on 
physical properties of a wide array of cutting fluids. Bartz (2001) described 
ecological and environmental aspects of cutting fluids, and suggested that all 
components, base oils and additives, have to be selected very carefully in order to 
minimize any health problems and any impact to the environment. Rao and Gandhi 
(2001) presented a cutting fluid selection index using digraph and matrix methods, 
which can serve for the evaluation and selection of cutting fluids. 

Sun et al. (2001) presented a two-grade fuzzy synthetic decision-making 
method using AHP for evaluation of grinding fluids. Varadarajan et al. (2002) 
investigated hard turning operations with MQL, and made a comparison with dry 
and wet turning. Tan et al. (2002) presented a decision-making framework model 
for cutting fluid selection for green manufacturing, together with a case study. 
Sokovic and Mijanovic (2001) studied ecological aspects of cutting fluids, and 
their influence on quantifiable parameters of cutting processes. Rao (2004) 
presented a combined MADM method for the selection of environmentally 
conscious cutting fluids using the TOPSIS and AHP methods.  

Dhar et al. (2006) studied the effect of minimum quantity lubrication (MQL) 
on tool wear and surface roughness while machining AISI 4340 steel. In another 
work, Dhar and Kamruzzaman (2006) conducted turning experiments on AISI 
4037 steel using cryogenic cooling by liquid nitrogen jets. Haq and Tamizharasan 
(2005) investigated the effects of cooling in hard turning operations. Reddy and 
Rao (2006) studied the effects of solid lubricants on cutting forces and surface 
quality in end milling. The results indicated that there was a considerable 
improvement in process performance with solid lubricant-assisted machining, 
compared to that of machining with cutting fluids. Obikawa et al. (2006) 
investigated high-speed grooving operations with minimum quantity lubrication 
(MQL).  Heinemann et al. (2006) studied the effect of MQL on the tool life of 
small twist drills in deep-hole drilling.  
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It is evident from the above that existing procedures of cutting fluid selection 
for a given machining application focus mainly on identifying the cutting fluid 
matching with a tool, work material, and machining operation. Different metal 
cutting operations have been used to evaluate cutting fluids, and the performance 
of a cutting fluid judged by the resulting machining process output variables such 
as: tool life (i.e., life of single point tool in turning/boring, drill in drilling, reamer 
in reaming, tap in tapping, grinding wheel in grinding), cutting forces (i.e., main 
cutting force and/or thrust in turning/boring, torque and/or thrust in 
drilling/reaming/tapping, normal force and/or tangential force in grinding), power 
consumption, cost per unit volume of material removed, surface finish, cutting 
temperature, dimensional accuracy, etc. The selection procedures suggested by 
earlier researchers considered either a single machining process output variable, or 
a number of machining process output variables, and these output variables were 
examined with respect to cutting fluid properties and characteristics. So far, cutting 
fluids have been evaluated in terms of their performance with respect to each 
machining process output variable separately, and then the final decision regarding 
selection was taken, in a subjective manner, keeping in mind the overall 
performance. It is clear that there is a need to develop a mathematical tool for 
cutting fluid selection that is capable of considering the requirements of a given 
machining application. The objective of a cutting fluid selection procedure is to 
identify cutting fluid properties, and obtain the most appropriate combination of 
cutting fluid properties in conjunction with the real requirement of a machining 
application. Thus, efforts need to be extended to determine attributes that influence 
cutting fluid selection for a given machining application, using a logical approach, 
to eliminate unsuitable cutting fluids and to select an appropriate cutting fluid to 
strengthen the existing cutting fluid selection procedure. A few researchers, such as 
Rowe (1982), Sun et al. (2001), Rao and Gandhi (2001), Tan et al. (2002) and Rao 
(2004), have presented some mathematical models for cutting fluid selection. 

A cutting fluid attribute is defined as a property or characteristic of the cutting 
fluid, or a machining process variable on which the cutting fluid has influence. 
Cutting fluid attributes can be broadly classified into two types, and are listed 
below: 

1. Cutting fluid properties and characteristics such as viscosity, viscosity 
index, composition, flash point, specific heat, thermal conductivity, lubricity, 
durability, film formation, anti-foaming characteristics, anti-contamination 
characteristics, cooling capacity, evaporation rate, toxicity, degradation, 
disposability, corrosion resistance, compatibility, cost of cutting fluid, molecular 
size, thermal stability, emulsion stability, chemical stability, handling qualities, 
physiological properties, operator acceptability, and ecological and environmental 
characteristics. 

2. Machining process variables on which the cutting fluid has influence
such as tool life (i.e., life of single point tool in turning/boring, drill in drilling, 
reamer in reaming, tap in tapping, grinding wheel in grinding), cutting forces (i.e.,
main cutting force and/or thrust in turning/boring, torque and/or thrust in 
drilling/reaming/tapping, normal force and/or tangential force in grinding), power 
consumption, cost per unit volume of material removed, surface finish, cutting 
temperature, dimensional accuracy, metal removal rate, etc.
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Rao (2004) proposed that the cutting fluids be short-listed for a given 
machining application, on the basis of cutting fluid attributes of first type, i.e.,
properties or characteristics of the cutting fluid satisfying the machining 
application requirements. The machining application involves the machining 
process, tool, and work materials. An objective or subjective value, or its range, 
may be assigned to each identified attribute as a limiting value, or threshold value, 
for acceptance in the cutting fluid selection problem considered. A cutting fluid 
with each of its selection attribute, meeting the acceptance value, may be short-
listed. After short-listing, the main criterion to choose the cutting fluid for a given 
machining application is its operational performance during machining. The 
operational performance of the cutting fluid is indicated by the cutting fluid 
attributes of second type, i.e., machining process output variables. 

The next section describes the application of graph theory and the matrix 
approach, and fuzzy MADM methods for cutting fluid selection in a given 
machining application. 

8.2 Examples 

Now, to demonstrate and validate the application of decision making methods, two 
examples are considered. For a start, GTMA is applied, and subsequently a few 
MADM methods are applied to rank and select the cutting fluids for a given 
machining application.  

8.2.1 Example 1 

A cylindrical grinding operation is considered in which four grinding fluids are 
tested. Eight cutting fluid attributes are considered, of which four are the 
machining process output variables wheel wear (WW), tangential force (TF), 
grinding temperature (GT), and surface roughness (SR), and four are the cutting 
fluid properties and characteristics recyclability (R), toxic harm rate (TH), 
environment pollution tendency (EP), and stability (S). The cutting fluid properties 
and characteristics are expressed in linguistic terms. Table 8.1 presents the data on 
cutting fluid selection attributes for the four grinding fluids tested.     

Table 8.1. Data of cutting fluid selection attributes of example 8.2.1 
__________________________________________________________________________
Cutting fluid WW TF GT SR R TH EP S  
                               (mm) (N) (°C) (µm) 
__________________________________________________________________________
1  0.035 34.5 847 1.76 L A AA         AA  
2  0.027 36.8 834 1.68 L H H H  
3  0.037 38.6 808 2.40 AA AA BA A  
4  0.028 32.6 821 1.59 A AA AA         BA  
__________________________________________________________________________
L: Low; BA: Below average; A: Average; AA: Above average; H: High 
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The linguistic terms are converted to fuzzy scores as explained in Chapter 4 
using Table 4.3. Table 8.2 presents the objective data of cutting fluid selection 
attributes accordingly. 

Table 8.2. Objective data of cutting fluid selection attributes of example 8.2.1 
________________________________________________________________
Cf  WW TF GT SR R TH EP S  
________________________________________________________________
1 0.035 34.5 847 1.76 0.335 0.500 0.590 0.590 
2 0.027 36.8 834 1.68 0.335 0.665 0.665 0.665  
3 0.037 38.6 808 2.40 0.590 0.590 0.410 0.500  
4 0.028 32.6 821 1.59 0.500 0.590 0.590 0.410  
________________________________________________________________
Cf: Cutting fluid 

8.2.1.1 Application of Graph Theory and Matrix Approach (GTMA) 
Various steps of the methodology, proposed in Section 2.6, are carried out as 
described below. 

In the present work, the attributes considered are wheel wear (WW), tangential 
force (TF), grinding temperature (GT), surface roughness (SR), recyclability (R), 
toxic harm rate (TH), environment pollution tendency (EP), and stability (S). The 
objective values of the cutting fluid selection attributes, which are given in Table 
8.2, are to be normalized. R and S are beneficial attributes, and higher values are 
desirable. Values of these attributes are normalized, as explained in Section 2.4, 
and are given in Table 8.3 in the respective columns. WW, TF, GT, SR, TH, and 
EP are non-beneficial attributes and lower values are desirable. The values of these 
attributes for different cutting fluids are normalized, and given in Table 8.3 in the 
respective columns.  

Table 8.3. Normalized data of cutting fluid selection attributes of example 8.2.1 
___________________________________________________________________
Cf  WW TF GT SR R TH EP S  
___________________________________________________________________
1 0.7714 0.9449 0.9539 0.9034 0.5678 1 0.6949 0.8872 
2 1 0.8859 0.9688 0.9464 0.5678 0.7519 0.6165 1  
3 0.7297 0.8445 1 0.6625 1 0.8475 1 0.7519  
4 0.9643 1 0.9842 1 0.8475 0.8475 0.6949 0.6165  
___________________________________________________________________
Cf: Cutting fluid 

Relative importance of attributes (aij) is also assigned the values as explained 
in Section 2.4. Let the decision maker (i.e., user organization) makes the following 
assignments: 
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 WW TF GT SR R TH EP  S 
WW   - 0.745 0.665 0.745 0.745 0.665 0.665 0.745 
TF 0.255 - 0.335 0.5 0.59 0.41 0.41 0.59 
GT 0.335 0.665 - 0.665 0.665 0.59 0.59 0.665 
SR 0.255 0.5 0.335 - 0.59 0.41 0.41 0.59 
R 0.255 0.41 0.335 0.41 - 0.335 0.335 0.5 
TH 0.335 0.59 0.41 0.59 0.665 - 0.5 0.665 
EP 0.335 0.59 0.41 0.59 0.665 0.5 - 0.665 
S 0.255 0.41 0.335 0.41 0.5 0.335 0.335 - 

However, it may be added that the above-assigned values are for 
demonstration purposes only. 

The cutting fluid attributes digraph, cutting fluid attributes matrix of the 
digraph and cutting fluid function for the matrix can be prepared. The value of the 
cutting fluid selection index is calculated using the values of Ai and aij for each 
cutting fluid. The cutting fluid selection index values of different cutting fluids are 
given below in descending order: 

Cutting fluid 4: 246.8591 
Cutting fluid 3: 238.2171 
Cutting fluid 2: 233.2670 
Cutting fluid 1: 231.1462 

From the above values of the cutting fluid selection index, it is clear that the 
cutting fluid, designated as 4 is the best choice among the cutting fluids considered 
for the cylindrical grinding operation under the given conditions. The next choice 
is cutting fluid 3, and cutting fluid 1 is the last choice. It may be observed that this 
ranking is based upon simultaneous consideration of the machining process output 
variables on which the cutting fluid has influence, as well as the environmental 
properties and characteristics of the cutting fluids. 

Following graph theory and the matrix approach, the coefficients of 
similarity/dissimilarity are also calculated for different cutting fluids, using 
Equations 2.15 and 2.16. The coefficient of similarity values are given in Table 
8.4. These are useful for cutting fluids documentation, for easy storage, and for 
retrieval of cutting fluids data for cylindrical grinding operations under the given 
conditions. 

Table 8.4. Values of coefficient of similarity for the cutting fluids 
of example 8.2.1 
______________________________________________________
Cutting fluid 2  3  4  
______________________________________________________
1  0.9909  0.9703  0.9363 
2    0.9792  0.9449 
3      0.9650  
______________________________________________________

8.2.1.2 SAW Method
The procedure suggested by Edwards et al. (1982) to assess weights for each of the 
attributes to reflect relative importance to the cutting fluid selection decision is 



106        Decision Making in the Manufacturing Environment 

followed. The attributes are ranked in order of importance and 10 points are 
assigned to the least important attribute S. R is also considered least important and 
equal to S in this example. The attribute WW is given 60 points to reflect its 
relative importance. GT is given 30 points, TH and EP are given 25 points each 
and TF and SR are given 15 points each. The final weights are obtained by 
normalizing the sum of the points to one. For example, the weight for attribute 
WW is calculated by 60/(60+30+25+25+15+15+10+10) = 0.316. The weight for 
attribute GT is 0.158, the weights for TH and EP are 0.132 each, those for TF and 
SR are 0.079 each, and those for S and R are 0.053 each. Using these weights and 
the normalized data of the attributes for different cutting fluids, the cutting fluid 
selection index values are calculated, and are arranged in descending order.

Cutting fluid 4: 0.8994 
Cutting fluid 2: 0.8775 
Cutting fluid 3: 0.8443 
Cutting fluid 1: 0.8413 

From the above values of the cutting fluid selection index, it is clear that the 
cutting fluid, designated as 4 is the best choice among the cutting fluids considered 
for the cylindrical grinding operation under the given conditions.  

8.2.1.3 WPM
Using the same weights of attributes as selected for the SAW method, the 
following ranking of cutting fluids is obtained: 

Cutting fluid 4: 0.8884 
Cutting fluid 2: 0.8603 
Cutting fluid 3: 0.8332 
Cutting fluid 1: 0.8300 

The ranking is the same as that obtained by using the SAW method. 

8.2.1.4 AHP and its Versions 
If the same weights as those used in the SAW method are selected for this method, 
then the ranking of cutting fluids obtained by using the relative as well as ideal 
mode AHP will be the same. The multiplicative AHP method yields the same 
ranking as that given by WPM. However, if the decision maker decides to use the 
AHP method, rather than the weights used in the SAW method, then he or she has 
to make pair-wise comparisons of the attributes to determine the weights (wj) of 
the attributes. Let the decision maker prepare the following matrix: 

WW TF GT SR R TH EP      S 
WW 1 5 3 5 5 3 3         4 
TF 1/5 1 1/3 1 2 1/2 1/2      2 
GT 1/3 3 1 3 3 2 2         3 
SR 1/5 1 1/3 1 2 1/2 1/2      2 
R 1/5 1/2 1/3 1/2 1 1/3 1/3      1 
TH 1/3 2 1/2 2 3 1 1         3 
EP 1/3 2 1/2 2 3 1 1         3 
S 1/5 1/2 1/3 1/2 1 1/3 1/3      1    
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Wheel wear (WW) is strongly more important than the tangential force (TF) in 
the grinding operation. Reducing WW is strongly more important than reducing 
TF. Attention should be paid to reducing the value of WW so as to reduce the 
machining cost. So, a relative importance value of 5 is assigned to WW over TF 
(i.e., a12 = 5), and a relative importance value of 1/5 is assigned to TF over WW 
(i.e., a21 = 1/5). Wheel wear (WW) is moderately more important than the grinding 
temperature (GT). So, a relative importance value of 3 is assigned to WW over GT 
(i.e., a13 = 3), and a relative importance value of 1/3 is assigned to GT over WW 
(i.e., a31 = 1/3). Similarly, the relative importance among other attributes can be 
explained. It may be added that these values are to be arrived at judiciously after 
careful analysis. The assigned values in this chapter are for demonstration purposes 
only.  

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are Www = 0.3306, WTF = 0.0718, 
WGT = 0.1808, WSR = 0.0718, WR = 0.0459, WTH = 0.1260, WEP = 0.1260, and WS

= 0.0472. The value of max is 8.19 and CR = 0.0194, which is much less than the 
allowed CR value of 0.1. Thus, there is good consistency in the judgements made. 

The value of the cutting fluid selection index is now calculated using the 
above weights, and the normalized data of the attributes given in Table 8.3. This 
leads to the ranking given by the revised AHP or ideal mode of AHP methods. The 
alternative cutting fluids are arranged in descending order of the cutting fluid 
selection index. 

Cutting fluid 4: 0.9027 
Cutting fluid 2: 0.8830 
Cutting fluid 3: 0.8444 
Cutting fluid 1: 0.8417 

From the above values of the cutting fluid selection index, it is clear that the 
cutting fluid designated as 4 is the best choice among the cutting fluids considered 
for the cylindrical grinding operation under the given conditions. 

For the above weights of importance of attributes, multiplicative AHP also 
leads to the same ranking order of 4-3-2-1. 

It may be observed that the above ranking is for the given preferences of the 
decision maker. The ranking depends upon the judgements of relative importance 
of attributes made by the decision maker.   

8.2.1.5 TOPSIS Method 
Step 1:  The objective is to evaluate the four alternative cutting fluids, the pertinent 
attributes considered being WW, TF, GT, SR, R, TH, EP, and S. 

Step 2: The next step is to represent all the information available on attributes 
in the form of a decision matrix. The data given in Table 8.2 can be represented as 
matrix D4x8. However, the matrix is not shown here, as it is nothing but the 
repetition of data given in Table 8.2 but represented in a matrix form.   

Step 3: The quantitative values of the flexible manufacturing system selection 
attributes, which are given in Table 8.2, are normalized as explained in Section 
3.2.6. 

Step 4: Relative importance of attributes (aij) is assigned using the AHP 
method as explained in Section 8.2.1.3, and these are Www = 0.3306, WTF = 
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0.0718, WGT = 0.1808, WSR = 0.0718, WR = 0.0459, WTH = 0.1260, WEP = 0.1260, 
and WS = 0.0472. The value of max is 8.19 and CR = 0.02, which is much less than 
the allowed CR value of 0.1. Thus, there is good consistency in the judgements 
made. 

Step 5: The weighted normalized matrix, V4x8 is calculated, and is shown 
below: 

0.1806   0.0347   0.0925   0.0335   0.0170   0.0535   0.0650   0.0253 
0.1393   0.0370   0.0911   0.0320   0.0170   0.0710   0.0732   0.0285 
0.1909   0.0388   0.0883   0.0457   0.0298   0.0631   0.0450   0.0215 
0.1445   0.0328   0.0897   0.0303   0.0253   0.0631   0.0650   0.0176 

Step 6: The next step is to obtain the ideal (best) and negative ideal (worst) 
solutions, and these are given as:  
VWW

+ = 0.1393  VWW
- = 0.1909 

VTF
+ = 0.0328  VTF

- = 0.0388 
VGT

+ = 0.0883  VGT
- = 0.0925 

VSR
+ = 0.0303  VSR

- = 0.0457 
VR

+ = 0.0298  VR
- = 0.0169 

VTH
+ = 0.0535  VTH

- = 0.0711 
VEP

+ = 0.0452  VEP
- = 0.0733 

VS
+ = 0.0285  VS

- = 0.0176 
Step 7: The next step is to obtain the separation measures, and these are: 

S1
+ = 0.0480  S1

- = 0.0267 
S2

+ = 0.0360  S2
- = 0.0545 

S3
+ = 0.0555  S3

- = 0.0325 
S4

+ = 0.0256  S4
- = 0.0514 

Step 8: The relative closeness of a particular alternative to the ideal solution is 
calculated and these are P1 = 0.3571, P2 = 0.6024, P3 = 0.3691, and P4 = 0.6675. 

This relative closeness to ideal solution can be named ‘cutting fluid selection 
index’ in the present work. 

Step 9: The alternative cutting fluids are arranged in descending order of their 
cutting fluid selection index. This can be arranged as 4-2-3-1. 

8.2.1.6 Modified TOPSIS Method 
In this method, the positive ideal solution (R+) and the negative ideal solution (R-)
are used, and the values are given below: 

RWW
+ = 0.4213  RWW

- = 0.5774 
RTF

+ = 0.4566  RTF
- = 0.5407 

RGT
+ = 0.4881  RGT

- = 0.5117 
RSR

+ = 0.4218  RSR
- = 0.6367 

RR
+ = 0.6505  RR

- = 0.3694 
RTH

+ = 0.4243  RTH
- = 0.5644 

REP
+ = 0.3587  REP

- = 0.5818 
RS

+ = 0.6049  RS
- = 0.3729 
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The weighted Euclidean distances are calculated as 
D1

+ = 0.1114  D1
- = 0.0831 

D2
+ = 0.1127  D2

- = 0.1152 
D3

+ = 0.1169  D3
- = 0.1041 

D4
+ = 0.0833  D4

- = 0.1138 
The relative closeness of a particular alternative to the ideal solution is 

calculated (i.e., cutting fluid selection index), and these are: 
P1-mod = 0.4272 P2-mod = 0.5054 P3-mod = 0.4709 P4-mod = 0.5774 

                                    
The alternative cutting fluids are arranged in the descending order of their 

cutting fluid selection index. This can be arranged as: 4-2-3-1.

8.2.2 Example 2 

The results of a cylindrical turning test are presented in Table 8.5. This test is 
conducted for the purpose of evaluation of most common, commercially available 
metal cutting fluids, namely, water soluble, straight mineral, chlorinated and sulfo-
chlorinated oils.   

Table 8.5. Data of cutting fluid attributes of example 8.2.2 
__________________________________________________________
Cutting fluid Fc (N) Ft (N) WL (mm*100) Rrms (µm)
__________________________________________________________
Dry  1,324 725 7  9 
Water soluble 1,082 485 16  7 
Straight mineral oil 1,098 516 8  4.7 
Chlorinated oil 1,158 494 15  4.9 
Sulfo-chlorinated oil    962 393 6  8 
__________________________________________________________
Fc: Cutting force; Ft: Thrust force; WL: Wear land; Rrms: Processed 
surface roughness expressed in rms value. 
Work material: medium-carbon steel; Tool: HSS; Cutting conditions: 
speed–33.5 m/min, feed–0.24 mm/rev 

This example is considered to demonstrate further the application of the 
GTMA and MADM methods for cutting fluid selection.  

8.2.2.1 GTMA 
In the present work, the attributes considered are cutting force (FC), thrust force 
(TF), wear land (WL), and processed surface roughness (R). The objective values 
of the cutting fluid selection attributes, which are given in Table 8.5, are to be 
normalized. All four attributes are of non-beneficial type, and lower values are 
desirable. Values of these attributes are normalized, as explained in Section 2.4, 
and are given in Table 8.6 in the respective columns.   
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Table 8.6. Normalized data of cutting fluid attributes of example 8.2.2 
______________________________________________________________
Cutting fluid  FC (N) TF (N) WL (mm * 100) R (µm)  
______________________________________________________________
Dry   0.7251 0.5489 1  0.5222 
Water soluble  0.9074 0.8206 0.4375  0.6714 
Straight mineral oil  0.8743 0.7713 0.875  1 
Chlorinated oil  0.8290 0.8057 0.4667  0.9592 
Sulfo-chlorinated oil 1 1 1  0.5875 
______________________________________________________________

Relative importance of attributes (aij) is assigned values as explained in 
Section 2.4. Let the decision maker select the following assignments: 

FC TF WL R  
FC      --- 0.665 0.335 0.590 
TF      0.335 --- 0.255 0.410 
WL    0.665 0.745 --- 0.665 
R        0.410 0.590 0.335 --- 

Finally, the cutting fluid selection index values of different cutting fluids are 
calculated, and are given below in descending order: 

Sulfo-chlorinated oil 2.8871 
Straight mineral oil 2.8172 
Chlorinated oil  2.1483 
Water soluble  1.9204 
Dry   1.9076 

From the above values of the cutting fluid selection index, it is understood that 
the sulfo-chlorinated oil is the best choice among the cutting fluids considered for 
the cylindrical turning operation under the given conditions. The last choice is dry 
cutting. 

Following graph theory and the matrix approach, the coefficients of 
similarity/dissimilarity are also calculated, and are given in Table 8.7.  

Table 8.7. Values of coefficient of similarity for the cutting fluids of example 8.2.2 
______________________________________________________________________
Cutting fluid   Water Straight Chl. oil   Sulfo-chlorinated oil 
    Soluble min. oil            
______________________________________________________________________
Dry    0.9933 0.6671 0.8879 0.6607 
Water soluble    0.6817 0.8939 0.6652 
Straight mineral oil    0.7626 0.9758 
Chlorinated oil      0.7441 
______________________________________________________________________

8.2.2.2 SAW Method
The procedure suggested by Edwards and Newman (1982) to assess weights for 
each of the attributes to reflect relative importance to the cutting fluid selection 
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decision is followed here. The attributes are ranked in order of importance, and 10 
points are assigned to the least important attribute TF. R is considered the next-
least important attribute, and is given 20 points. FC is given 30 points, and WL 40 
points. The final weights are obtained by normalizing the sum of the points to one. 
For example, the weight for attribute WL is calculated by 40/(40+30+20+10) = 
0.40. The weight for attribute FC is 0.30, that for R 0.20 and that for TF 0.10. 
Using these weights, and the normalized data of the attributes for different cutting 
fluids, the cutting fluid selection index values are calculated, and are arranged in 
descending order of the index.

Sulfo-chlorinated oil 0.9588 
Straight mineral oil 0.8561 
Water soluble  0.7638 
Chlorinated oil  0.7626 
Dry   0.7069 

The SAW method also suggests sulfo-chlorinated oil as the first choice for the 
cylindrical turning operation under the given conditions.  

8.2.2.3 WPM
Using the same weights of attributes as those selected for the SAW method, the 
following ranking of cutting fluids is obtained: 

Sulfo-chlorinated oil 0.9482 
Straight mineral oil 0.8536 
Chlorinated oil  0.7435 
Water soluble  0.7383 
Dry   0.6883 

This method also suggests sulfo-chlorinated oil as the right choice in this example. 

8.2.2.4 AHP and its Versions 
If the same weights as those used in the SAW method are selected for this method, 
then the ranking of cutting fluids obtained by using the relative as well as ideal 
mode AHP methods will be same. The multiplicative AHP method yields the same 
ranking as that given by WPM. 

8.2.2.5 TOPSIS Method 
Following the steps of the TOPSIS method, the following ranking is obtained: 

Sulfo-chlorinated oil 0.7976 
Straight mineral oil 0.7933 
Dry   0.6502 
Chlorinated oil  0.2979 
Water soluble   0.2108 

This method also suggests sulfo-chlorinated oil as the right choice. However, 
the water-soluble fluid is shown as the last choice (unlike dry cutting as given by 
the other methods). This may be due to TOPSIS being normally biased towards the 
alternative having a higher value of attribute with higher relative importance. In 
this example, attribute WL is given maximum weight of importance, and as far as 
this attribute is concerned, dry cutting is better than the water-soluble fluid.  
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8.2.2.6 Modified TOPSIS Method 
Following the steps of the modified TOPSIS method, the following ranking is 
obtained: 

Sulfo-chlorinated oil 0.7892 
Straight mineral oil 0.7285 
Chlorinated oil  0.4500 
Dry   0.4468 
Water soluble   0.4084 

This method also suggests sulfo-chlorinated oil as the right choice in this example. 
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__________________________________________________________________ 

Evaluation and Selection of Modern Machining 
Methods

9.1 Introduction 

Traditional machining processes, such as turning, grinding, drilling, milling, etc., 
remove material by chip formation, abrasion, or micro-chipping. There are 
situations, however, where these processes are not satisfactory, economical, or 
even possible, for the following reasons (Kalpakjian and Schmid, 2000): 

1. The hardness and strength of the material is very high (typically above 400 
HB) or the material is too brittle. 

2. The work piece is too flexible, slender, or delicate to withstand the cutting 
or grinding forces, or the parts are too difficult to fix. 

3. The shape of the part is complex . 
4. Surface finish and dimensional tolerance requirements are more rigorous 

than those obtained by other processes. 
5. Temperature rise and residual stresses in the work piece are not desirable or 

acceptable.
These requirements have led to the development of chemical, electrical, laser 

and other means of material removal. Beginning in the 1940s, these advanced 
methods are called non-traditional or unconventional machining processes. Over 
the last four decades, there has been a large increase in the number of non-
traditional machining processes (NTMPs). Today, NTMPs with vastly different 
capabilities and specifications are available for a wide range of applications. 
Effective utilization of the capabilities of NTMPs needs careful selection of a 
suitable process for the application (Benedict, 1987; Yurdakul and Cogun, 2003). 
The lack of versatility of NTMPs, uncertainties regarding the capabilities of 
NTMPs, and different cost elements of operating NTMPs make the comparison 
and ranking of NTMPs a challenging task. An increasing shortage of experienced 
experts in the field of NTMPs makes the selection of appropriate NTMPs a critical 
problem. 

There is not enough published work on the selection of NTMPs. A few 
attempts have been made to suggest a systematic procedure for selection of a 
particular NTMP for a given application. Alder et al. (1986) outlined the 
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background, and some of the problems associated with the selection of 
conventional processes and NTMPs. A range of material types to achieve a given 
task by means of a knowledge-based expert system was also examined. Cogun 
(1994) developed a procedure that identifies suitable alternative NTMPs for the 
user, with a list of suitable processes for parts with relatively slack design 
requirements. The main objective of the work was to remove unsuitable NTMPs 
from consideration, but not the ranking of the NTMPs. Jain and Jain (2001) 
reviewed the modeling of material removal in mechanical-type advanced 
machining processes, and gave a brief summary of research work on these 
processes. 

Yurdakul and Cogun (2003) developed a multi-attribute selection procedure 
for NTMP selection using the technique for order preference by similarity to ideal 
solution (TOPSIS) and the analytic hierarchy process (AHP) methods. AHP was 
used to assign weights of relative importance to various process selection 
attributes, and TOPSIS was used to obtain a ranking score for each of the 
alternative NTMPs. However, the authors had not considered the subjective 
attributes. Further, the authors had made certain mistakes in applying the basic 
technique of TOPSIS. Chakraborthy and Dey (2006) suggested a quality function 
deployment (QFD) based expert system for NTMP selection. The developed expert 
system employs the use of a house of quality (HOQ) matrix for comparison of 
relevant product and process characteristics. The weights obtained for various 
process characteristics were utilized to estimate an overall score for each of the 
NTMPs, and the process having the maximum score was selected as the optimal 
choice. However, the procedure is knowledge-intensive and may go beyond the 
capabilities of the non-expert user. 

There is a need for a simple scientific method or mathematical tool to guide 
users in taking a proper NTMP selection decision. The objective of an NTMP 
selection procedure is to identify the NTMP selection attributes, and obtain the 
most appropriate combination of attributes in conjunction with the real 
requirements of the machining application. Efforts need to be extended to 
determine attributes that influence NTMP selection for a given machining 
application, using a logical approach, to eliminate unsuitable NTMPs, and for the 
selection of a proper NTMP to strengthen the existing NTMP selection procedure. 
This is considered in this chapter using the GTMA and other fuzzy MADM 
methods.  

An NTMP selection attribute is defined as a factor that influences the selection 
of an NTMP for a given industrial application. NTMP attributes include work piece 
material, cost involved, and process capability attributes such as tolerance, surface 
finish, surface damage, corner radii, taper, hole diameter, depth/diameter ratio for 
cylindrical holes, depth/width ratio for blind cavities, width of cut, material 
removal rate, part size, part exterior and interior shape details, etc.

As a first step in NTMP selection, the decision maker has to identify the 
NTMP selection attributes for a given industrial application, and short-list the 
NTMP processes on the basis of identified attributes satisfying the requirements. A 
quantitative or qualitative value, or its range, may be assigned to each identified 
attribute as a limiting value, or threshold value, for its acceptance in the application 
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considered. An NTMP process with each of its attributes, meeting the criterion, 
may be short-listed. 

Now, an example is included to demonstrate and validate the proposed 
decision making-methods for the selection of an NTMP process for a given 
industrial application. 

9.2 Examples 

Two examples of NTMP selection are considered. 

9.2.1 Example 1 

Yurdakul and Cogun (2003) developed a multi-attribute selection procedure for 
NTMP selection using the TOPSIS and AHP methods. The authors presented 
different case studies, one of which is considered here. The details of the case 
study are given in Table 9.1. The NTMPs eliminated on the basis of the work 
material were ECM, ECG, ECH, EDM, WEDM, and PAC. The NTMP eliminated 
on the basis of the shape applications was WJM. No NTMPs were eliminated on 
the basis of process capabilities. This elimination procedure is similar to the short-
listing of alternative NTMPs as described in Section 9.1. Feasible NTMPs to be 
ranked are AJM, USM, CHM, EBM, and LBM.  

Table 9.1. Data of the NTMP selection attributes of example 9.2.1 (from 
Yurdakul and Cogun 2003; permission of the Council of the Institution of 
Mechanical Engineers, UK) 
____________________________________________________________
NTMP T SF SD TR MR WM C 
____________________________________________________________
AJM 0.05 0.6 2.5 0.005 50 3 4 
USM 0.013 0.5 25 0.005 500 3 5 
CHM 0.03 2 5 0.3 40 1 2 
EBM 0.02 3 100 0.02 2 3 1 
LBM 0.02 1 100 0.05 2 3 1 
____________________________________________________________
Work material: Ceramic (non-conductive); Shape application: Cylindrical 
through hole drilling; Process requirements: 930 holes of 0.64 mm 
diameter, L/D = 5.7 
T: Tolerance (mm); SF: Surface finish (µm); SD: Surface damage (µm); 
TR: Taper (mm/mm); MR: Material removal rate (mm3/min); WM: Work 
material (NTMP process suitability is assigned on a scale of 1–3, 1 for 
poor and 3 for good application); C: Cost (on a scale of 1–9, 1 for low, 5 
for medium and 9 for very high)  
USM: Ultrasonic machining; AJM: Abrasive jet machining; LBM: Laser 
beam machining; EBM: Electron beam machining; CHM: Chemical 
machining 

9.2.1.1 Graph Theory and Matrix Approach (GTMA) 
Now, various steps of the proposed procedure are carried out as described next: 
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1. The NTMP selection attributes considered are the same as those of Yurdakul and 
Cogun (2003) and these are: tolerance (T), surface finish (SF), surface damage 
(SD), taper (TR), material removal rate (MR), work material (WM), and cost (C).  
2. The quantitative values of the NTMP selection attributes, which are given in 
Table 3, are to be normalized. MR and WM are beneficial attributes, and higher 
values are desirable. Values of these attributes are normalized, and are given in 
Table 9.2 in the respective columns. T, SF, SD, TR, and C are non-beneficial 
attributes, and lower values are desirable. The values of these attributes for 
different NTMPs are normalized, and are given in Table 9.2 in the respective 
columns.  

Table 9.2. Normalized data of the NTMP selection attributes of example 9.2.1 
_______________________________________________________________
NTMP T SF SD TR MR WM C 
_______________________________________________________________
AJM 0.26 0.83 1 1 0.1 1 0.25 
USM 1 1 0.1 1 1 1 0.2 
CHM 0.43 0.25 0.5 0.02 0.08 0.33 0.5 
EBM 0.65 0.17 0.03 0.25 0.004 1 1 
LBM 0.65 0.5 0.03 0.1 0.004 1 1 
_______________________________________________________________

Relative importance of attributes (aij) is also assigned values, as explained in 
Chapter 4. Let the decision maker (i.e., user organization) select the following 
assignments: 

  T SF SD TR MR WM C 
T   - 0.59 0.865 0.865 0.59 0.665 0.665 
SF 0.410 - 0.745 0.745 0.5 0.590 0.590 
SD 0.135 0.255 - 0.5 0.255 0.335 0.335 
TR 0.135 0.255 0.500 - 0.255 0.335 0.335  
MR 0.410 0.500 0.745 0.745 - 0.590 0.590 
WM 0.335 0.410 0.665 0.665 0.41 - 0.500 
C 0.335 0.410 0.665 0.665 0.41 0.500 - 

The assigned values in this example are for demonstration purposes only.       
3. The NTMP selection attributes digraph, showing the presence as well as relative 
importance of the above attributes, is similar to Fig. 2.2 but with seven attributes. 
However, it is not shown here. 
4. The NTMP selection attributes matrix of this digraph is written. However, it is 
not shown here.  
5. The NTMP selection attributes function is written. However, as a computer 
program is developed for calculating the permanent function value of a matrix, this 
step can be skipped. 
6. The NTMP selection index (NTMP-SI) is calculated using the values of Ai and 
aij for each alternative NTMP and the values are given in descending order. 

Ultrasonic machining (USM) 40.50211 
Abrasive jet machining (AJM) 31.76501 
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Laser beam machining (LBM) 21.05954 
Electron beam machining (EBM) 20.13952 
Chemical machining (CHM) 15.90063 

      From the above values of the NTMP selection index, USM is understood as the 
best choice among the alternatives considered for the given hole making 
operations. The ranking of NTMPs based on the proposed methodology is USM-
AJM-LBM-EBM-CHM; by contrast, the ranking presented by Yurdakul and 
Cogun (2003) was USM-LBM-EBM-CHM-AJM. Both the methods suggest USM 
as the first right choice. However, the ranking of certain alternative NTMPs 
obtained by using the proposed procedure is different from that reported by 
Yurdakul and Cogun (2003). For example, AJM is the second choice based on the 
proposed procedure, whereas it was LBM in Yurdakul and Cogun (2003), and 
AJM was proposed as the last choice by these authors. A closer look at the 
quantitative data of the attributes of LBM and AJM reveals that AJM is better than 
LBM in the case of four out of seven attributes (i.e., SF, SD, T, and MR), and 
equal to LBM in the case of attribute WM. LBM is better than AJM only in the 
case of two attributes (i.e., T and C). Thus, keeping in mind the values of the 
attributes and the relative importance of the attributes, proposing AJM as the 
second choice by the proposed method based on the method used here seems to be 
more appropriate, compared to LBM as proposed by Yurdakul and Cogun (2003). 
Thereby, the differences in the ranking of alternatives between the procedure 
proposed here and that suggested by Yurdakul and Cogun (2003) can be explained. 
      It may be added here, however, that the weights of relative importance used by 
Yurdakul and Cogun (2003) were different from those used in the present work. 
Further, it may be mentioned that ranking depends upon the judgements of relative 
importance made by the decision maker (i.e., user organization). The ranking may 
change if the decision maker assigns different relative importance values to the 
attributes. The same is true with the approach proposed by Yurdakul and Cogun 
(2003). Yurdakul and Cogun (2003) had made certain mistakes in applying the 
basic technique of TOPSIS in their model (e.g., in normalization of the attributes,  
and calculation of final ranking scores).  

9.2.1.2 SAW Method 
To start with, the attributes are ranked in order of importance, and 10 points each 
are assigned to the least important attributes SD and TR. The attributes WM and C 
are considered as equally important in the present example, and given 20 points 
each to reflect their relative importance. SF and MR are considered as equally 
important, and given 30 points each, and T is given 40 points. The final weights are 
obtained by normalizing the sum of the points to one. Thus, the weights of T, SF, 
MR, WM, C, SD, and TR are calculated as 0.25, 0.1875, 0.1875, 0.125, 0.125, 
0.0625, and 0.0625, respectively. Using these weights, and the normalized data of 
the attributes for different NTMPs, the NTMP-SI values are calculated, and are 
arranged in descending order of the index. 

Ultrasonic machining (USM) 0.8438 
Abrasive jet machining (AJM) 0.5206 
Laser beam machining (LBM) 0.5151 
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Electron beam machining (EBM) 0.4626 
Chemical machining (CHM) 0.3056 

The SAW method also suggests USM as the right choice for the given NTMP 
selection problem. 
9.2.1.3 WPM 
Using the same weights of attributes as those selected for the SAW method, the 
NTMP-SI value for each NTMP is calculated, and the values are given below: 

Ultrasonic machining (USM) 0.7082 
Abrasive jet machining (AJM) 0.4478 
Chemical machining (CHM) 0.2328 
Laser beam machining (LBM) 0.1948 
Electron beam machining (EBM) 0.1685 

WPM also suggests USM as the right choice for the given NTMP selection 
problem. However, CHM is proposed as the third choice, and EBM as the last 
choice.

9.2.1.4 AHP and its Versions 
The AHP method may use the same weights as those selected for the SAW 
method. In that case, the ranking of the NTMPs will be same. However, if the 
decision maker decides to use the AHP method for determining the weights, rather 
than adopting the weights used in SAW method, then he or she has to make pair-
wise comparisons of the attributes to determine the weights (wj) of the attributes. 
Let the decision maker prepare the following matrix:  

T SF SD TR MR WM C 
T 1 2 7 7 2 3 3 
SF 1/2 1 5 5 1 2 2  
SD 1/7 1/5 1 1 1/5 1/3 1/3 
TR 1/7 1/5 1 1 1/5 1/3 1/3 
MR 1/2 1 5 5 1 2 2 
WM 1/3 1/2 3 3 1/2 1 1 
C 1/3 1/2 3 3 1/2 1 1 
                                                       

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3 and these are WT = 0.3224, WSF = WMR = 
0.1938, WWM = WC = 0.1063, and WSD = WTR = 0.0387. The value of max is 7.028 
and CR = 0.003457, which is much less than the allowed CR value of 0.1. Thus, 
there is good consistency in the judgements made. 

The value of NTMP-SI is now calculated using the above weights, and the 
normalized data of the attributes given in Table 9.3. The alternative NTMPs are 
arranged in descending order of the NTMP-SI: 

Ultrasonic machining (USM) 0.8801 
Laser beam machining (LBM) 0.5249 
Abrasive jet machining (AJM) 0.4743 
Electron beam machining (EBM) 0.4667 
Chemical machining (CHM) 0.3109 
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For the above weights of importance of attributes, the multiplicative AHP 
method leads to the following ranking order: 

Ultrasonic machining (USM) 0.7709 
Abrasive jet machining (AJM) 0.3451 
Chemical machining (CHM) 0.2466 
Laser beam machining (LBM) 0.2084 
Electron beam machining (EBM) 0.1752 

It may be observed that the ranking order given by multiplicative AHP for the 
given weights is similar to that given by WPM.  

9.2.1.5 TOPSIS Method 
Using the same weights as those selected for the AHP method, and following the 
steps of the methodology given in Section 3.2.6, the TOPSIS method gives the 
following ranking order of NTMPs: 

Ultrasonic machining (USM) 0.7709 
Abrasive jet machining (AJM) 0.3451 
Chemical machining (CHM) 0.2466 
Laser beam machining (LBM) 0.2084 
Electron beam machining (EBM) 0.1752 

This ranking order is similar to that given by the multiplicative AHP method.  

9.2.1.6 Modified TOPSIS Method 
For the same weights as those used in the AHP method, the modified TOPSIS 
method gives the following ranking order: 

Ultrasonic machining (USM) 0.7693 
Laser beam machining (LBM) 0.4893 
Abrasive jet machining (AJM) 0.4231 
Electron beam machining (EBM) 0.4180 
Chemical machining (CHM) 0.3594 

This ranking order is similar to that given by the AHP method.  

9.2.2 Example 2 

Another case study presented by Yurdakul and Cogun (2003) is considered here. 
No NTMPs were eliminated on the basis of the work material. The NTMPs 
eliminated on the basis of the shape applications were WJM, ECM, ECG, ECH, 
CHM, WEDM, and PAC. The NTMP eliminated on the basis of process capability 
was AJM. This elimination procedure is similar to the short-listing of alternative 
NTMPs described in Section 9.1. Feasible NTMPs to be ranked are USM, EDM, 
EBM, and LBM. The details of the case study are given in Table 9.3. 
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Table 9.3. Data of the NTMP selection attributes of example 9.2.2 
(from Yurdakul and Cogun 2003; permission of the Council of the 
Institution of Mechanical Engineers, UK) 
_______________________________________________________
NTMP SF SD TR MR WM C

_______________________________________________________
USM  0.5 25 0.005 500 2 5 
EDM  2 20 0.001 800 3 7 
EBM  3 100 0.02 2 2 1 
LBM  1 100 0.05 2 2 1 
_______________________________________________________
Work material: Hardened 52100 steel; Shape application: 
Cylindrical through hole drilling; Process requirements: 800 holes 
of 0.175 mm diameter, L/D = 5.7 
SF: Surface finish (µm); SD: Surface damage (µm); TR: Taper 
(mm/mm); MR: Material removal rate (mm3/min); WM: Work 
material (NTMP process suitability is assigned on a scale of 1–3, 1 
for poor and 3 for good application); C: Cost (on a scale of 1–9, 1 
for low, 5 for medium and 9 for very high)  
USM: Ultrasonic machining; EDM: Electric discharge machining; 
EBM: Electron beam machining; LBM: Laser beam machining 

9.2.2.1 Graph Theory and the Matrix Approach (GTMA) 
In the present work, the attributes considered are the same as those of Yurdakul 
and Cogun (2003) and these are: surface finish (SF), surface damage (SD), taper 
(TR), material removal rate (MR), work material (WM), and cost (C).  

The quantitative values of the NTMP selection attributes, which are given in 
Table 9.3, are to be normalized. SF, SD, TR, and C are non-beneficial attributes, 
and MR and WM are beneficial attributes. The values of the attributes are 
normalized, and are shown in Table 9.4. 

Table 9.4. Normalized data of the NTMP selection attributes of example 9.2.2 
__________________________________________________________________
NTMP  SF SD TR MR WM C

__________________________________________________________________
USM  1 0.8 0.2 0.625 0.6667 0.2 
EDM  0.25 1 1 1 1 0.1428 
EBM  0.1667 0.2 0.05 0.0025 0.6667 1 
LBM  0.5 0.2 0.02 0.0025 0.6667 1 
__________________________________________________________________

Let the decision maker select the following assignments of relative 
importance:  
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        SF SD TR MR WM C 
SF       - 0.59 0.5 0.41 0.665 0.41
SD      0.41 - 0.41 0.335 0.59 0.335
TR    0.5 0.59 -  0.41 0.665 0.41  
MR   0.59 0.665 0.59 - 0.745 0.59
WM       0.335 0.41 0.335 0.255 - 0.255 
C    0.59 0.665 0.59 0.41 0.745 -
                                                       

The NTMP selection attributes digraph, NTMP selection attributes matrix of 
the digraph, and NTMP selection function for the matrix can be prepared. The 
value of the NTMP selection index is calculated using the values of Ai and aij for 
each NTMP. The NTMP selection index values of different NTMPs are given 
below in descending order: 

EDM 14.0184 
USM 10.4897 
LBM  7.1186 
EBM  6.4465 

From the above values of the NTMP selection index, EDM is identified as the 
best choice among the alternatives considered for the given operations. The 
ranking of NTMPs based on the methodology proposed is EDM-USM-LBM-EBM. 

9.2.2.2 TOPSIS Method 
The same relative importance matrix as in Yurdakul and Cogun (2003) is used 
here.  
        SF SD TR MR WM C 
SF        1 2 1 1/2 4 1/2
SD      1/2 1 1/2 1/3 2 1/3
TR    1 2 1  1/2 3 1/2  
MR   2 3 2  1 6 2
WM       1/4 1/2 1/3 1/6 1 1/6 
C    2 3 2 1/2 6 1

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are WSF = 0.155, WSD = 0.0853, 
WTR = 0.1478, WMR = 0.3162, WWM = 0.0447, and WC = 0.251. The value of max
is 6.0725 and CR = 0.0116, which is much less than the allowed CR value of 0.1. 
Thus, there is good consistency in the judgements made. 

Following the steps of the methodology given in Section 3.2.6, the TOPSIS 
method gives the following ranking order of NTMPs: 

EDM 0.6250 
USM 0.6121 
EBM 0.3932 
LBM 0.3865 

This ranking order also suggests EDM as the first choice. However, Yurdakul and 
Cogun (2003) who also used the above relative importance matrix and the TOPSIS 
method, obtained a different ranking order, i.e., EDM-USM-LBM-EBM. As 
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explained in Section 9.2.1.1, Yurdakul and Cogun (2003) had made certain 
mistakes in applying the basic technique of TOPSIS in their model.  

9.2.2.3 Modified TOPSIS Method 
For the same weights as those used in the TOPSIS method, the modified TOPSIS 
method gives the following ranking order: 

USM 0.6467 
EDM 0.6215 
EBM 0.4100 
LBM 0.3959 

This ranking order suggests USM as the first right choice. However, a closer 
look at the values of the attributes for USM, and the corresponding values of the 
attributes for EDM indicates that proposing USM is not logical. Thus, it can be 
said that modified TOPSIS method does not provide logical results for the example 
considered here. 
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__________________________________________________________________ 

Evaluation of Flexible Manufacturing Systems

10.1 Introduction 

A flexible manufacturing system (FMS) consists of a group of processing work 
stations (usually CNC machine tools) interconnected by an automated material 
handling and storage system, and controlled by a distributed computer system. The 
reason the FMS is called ‘flexible’ is that it is capable of processing a variety of 
different part styles simultaneously at the various work stations, and the mix of part 
styles and quantities of production can be adjusted in response to changing demand 
patterns. The evolution of flexible manufacturing systems offers great potential for 
increasing flexibility and changing the basis of competition by ensuring both cost-
effective and customized manufacturing at the same time. 

The decision to invest in FMS and other advanced manufacturing technology 
has been an issue in the practitioner and academic literature for over two decades. 
An effective justification process requires the consideration of many quantitative 
attributes (e.g., costs involved, floor space requirements, etc.) and qualitative 
attributes (e.g., product-mix flexibility, routing flexibility, etc.). An FMS selection 
attribute is defined as a factor that influences the selection of a flexible 
manufacturing system for a given application. These attributes include: costs 
involved, floor space requirements, labor requirements, throughput time, work-in-
process, setup cost, quality, volume flexibility, product-mix flexibility, 
process/routing flexibility, expansion flexibility, utilization rate, risk, ease of 
operation, maintenance aspects, payback period, reconfiguration time, company 
policy, etc.

To help address this issue of effective evaluation and justification of flexible 
manufacturing systems, various mathematical and systems modeling approaches 
have been proposed. Kochan (1987) discussed the importance of selection of 
flexible manufacturing and CAD/CAM systems. Troxler (1990) estimated the cost 
impact of flexible manufacturing systems. Dhavale (1990) proposed a 
manufacturing cost model for computer-integrated manufacturing systems. Layek 
and Wolf (1991) evaluated flexibility of alternative FMS designs using a 
comparative measure. Sriram and Gupta (1991) discussed the impact of FMS and 
its implications in terms of information reporting, strategic cost analyses, and 
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control. Suresh and Kaparthi (1992) presented a procedure that combined a general 
mixed integer goal programming (GP) formulation with the analytic hierarchy 
process (AHP) for use in deciding upon flexible automation investments. Gerwin 
and Kolodny (1992) discussed the aspects of management of advanced 
manufacturing technologies.  

Elango and Meinhart (1994) proposed a strategic framework for selecting an 
FMS. Kuula (1993) presented a risk management model for FMS selection 
decisions using a multiple criteria decision-making approach. Tabucanon et al.
(1994) proposed a decision support system for multiple criteria machine selection 
for flexible manufacturing systems. The approach presented combined the analytic 
hierarchy process (AHP) technique with the rule-based technique for creating 
Expert Systems (ES). Myint and Tabucanon (1994) used AHP method and goal 
programming (GP) model to determine the satisfactory FMS configuration from 
the short-listed FMS configurations.  

Shang and Sueyoshi (1995) proposed a unified framework to facilitate 
decision-making in the design and planning stage of FMS. The recommended 
framework contains three individual modules: an analytic hierarchy process 
(AHP), a simulation module, and an accounting procedure. These modules were 
unified through an efficiency measurement method called data envelopment 
analysis (DEA). The AHP model examines the non-monetary criteria associated 
with corporate goals and long-term objectives, while the simulation model was 
employed to analyze the tangible benefits. Both the AHP and simulation models 
were used to generate the necessary outputs for the DEA, whereas the accounting 
procedure determines the required inputs, such as expenditures and resources for 
realizing the potential benefits.  

Albayrakoglu (1996), and Mohanty and Venkataraman (1996) proposed the 
application of AHP for justification of new manufacturing technologies. Sarkis 
(1997) presented an illustrative problem for evaluating flexible manufacturing 
systems for an industrial application using DEA. The problem considered 24 
alternative flexible manufacturing systems, and eight selection attributes. Perego 
and Rangone (1998) presented a reference framework for the application of three 
categories of fuzzy MADM techniques to select advanced manufacturing 
technologies.

Talluri et al. (2000) proposed a method based on the combined application of 
data envelopment analysis (DEA) and nonparametric statistical procedures for 
FMS evaluation. Chan et al. (2000) developed intelligent decision support tools to 
aid the design of flexible manufacturing systems. Karsak and Tolga (2001) 
proposed a fuzzy multiple criteria decision-making procedure for evaluating 
advanced manufacturing system investments. Karsak and Kuzgunkaya (2002) 
proposed a fuzzy multiple objective programming approach for the selection of a 
flexible manufacturing system. The model proposed by the authors determines the 
most appropriate FMS alternative through maximization of objectives such as 
reduction in labor cost, reduction in setup cost, reduction in work-in-process 
(WIP), increase in market response and improvement in quality, and minimization 
of capital and maintenance costs as well as floor space used. These objectives were 
assigned priorities indicating their importance levels based on linguistic variables. 
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Sarkis and Talluri (1999) presented a decision model using DEA for 
evaluation of flexible manufacturing systems in the presence of both cardinal and 
ordinal factors. Karsak (2002) presented a distance-based fuzzy MCDM approach 
for evaluating flexible manufacturing system alternatives. The method is similar to 
the TOPSIS method. Tseng (2004) presented the details of strategic choice of 
flexible manufacturing technologies. Laosirihongthong et al. (2003) presented case 
studies related to new manufacturing technology implementation. Lloréns et al.
(2005) described the aspects of flexibility of manufacturing systems, strategic 
change, and performance. The authors showed that manufacturing flexibility at 
system level can be a critical factor in the process of strategic change, which means 
that it can have an impact on the desirability of strategic change, or on the more 
specific strategic fit.  

Bayazit (2005) used AHP to implement FMS in a tractor manufacturing plant. 
Also a sensitivity analysis was conducted to assess how realistic the final outcome 
was. Kulak and Kahraman (2005) proposed axiomatic design (AD) principles for 
multiple attribute comparison of advanced manufacturing systems. The comparison 
was made for cases of both complete and incomplete information. The crisp AD 
approach for complete information, and the fuzzy AD approach for incomplete 
information were developed. Rao (2006) presented a decision-making model for 
FMS selection using digraph and matrix methods. A ‘flexible manufacturing 
system selection index’ was proposed that evaluates and ranks flexible 
manufacturing systems for a given industrial application. In another work, Rao 
(2007) used the TOPSIS and AHP methods in combination for evaluating flexible 
manufacturing systems.

Now, to demonstrate and validate the application of decision-making methods, 
two examples are considered. In both, GTMA is applied first, and then a few 
MADM methods are applied to rank and select the flexible manufacturing systems. 

10.2 Examples 

Two examples are considered to demonstrate the application of the GTMA and 
fuzzy MADM methods. 

10.2.1 Example 1 

Karsak and Kuzgunkaya (2002) proposed a fuzzy multiple objective programming 
approach for the selection of a flexible manufacturing system. The authors had 
considered eight alternative flexible manufacturing systems and seven attributes. 
Five attributes were expressed objectively, and two attributes were expressed 
subjectively. Table 10.1 presents the data.  
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Table 10.1. Data of attributes of example 10.2.1 (from Karsak and Kuzgunkaya 
2002; reprinted with permission from Elsevier) 
__________________________________________________________________
FMS  RLC RWP RSC IMR IQ CMC FSU 
__________________________________________________________________
1  30 23   5 Good Good 1,500 5,000 
2  18 13 15 Good Good 1,300 6,000 
3  15 12 10 Fair Fair    950 7,000 
4  25 20 13 Good Good 1,200 4,000 
5  14 18 14 Worst Good    950 3,500 
6  17 15   9 Good Fair 1,250 5,250 
7  23 18 20 Fair Good 1,100 3,000 
8  16   8 14 Worst Fair 1,500 3,000 
__________________________________________________________________
RLC: Reduction in labor cost (%) RWP: Reduction in WIP (%) 
RSC: Reduction in set up cost (%) IMR: Increase in market response 
IQ: Increase in quality  CMC: Capital and maintenance cost ($1,000) 
FSU: Floor space used (sq. ft.) 
The above data for RLC, RWP, RSC, CMC, and FSU are actually the middle 
values of the range presented by Karsak and Kuzgunkaya (2002)   

10.2.1.1 Application of Graph Theory and Matrix Approach (GTMA) 
Various steps of the methodology, proposed in Section 2.6, are carried out as 
described below: 

Step 1: In the present work, the attributes considered are the same as those of 
Karsak and Kuzgunkaya (2002), and these are: reduction in labor cost (RLC), 
reduction in WIP (RWP), reduction in setup cost (RSC), increase in market 
response (IMR), increase in quality (IQ), capital and maintenance cost (CMC), and 
floor space used (FSU). The subjective data of the two attributes IMR and IQ are 
converted into appropriate objective data using Table 4.3, and the objective data 
for all seven attributes are given in Table 10.2. 

Table 10.2. Objective data of attributes of example 10.2.1
__________________________________________________________________
FMS  RLC RWP RSC IMR IQ CMC FSU 
__________________________________________________________________
1  30 23   5 0.745 0.745 1,500 5,000 
2  18 13 15 0.745 0.745 1,300 6,000 
3  15 12 10 0.500 0.500    950 7,000 
4  25 20 13 0.745 0.745 1,200 4,000 
5  14 18 14 0.255 0.745    950 3,500 
6  17 15   9 0.745 0.500 1,250 5,250 
7  23 18 20 0.500 0.745 1,100 3,000 
8  16   8 14 0.255 0.5 1,500 3,000 
__________________________________________________________________

The objective values of the FMS selection attributes, which are given in Table 
10.2, are to be normalized. RLC, RWP, RSC, IMR, and IQ are beneficial attributes, 
and higher values are desirable. CMC and FSU are non-beneficial attributes, and 
lower values are desirable. The values of the attributes for different FMSs are 
normalized, and given in Table 10.3 in the respective columns.  
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Table 10.3. Normalized data of attributes of example 10.2.1
__________________________________________________________________
FMS  RLC RWP RSC IMR IQ CMC FSU 
__________________________________________________________________
1  1 1 0.25 1 1 0.6333 0.6 
2  0.6 0.5652 0.75 1 1 0.7308 0.5 
3  0.5 0.5217 0.5 0.6711 0.6711 1 0.4286 
4  0.83333 0.8696 0.65 1 1 0.7917 0.75 
5  0.4667 0.7826 0.7 0.3423 1 1 0.8571 
6  0.5667 0.6527 0.45 1 0.6711 0.76 0.5714 
7  0.7667 0.7826 1 0.6711 1 0.8636 1 
8  0.5333 0.3478 0.7 0.3423 0.6711 0.6333 1 
__________________________________________________________________

Relative importance of attributes (aij) is also assigned values, as explained in 
Section 2.4. Let the decision maker (i.e., user organization) select the following 
assignments: 

  RLC RWP RSC IMR IQ CMC FSU 
RLC   - 0.5 0.665 0.5 0.335 0.335 0.665  
RWP 0.5 - 0.665 0.5 0.335 0.335 0.665  
RSC 0.335 0.335 - 0.335 0.255 0.255 0.5  
IMR 0.5 0.5 0.665 - 0.335 0.335 0.665  
IQ 0.665 0.665 0.745 0.665 - 0.5 0.745  
CMC 0.665 0.665 0.745 0.665 0.5 - 0.745  
FSU 0.335 0.335 0.5 0.335 0.255 0.255 -  

As was assigned by Karsak and Kuzgunkaya (2002), more relative importance 
is given to IQ and CMC, less to RLC, RWP, and IMS, and even lesser to RSC and 
FSU. However, the above-assigned values are for demonstration purposes only.       

Step 2: 
1. The FMS selection attributes digraph, showing the presence as well as relative 
importance of the above attributes is similar to Figure 2.2 but with seven attributes 
is not shown here due to obvious reasons. 
2. The FMS selection attributes matrix of this digraph is written based on Equation 
2.10. This is not shown here due to space restriction. 
3. The FMS selection attributes function is written but not shown here. However, it 
may be added that as a computer program is developed for calculating the 
permanent function value of a matrix, this step can be skipped. 
4 & 5. The flexible manufacturing system selection index (FMS-SI) is calculated 
using the values of Ai and aij for each alternative flexible manufacturing system. 
The FMS-SI values of different flexible manufacturing systems are given in 
descending order: 

7  61.2188 
4  57.2741 
1  48.9012 
5  45.6628 
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6  39.3644 
2  45.5043 
3  35.2635 
8  34.7198 

From the above values of FMS-SI, it is understood that the flexible 
manufacturing system designated as 7 is the right choice for the given industrial 
application under the given conditions, and the second choice is 4. These results 
are similar to those suggested by Karsak and Kuzgunkaya (2002) using the fuzzy 
multiple objective programming approach. However, it may be mentioned that the 
ranking depends upon the judgments of relative importance made by the user. The 
ranking may change if the user assigns different relative importance values to the 
attributes. The same is true with the approach proposed by Karsak and Kuzgunkaya 
(2002).  

The fuzzy method proposed by Karsak and Kuzgunkaya (2002) is 
cumbersome in terms of the mathematical equations involved, representation of 
weights of relative importance, fuzzy distributions, etc. Further, the authors had 
converted the available objective values of the attributes (of RLC, RWP, RSC, 
CMC, and FSU) into fuzzy values which violates the basic rule of fuzzy logic, i.e.,
the available objective values need not be fuzzified (i.e., the actual objective values 
of the attributes are to be taken as is). Comparatively, the GTMA proposed here 
provides a simple, straight-forward and logical procedure for the FMS selection 
problem. 

10.2.1.2 AHP and its Versions  
Let the decision maker prepare the following relative importance matrix:  

RLC RWP RSC IMR IQ CMC FSU 
RLC 1 1 3 1 1/3 1/3 3  
RWP 1 1 3 1 1/3 1/3 3  
RSC 1/3 1/3 1 1/3 1/5 1/5 1  
IMR 1 1 3 1 1/3 1/3 3  
IQ 3 3 5 3 1 1 5  
CMC 3 3 5 3 1 1 5  
FSU 1/3 1/3 1 1/3 1/5 1/5 1  

RLC is considered moderately more important than RSC in FMS selection. So, 
a relative importance value of 3 is assigned to RLC over RSC (i.e., a13 = 3), and a 
relative importance value of 1/3 is assigned to RSC over RLC (i.e., a31 = 1/3).   
RLC and RWP are considered equally important attributes in FMS selection. So, a 
relative importance value of 1 is assigned to RLC over RWP (i.e., a12 = 1), and a 
relative importance value of 1/1 is assigned to RWP over RLC (i.e., a21 = 1/1=1). 
Similarly, the relative importance among other attributes can be explained. 
However, it may be added that, in actual practice, these values of relative 
importance can be judiciously decided upon by the user/expert depending on the 
requirements. The normalized weights of each attribute are calculated following 
the procedure presented in Section 3.2.3, and these are WRLC = 0.1181, WRWP = 
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0.1181, WRSC = 0.046, WIMR = 0.1181, WIQ = 0.3, WCMC = 0.3, and WFSU = 0.046, 
and good consistency is found in the judgments made. 

The value of the FMS selection index is now calculated using the above 
weights, and the normalized data of the attributes given in Table 10.2. This leads to 
the ranking given by the revised AHP or ideal mode of AHP method. The 
alternative FMS configurations are arranged in descending order of the FMS 
selection index: 

4  0.9211 
7  0.9133 
1  0.8834 
5  0.8596 
2  0.8324 
3  0.7440 
6  0.7384 
8  0.6140 

For the above weights of importance of attributes, multiplicative AHP leads to 
the following ranking order: 

4  0.8684 
7  0.7993 
1  0.7990 
2  0.7657 
5  0.7641 
6  0.6826 
3  0.6728 
8  0.5495 

It may be observed that the above ranking is for the given preferences of the 
decision maker. The ranking depends upon the judgements of relative importance 
of attributes made by the decision maker.   

10.2.2 Example 2 

Now another example is considered to further demonstrate the potential of the 
proposed GTMA and fuzzy MADM methods.  

Kulak and Kahraman (2005) proposed axiomatic design (AD) principles for 
multiple attribute comparison of advanced manufacturing systems. The authors 
presented the case study of a company manufacturing tractor components that 
wished to renew the manufacturing system.  In order to produce a group of 
products, the company had to decide and select the most appropriate one among 
the different alternative FMSs. The attributes considered were: annual depreciation 
and maintenance costs (ADM), quality of results (Q), ease of use (E), 
competitiveness (C), adaptability (A), and expandability (X). The linguistic 
expressions of the attributes are given in Table 10.4. 
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Table 10.4. System data of the attributes (from Kulak and Kahraman 2005; reprinted with 
permission from Elsevier) 
__________________________________________________________________ 
FMS          ADM        Q                  E                    C                   A                 X 
_________________________________________________________________________
FMS-I          High         Excellent       Very good      Excellent       Very good      Very good       
FMS-II        Very low   Very good     Good              Very good     Very good      Very good     
FMS-III       Medium    Good             Good              Very good      Excellent        Good 
FMS-IV       Low          Fair               Good               Very good     Very good       Good 
_________________________________________________________________________
ADM: annual depreciation and maintenance costs  Q: quality of results 
E: ease of use C: competitiveness A: adaptability X: expandability

10.2.2.1 Application of GTMA 
In the present work, the attributes considered are the same as those of Kulak and 
Kahraman (2005), and these are: annual depreciation and maintenance costs 
(ADM), quality of results (Q), ease of use (E), competitiveness (C), adaptability 
(A), and expandability (X). The linguistic terms given in Table 10.4 are converted 
into appropriate fuzzy scores (using Table 4.3). Table 10.5 gives the fuzzy scores, 
and these scores are to be normalized. ADM is a non-beneficial attribute, and lower 
values are desirable. The remaining attributes are beneficial, and higher values are 
desirable. The fuzzy scores are normalized, as explained in Section 2.4, and are 
given in Table 10.6 in the respective columns.   

Table 10.5. Fuzzy scores of the attributes of example 10.2.2 
__________________________________________________________ 
FMS  ADM Q E C A X 
________________________________________________________________
FMS-I            0.665 0.955 0.865 0.955 0.865 0.865               
FMS-II          0.255 0.865 0.745 0.865 0.865 0.865        
FMS-III         0.5 0.745 0.745 0.865 0.955 0.745    
FMS-IV         0.335 0.5 0.745 0.865 0.865 0.745 
________________________________________________________________

Table 10.6. Normalized values of the attributes of example 10.2.2 
_________________________________________________ 
FMS            ADM Q E C A X 
______________________________________________________
FMS-I         0.3835 1 1 1 0.9058 1               
FMS-II        1 0.9058 0.8613 0.9058 0.9058 1        
FMS-III      0.51 0.7801 0.8613 0.9058 1 0.8613    
FMS-IV      0.7612 0.5236 0.8613 0.9058 0.9058 0.8613 
______________________________________________________

Relative importance of attributes (aij) is also assigned values, as explained in 
Section 2.4. Let the decision maker (i.e., user organization) select the following 
assignments: 
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     ADM      Q    E   C A X 
   ADM      -    0.665 0.745 0.665 0.745 0.745
   Q         0.335      - 0.665 0.5 0.665 0.665
   E       0.255    0.335 -  0.5 0.5 0.5  
   C      0.335    0.5 0.665 - 0.665 0.665
   A          0.255    0.335 0.5 0.335 - 0.5 
   X       0.255    0.335 0.5 0.335 0.5 -
                                                       
       The assigned values are for demonstration purposes only.       

Following the procedure of GTMA, the flexible manufacturing system 
selection index (FMS-SI) is calculated using the values of Ai and aij for each 
alternative flexible manufacturing system. The FMS-SI values of different flexible 
manufacturing systems are given below in descending order: 

FMS-II 22.5201 
FMS-I 19.2912 
FMS-III 17.3958 
FMS-IV 17.0109 

From the above values of FMS-SI, it is understood that the flexible
manufacturing system designated as FMS-II is the right choice under the given
conditions. This result matches with that suggested by Kulak and Kahraman
(2005). In fact, FMS-I has taken the second position mainly because of its very
low normalized fuzzy score for its ADM attribute. Otherwise, it would have
become the first choice. In their work, Kulak and Kahraman (2005) had
eliminated FMS-I after performing all calculations, reasoning that the value of
ADM for this alternative was beyond the acceptable limit. However, this
discarding of FMS-I could have been done at the initial short-listing stage itself,
as suggested in step 1 of the GTMA methodology presented in Section 2.6. This
could be the case for FMS-IV, too. 

10.2.2.2 AHP and its Versions 
The AHP method may use the same weights as those selected for the SAW 
method. In that case, the ranking of the materials will be same. However, if the 
decision maker decides to use the AHP method, rather than SAW method and the 
weights used in it, then he or she has to make pair-wise comparisons of the 
attributes to determine the weights (wj) of the attributes. Let the decision maker 
prepare the following pair-wise comparison matrix:  

ADM Q E C A X 
ADM       1 3 5 3 5 5
Q      1/3 1 3 1 3 3
E    1/5 1/3 1  1/3 1 1
C   1/3 1 3 1 3 3
A       1/5 1/3 1 1/3 1 1
X    1/5 1/3 1 1/3 1 1
                                                       
       The assigned values are for demonstration purposes only. The normalized 
weight of each attribute is calculated following the procedure presented in step 4 of 
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Section 3.2.3, and these are: WADM = 0.4188, WQ = 0.1873, WE = 0.0688, WC = 
0.1873, WA = 0.0688, and WX = 0.0688. The value of max is 6.0578 and CR = 
0.00933, which is much less than the allowed CR value of 0.1. Thus, there is good 
consistency in the judgements made. 

The value of FMS selection index is now calculated using the above weights 
and the normalized data of the attributes given in Table 10.5. The alternative FMS 
configurations are arranged in descending order of the FMS selection index: 

FMS-II 0.9485 
FMS-I 0.7351 
FMS-IV 0.7673 
FMS-III 0.7167 

Thus, the revised AHP or ideal mode AHP method also suggest FMS-II as the 
first choice. 

For the same weights of importance of attributes, the SAW method also gives 
the same ranking as that given by AHP method. 

For the same weights of importance of attributes, multiplicative AHP leads to 
the following ranking order: 

FMS-II 0.9473 
FMS-IV 0.7548 
FMS-III 0.6924 
FMS-I 0.6648 

Thus, multiplicative AHP also suggests FMS-II as the first choice.  WPM also 
suggests the same ranking as that given by the multiplicative AHP method.  

It may be observed that the above ranking is for the given preferences of the 
decision maker. The ranking depends upon the judgements of relative importance 
of attributes made by the decision maker.   

10.2.2.3 TOPSIS & Modified TOPSIS Methods 
Application of the TOPSIS and modified TOPSIS methods also suggests FMS-II 
as the first choice. 

10.2.2.4 Compromise Ranking Method (VIKOR)  
Step 1: The objective is to evaluate the four flexible manufacturing systems, and
the attributes are: annual depreciation and maintenance costs (ADM), quality of
results (Q), ease of use (E), competitiveness (C), adaptability (A), and
expandability (X). ADM is a non-beneficial attribute, and lower values are
desirable. The remaining attributes are beneficial, and higher values are desirable.
Table 10.4 gives the fuzzy scores. The best, i.e., (mij)max, and the worst, i.e.,
(mij)min, values of all attributes are also determined. 

Step 2: The values of Ei and Fi are calculated using Equations 3.26 and 3.27, 
and are given below. The same weights used in the AHP method are considered, 
and these are: WADM = 0.4188, WQ = 0.1873, WE = 0.0688, WC = 0.1873, WA = 
0.0688, and WX = 0.0688. 
E1 = 0.42 + 0 + 0 + 0 + 0.07 + 0 = 0.49 
E2 = 0 + 0.0376 + 0.07 + 0.19 + 0.07 + 0 = 0.3676  
E3 = 0.251 + 0.0877 + 0.07 + 0.19 + 0 + 0.07 = 0.6687 
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E4 = 0.0819 + 0.19 + 0.07 + 0.19 + 0.07 + 0.07 = 0.6719 
Ei-min = 0.3676 Ei-max = 0.6719 
R1 = 0.42 R2 = 0.19 R3 = 0.251 R4 = 0.19  
Fi-min = 0.19 Fi-max = 0.42 
       Step 3: The values of Pi are calculated using Equation 3.28, and for v = 0.5. 
P1 = 0.7011 P2 = 0 P3 = 0.6274 P4 = 0.5 

Step 4: The alternatives are arranged in ascending order, according to the 
values of Pi. Similarly, the alternatives are arranged according to the values of Ei
and Fi separately. Thus, three ranking lists are obtained. The best alternative, 
ranked by Pi, is the one with the minimum value of Pi.
P2 = 0  E2 = 0.3676  F2 = 0.19 
P4 = 0.5  E1 = 0.49  F4 = 0.19 
P3 = 0.6274 E3 = 0.6687  F3 = 0.251 
P1 = 0.7011 E4 = 0.6719  F1 = 0.42 

Step 5: For the given attribute weights, FMS-II is suggested as the 
compromise solution, as it satisfies both conditions given in Section 3.2.7.  
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11
__________________________________________________________________ 

Machine Selection in a Flexible Manufacturing Cell 

11.1 Introduction 

Machine selection has been a very important issue for manufacturing companies 
due to the fact that improperly selected machines can negatively affect the overall 
performance of a manufacturing system. In addition, the outputs of a 
manufacturing system (i.e., the rate, quality and cost) depend mostly oan 
appropriate selection of machines and its implementation (Ayag and Ozdemir, 
2006). On the other hand, the selection of a new machine is a time-consuming and 
difficult process requiring advanced knowledge and experience deeply. So, the 
process can be a difficult task for engineers and managers. For a proper and 
effective evaluation, the decision maker may need a large amount of data to be 
analyzed, and many attributes to be considered. The decision maker should be an 
expert, or at least be very familiar with the specifications of machines to select the 
most suitable one. In this chapter, the machine selection problem in a flexible 
manufacturing cell (FMC) is considered to describe the systematical methods 
offering the best solution. In this chapter, the word ‘machine’ in a flexible 
manufacturing cell may be understood as a group of machines required to form the 
cell.

Flexible manufacturing cells have been used as a tool to implement flexible 
manufacturing processes to increase the competitiveness of manufacturing systems. 
Flexible manufacturing cells represent a class of highly automated systems. The 
increased importance of these highly automated manufacturing systems to the 
survival of modern industries has resulted in growing research efforts that address 
the many issues inherent in flexible manufacturing. One of the key issues is the 
problem of machine selection in a flexible manufacturing cell, which involves a
number of attributes, e.g., purchasing cost, machine type, number of machines in a 
group, floor space requirement, time needed for production, etc. To help address 
this issue, various mathematical and systems modeling approaches have been 
proposed to date. Sarkis (1997) used the data envelopment analysis (DEA) method 
for evaluating flexible manufacturing systems. However, DEA requires more 
computation, and if the number of factors that the decision maker wishes to 
consider is very large, and the number of alternatives small, then DEA may be a 
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poor discriminator of good and poor performers. Again, DEA may be at a 
disadvantage in terms of the method’s rationale if the decision maker is unfamiliar 
with linear programming concepts. Talluri et al. (2000) proposed a framework 
based on the combined application of DEA and nonparametric statistical 
procedures, for the selection of flexible manufacturing systems. 

Wang et al. (2000) presented a real case of machine selection in a flexible 
manufacturing cell using a fuzzy multiple attribute decision-making method. 
However, the method was cumbersome in terms of the representation of weights of 
relative importance of the factors, fuzzy distributions, rating and ranking models, 
computation time, etc. Malek and Resare (2000) presented an algorithm-based 
decision support system for the concerted selection of equipment in 
machining/assembly cells. Karsak and Tolga (2001) proposed a fuzzy decision 
algorithm to select the most suitable advanced manufacturing system alternative. 
Both an economic evaluation criterion and strategic criteria such as flexibility, 
quality improvement, were considered for selection. Karsak and Kuzgunkaya 
(2002) proposed a fuzzy multiple objective programming approach for the 
selection of a flexible manufacturing system. Karsak (2002) presented a distance-
based fuzzy multiple criteria decision-making (MCDM) approach based on the 
concepts of ideal and anti-ideal solutions for the selection of a flexible 
manufacturing system from a set of mutually exclusive alternatives. Rai et al.
(2002) proposed a fuzzy goal-programming model using a genetic algorithm for 
machine tool selection and operation allocation in FMS. 

Yurdakul (2004) proposed AHP as a strategic decision-making method for 
machine tool selection. Tseng (2004) proposed a game theoretical model for 
selection of flexible manufacturing technologies. Chtourou et al. (2005) developed 
an expert system for manufacturing systems machine selection. Chan and Swarnkar 
(2005) presented a fuzzy goal-programming approach to model the machine tool 
selection and operation allocation problem of a flexible manufacturing system. An 
ant colony optimization (ACO)-based approach was applied to optimize the model. 
Chan et al. (2005) presented a fuzzy goal-programming approach to model a 
machine tool selection and operation allocation problem; the model was optimized 
using an approach based on artificial immune systems (AIS). 

Djassemi (2005) examined the performance of cellular manufacturing systems 
in a variable demand and flexible work force environment using simulation 
modeling. Mishra et al. (2006) presented a fuzzy goal-programming model having 
multiple conflicting objectives and constraints pertaining to a machine tool 
selection and operation allocation problem, and a new random search optimization 
methodology termed quick converging simulated annealing (QCSA) was used. 
Ayag and Ozdemir (2006) proposed a fuzzy AHP method for evaluating machine 
tool alternatives.  

Even though precision-based methods such as expert systems, neural 
networks, goal programming methods, fuzzy algorithms, genetic algorithms, 
simulated annealing, etc. have been proposed in the past to address the issue of 
selection of flexible manufacturing technologies, these methods are knowledge-
intensive, complicated, require a high level of computation, and may go beyond the 
capabilities of the real decision maker (i.e., user organization). Also, most research 
work has concentrated on flexible manufacturing systems (FMS), and only a few 
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authors have considered the problem of machine selection in a flexible 
manufacturing cell (FMC), once the alternative machines are developed. Thus, 
there is a need for a simple, systematic and logical method or mathematical tool to 
guide user organizations in taking a proper decision involving a number of 
machine selection attributes and their interrelations. This is considered in this 
chapter using the GTMA and other fuzzy MADM methods.  

11.2 Example 

Wang et al. (2000) presented a real case of a machine group selection in a flexible 
manufacturing cell including two CNC milling machine groups, a CNC lathe, and a 
robot for material handling.  

The constraints were described as explained below: 

Constraint 1: The total purchasing cost should not exceed 600,000 dollars 
Constraint 2: for CNC milling machine 
  Vertical/horizontal: horizontal 

Spindle speed   : 4,500 rpm 
X/Y/Z axis travel   : 630/630/500 
Feed rate   : 5,000 mm/min 
Tool capacity   : 40 
Maximum tool diameter  : 130 mm 

Constraint 3: for CNC lathe 
Maximum swing   : 520 mm 
Maximum turning diameter : 350 mm 
Maximum turning length  : 500 mm 
Hole through spindle  : 70 mm 
Chuck size   : 8” 
Spindle speed   : 4,500 rpm 
Feed rate   : 4,500 mm/min 

Constraint 4: for robot 
Configuration   : arm-like 
Max. load capacity at wrist : 60 kg 
Allowable load moment of wrist : 36 kg-m 
Horizontal reach   : 150 cm 
Repeatability   : 1.0 
Drive method   : Electrical 

Furthermore, in the allowance for the operating procedure, the two milling 
machines can be replaced with a multifunctional machining center. 

After incorporating the above constraints into the total purchasing cost, and 
into the specifications of the milling machine, lathe machine, and robot, suitable 
machine groups of FMC were composed into 10 possible alternatives. Table 11.1 
presents these 10 short-listed possible alternatives.  
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Table 11.1. Objective data of attributes of the example considered (Wang et al., 2000; with 
permission from Taylor & Francis Ltd., http:www.tandf.co.uk/journals) 
__________________________________________________________________________
Alternative       Total purchasing               Total floor             MN          Productivity* 
        cost ($)                 space (m2)                              (mm/min) 
__________________________________________________________________________
1        581,818     54.49  3 5,500 
2        595,454     49.73   3 4,500 
3        586,060    51.24  3 5,000 
4        522,727     45.71  3 5,800 
5        561,818    52.66  3 5,200 
6        543,030    74.46  4 5,600 
7        522,727     75.42  4 5,800 
8        486,970     62.62  4 5,600 
9        509,394     65.87  4 6,400 
10        513,333     70.67  4 6,000 
__________________________________________________________________________
MN: Total number of machines in a machine group of the flexible manufacturing cell  
*Productivity (mm/min): the value corresponds to the machine with the slowest feed rate in 
the machine group 

Now, application of the GTMA and other fuzzy MADM methods is carried 
out as explained below. 

11.2.1 Application of GTMA  

The machine selection attributes considered are the same as those of Wang et al.
(2000), and these are total purchasing cost (PC), total floor space (FS), total 
machine number (MN) and productivity (P). The machines short-listed are also the 
same as those of Wang et al. (2000). 

The objective values of the machine selection attributes, which are given in 
Table 11.1, are to be normalized. Productivity (P) is a beneficial attribute and 
higher values are desirable. Values of these attributes are normalized, and given in 
Table 11.2 in the respective column. PC, FS, and MN are non-beneficial attributes, 
and lower values are desirable. The values of these attributes for different 
alternative machines are normalized, and given in Table 11.2 in the respective 
columns.  

Relative importance of attributes (aij) is assigned the values using Table 4.4. 
Let the decision maker (i.e., user organization) select the following assignments: 

PC FS MN P  
   PC     --- 0.665 0.745 0.590 
   FS     0.335 --- 0.590 0.410 
   MN   0.255 0.410 --- 0.335 
   P       0.410 0.590 0.665 --- 
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Table 11.2. Normalized data of the machine selection attributes of the example 
considered 
_________________________________________________________________
Alternative PC  FS  MN  P 
_________________________________________________________________
1  0.854  0.839  1.000  0.859 
2  0.835  0.919  1.000  0.703 
3  0.848  0.892  1.000  0.781 
4  0.951  1.000  1.000  0.906 
5  0.885  0.868  1.000  0.812 
6  0.915  0.614  0.750  0.875 
7  0.951  0.606  0.750  0.906 
8  1.000  0.730  0.750  0.875 
9  0.976  0.694  0.750  1.000 
10  0.968  0.647  0.750  0.938  
_________________________________________________________________

The machine selection attributes digraph, machine selection attributes matrix 
of the digraph, and machine selection function for the matrix can be prepared. The 
value of machine selection index is calculated using the values of Ai and aij for 
each alternative machine, and these are given below in descending order: 

Alternative 4:   3.488808 
Alternative 5:   3.002258 
Alternative 1:    2.981451 
Alternative 3:    2.930671 
Alternative 2:    2.825410 
Alternative 9:    2.755053 
Alternative 8:    2.679458 
Alternative 10:   2.597028 
Alternative 7:    2.478609 
Alternative 6:    2.411448 

From the above values of the machine selection index, alternative 4 is the best 
choice among the alternatives considered for the flexible manufacturing cell under 
the given conditions. The ranking of machines based on the proposed methodology 
is 4-5-1-3-2-9-8-10-7-6; the ranking presented by Wang et al. (2000) was 4-5-3-1-
2-8-9-10-7-6. The above results suggest the selection of alternative 4 for the FMC 
as the first right choice, alternative 5 as the second right choice, and alternative 6 as 
the last choice. These results are consistent with those presented by Wang et al.
(2000). However, the ranking of certain alternatives obtained by using the 
proposed procedure is different from that proposed by Wang et al. (2000). For 
example, the third choice is alternative 1 as per the procedure proposed here, 
whereas it was alternative 3 in Wang et al. (2000). A closer look at the objective 
data of the four attributes PC, FS, MN, and P of these two alternatives reveals that 
there are significant differences between the two alternatives 1 and 3 in the case of 
PC ($581,818 vs. $586,060) and P (5,500 mm/min vs. 5,000 mm/min), that the 
difference is not high in the case of FS (54.49 m2 vs. 51.24 m2) and that there is no 
difference in the case of MN. Alternative 1 is best from the PC and P points of 
view, and alternative 3 is better from the FS point of view, and both alternatives are 
equal from the MN point of view. Thus, keeping in mind the relative importance of 
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the attributes, proposing alternative 1 as the third choice based on the method 
proposed here seems to be more meaningful, compared to alternative 3 as proposed 
by Wang et al. (2000). Similarly the differences in the ranking of alternatives 
between the proposed procedure and the procedure suggested by Wang et al. 
(2000) can be explained. However, it may be added here that the weights of 
relative importance used by Wang et al. (2000) were different from those used in 
the present work. Further, it may be mentioned that the ranking depends upon the 
judgements of relative importance made by the decision maker.

The fuzzy method proposed by Wang et al. (2000) is cumbersome in terms of 
the representation of weights of relative importance, fuzzy distributions, rating and 
ranking models, computation time, etc. Further, the authors had converted the 
available objective values of the attributes, after normalization, into fuzzy values, 
which violates the basic rule of fuzzy logic, i.e., the available objective values need 
not be fuzzified. Comparatively, the proposed GTMA provides a simple, straight-
forward and logical procedure for the machine selection problem in a flexible 
manufacturing cell. 

Following graph theory and the matrix approach, the coefficients of 
similarity/dissimilarity can also be calculated for different machines using 
Equations 2.15 and 2.16.  

It may be noted that GTMA offers a general methodology, and is applicable to 
any type of machine selection problem involving any number of machine selection 
attributes.  

11.2.2 SAW Method 

For start, the attributes are ranked in order of importance and 10 points are 
assigned to the least important attribute MN. The attribute FS is given 15 points to 
reflect its relative importance. P and PC are given 25 and 30 points, respectively. 
Thus, the weights of PC, FS, MN, and P are calculated as 0.375, 0.1875, 0.125, and 
0.3125 respectively. Using these weights, and the normalized data of the attributes 
for different machines, the machine selection index values are calculated, and are 
arranged in descending order of the index.

Alternative 4: 0.9523 
Alternative 9:  0.9024 
Alternative 8:  0.8791 
Alternative 5: 0.8734 
Alternative 10: 0.8712 
Alternative 1:  0.8710 
Alternative 3:  0.8543 
Alternative 7:  0.8471 
Alternative 2:  0.8301 
Alternative 6:  0.8254 

From the above values of the machine selection index, it is clear that the 
alternative machine, designated as 4 is the best choice among the machines 
considered.  
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11.2.3 WPM 

Using the same weights of the attributes as those selected for the SAW method, the 
following ranking of machines is obtained: 

Alternative 4: 0.9515 
Alternative 9:  0.8927 
Alternative 5: 0.8716 
Alternative 1:  0.8697 
Alternative 10: 0.8609 
Alternative 3:  0.8517 
Alternative 7:  0.8356 
Alternative 8:  0.8266 
Alternative 2:  0.8240 
Alternative 6:  0.8167 

This method also suggests alternative 4 as the first choice and alternative 9 as 
the second choice.  

11.2.4 AHP and its Versions 

If the weights selected for the SAW method are used also in this method, then the 
ranking of machines obtained by using the relative as well as ideal mode AHP will 
be same. The multiplicative AHP method yields the same ranking as that given by 
WPM. However, let the decision maker prepare the following matrix: 

PC FS MN P  
   PC     1 3 4 2 
   FS     1/3 1 2 1/2 
   MN   1/4 1/2 1 1/3 
   P       1/2 2 3 1 

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are: WPC = 0.467, WFS = 0.16, WMN
= 0.095, and WP = 0.278.  

The value of the machine selection index is now calculated using the above 
weights, and the normalized data of the attributes given in Table 11.2. The 
alternative machines are arranged in descending order of the machine selection 
index. 

Alternative 4: 0.9509 
Alternative 9:  0.9161 
Alternative 8:  0.8983 
Alternative 10: 0.8876 
Alternative 5: 0.8729 
Alternative 1:  0.8669 
Alternative 7:  0.8642 
Alternative 3:  0.8508 
Alternative 6:  0.8400 
Alternative 2:  0.8274 
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From the above values of the machine selection index, it is clear that the 
machine, designated as 4 is the best choice among the alternatives considered.  

It may be observed that the above ranking is for the given preferences of the 
decision maker.  

11.2.5 TOPSIS Method 

The quantitative values of the machine selection attributes, which are given in 
Table 11.1, are normalized as explained in Section 3.2.6. 

Relative importance of attributes (aij) is assigned using the AHP method as 
explained in Section 11.2.4. After performing the calculations, the alternative 
machines are arranged in descending order of their machine selection index. This 
can be arranged as 4-9-8-10-7-5-1-6-3-2. 

11.2.6 Modified TOPSIS Method 

Following the procedure of the modified TOPSIS method and using the same 
weights as those of the TOPSIS method, the following ranking of alternative 
machines is obtained: 

Alternative 4: 0.7842 
Alternative 9:  0.5755 
Alternative 5:  0.5526 
Alternative 1: 0.5475 
Alternative 8: 0.5415 
Alternative 3:  0.5038 
Alternative 10:  0.4806 
Alternative 2:  0.4557 
Alternative 7:  0.4045 
Alternative 6:  0.3471 

It can be observed that all the above decision-making methods propose 
machine designated as 4 as the first right choice.  

The example problem considered in this chapter is related to the selection of a 
group of machines required for a flexible manufacturing cell. However, the 
proposed decision-making methods are quite general, and can be applied also for 
the selection of a single machine tool for a given industrial application. For 
example, if a CNC machining center is required to be purchased by a firm, and a 
finite number of alternative CNC machining center configurations are available 
with objective as well as subjective information of the attributes, then the decision-
making methods proposed in this chapter can be useful to the firm. 

Ayag and Ozdemir (2006) considered the problem of selection of a CNC 
vertical turning center for general use by a company. Nineteen machine selection 
attributes were considered, and these were: productivity (spindle speed, power, 
cutting feed, traverse speed), flexibility (number of tools, rotary table), space 
(machine dimensions, adaptability, CNC type, taper number); precision 
(repeatability, thermal deformation), reliability (bearing failure rate, reliability of 
drive system, safety and environment, mist collector, safety door, fire 
extinguisher, training), and maintenance and service (repair service, regular 
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maintenance).  Three machine alternatives (Maho, Hass, and Seiki) were evaluated 
by Ayag and Ozdemir (2006) using the fuzzy AHP method. However, the fuzzy 
version of AHP proposed by Ayag and Ozdemir (2006) is a complicated one. 
Once the objective and/or subjective data of the above 19 attributes are available, 
then the decision-making methods proposed in this book can be used for machine 
selection. The pair-wise comparison of the 19 attributes can also be made easily.   

It may be worth mentioning here that fuzzy set theory has serious difficulties 
in producing valid answers in decision-making based on fuzzifying judgements. No 
theorems are available dealing with its workability when applied indiscriminately 
as a number-crunching approach to numerical measurements that represent 
judgements.  When numerical representation of judgements is allowed to vary in 
choice over the values of a fundamental scale, as in the analytic hierarchy process, 
these judgements are themselves already fuzzy.  To make these even fuzzier can 
decrease the validity of the outcome, when the actual outcome is known. Also, 
improving the consistency of a judgement matrix does not necessarily increase the 
validity of the outcome.  Validity is the goal in decision making, not consistency, 
which can be successively improved by manipulating the judgements as the answer 
becomes even farther removed from reality. Ayag and Ozdemir (2006) had not 
considered this fact in their work. Making fuzzy judgements fuzzier does not lead 
to a better outcome, and indeed often leads to a worse one. That is why this book 
proposes a logical method in Chapter 4 to take care of the above points, while 
assigning objective values to the subjective data of the attributes as well as 
deciding the relative importance of attributes. 
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Failure Cause Analysis of Machine Tools

12.1 Introduction 

Machine tool reliability and maintainability significantly affect the three elements 
of competitiveness: quality, cost, and production time. Well-maintained machines 
produce tolerances better, help reduce scrap and reworking, and raise the 
consistency and quality of the part. Further, such machine tools increase uptime 
and yield good parts, thereby reducing total production cost. Machine tools form a 
complex system consisting of various subsystems/components, and failure of a 
machine tool may occur due to failure(s) in any of the subsystems/components. For 
example, a CNC machine tool will invariably incorporate some, if not all, of the 
following subsystems: 

Electronic subsystems: microprocessor- or mini-computer-based 
controllers, input/output devices (displays, keyboards, disk and tape 
drives, data ports), memory components, analog systems (A/D, D/A 
converters and power amplifiers). 
Electrical subsystems: motors, contactors, relays, limit switches, servo-
feedback    components, etc.
Mechanical subsystems: gear boxes, slides and slide ways, drives, 
spindles, work holding devices, tool magazines and changers, swarf 
controllers, pallet systems, etc.
Hydraulic subsystems: reservoirs, filters, pumps, valves, pressure relief 
valves, actuators, piston-cylinder arrangement, etc.
Lubrication subsystems 
Coolant subsystems. 

Failure of a machine tool may occur due to failure(s) in any of the elements of 
the subsystems. The failure may be attributed to specific failure causes. A failure 
cause is defined as a reason that makes the machine tool unable to perform its 
intended function. This may be attributed to failure events contributed by its 
subsystems, assemblies, or components, including the cutting process and the 
cutting conditions. In the present work, machine tool failures are examined by 
analyzing the contributing events for their failure cause. 
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There are numerous failure-causing elements in a machine tool. Some 
important common failure causes of a machine tool are given below: 
Faulty components, wear between mating parts, fatigue of the components, casting 
and welding defects in the machine tool structure, thermal stresses, high cutting 
temperatures, excessive cutting forces, low rigidity, vibrations, noise, electrica1 
and electronic troubles, geometrical inaccuracy, low hydraulic and pneumatic 
pressure (for clamping devices, rotating devices, and feed drives), failure of 
bearings, contamination of slideways (e.g., due to swarf),  loss of lubrication 
(slides, racks, ball-screw bearings, gears, and chains), malfunctions of valves, filter 
problems, cooling problems, pump cavitation, imbalance and disturbance in rives, 
chip conveying problems, clamping and indexing problems, tensioning problems in 
belts and chains, contactor troubles, motion control troubles, encoder problems, 
software troubles, servo adjustments, main process-related mechanisms, feed 
process-related mechanisms, auxiliary mechanisms, materials transportation 
system, environmental conditions, incorrect cutting conditions, nature of the 
machining process, incompatible cutting fluids, operator errors leading to poor 
operation, poor maintenance, etc.

A failure manifests itself as a deviation of the machine tool behavior from its 
specified behavior. Martin (1994) distinguished between two different types of 
machine tool failures. The soft or gradual failure develops gradually with time, and 
this is characteristic of many mechanical and hydraulic elements of the machine 
tool where wear takes place, causing a gradual degradation of the operation of the 
element. The hard or catastrophic failure takes place instantaneously, and the 
element is either on or off, this is characteristic of many electrical circuit elements, 
but does occur also in mechanical elements, e.g., brittle fracture. 

Interest in machine tool failure data was shown by an early study of machine 
tool reliability undertaken by the Machine Tool Industry Research Associates 
(Stewart, 1977) and reported that the average downtime due to breakdowns was of 
the order of 7.6%, and the failure rate was 1-2 breakdowns per NC machine per 
month. A study of 35 CNC machines (1981), based upon service engineers’ 
records during one year warranty, quoted “an average availability of around 83%”. 
Kilmartin and Hannan (1981) invoked the poor diagnostics of electronics in 
explaining much of the downtime, but over the following years evidence 
supporting the development of diagnostics in the domain was reported by Kegg 
(1984). 

Continued interest in the reliability of machine tools gave rise to an initiative 
by the National Center for the System Reliability (NCSR) in the UK. This brought 
together a consortium of machine tool users and manufacturers, NCSR providing 
staff to collect the appropriate data. A report of NCSR (1988) provided data on the 
reliability of the CNC machine centers. The data were confidential to consortium 
members, but in general did highlight the more significant failure areas.  

A machine tool is a complex system, and it is not possible to contemplate the 
condition monitoring of all parameters that describe the behavior of a machine tool. 
Consequently, a limited choice has to be made, and this should be based upon the 
information available on failures, their frequency, and the resulting downtime. 
Johansson (1981) proposed parameters for monitoring CNC lathes, such as: feed 
drive current, mains voltage, hydraulic oil pressure, acceleration time for spindle 
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motor, interval for central lubrication, tool change time, temperature of spindle 
bearings, temperature of control box, temperature of spindle motor, temperature of 
hydraulic oil, oil filter degree of purity, and number of movements of X and Y 
slides. 

Martin et al. (1990) applied the techniques of failure modes and effects 
analysis to analyze the catastrophic failures of machine tools. These are essentially 
logical decisions based upon system knowledge, and lend themselves to 
computerization and automatic decision making. Majstorovic and Milacic (1990) 
defined the basic architecture of expert systems for diagnosis and maintenance, and 
reviewed the current uses of expert systems. The authors reviewed 87 different 
expert systems; of 4.6% machine tool systems. Freyermuth (1991) described an 
expert system type analysis to define failures based on ‘fault-symptom trees’, 
which have similarities with fault trees. Angeli and Chatzinkikoraou (1985)
developed an expert system to diagnose the faults in hydraulic systems. 
Marczewsky (1988) developed and implemented an expert system called 'Charley' 
to track machine tool conditions using vibration signatures from the machine tools. 
Puetz and Eichhorn (1987) proposed expert system shells for the failure diagnosis 
of CNC machine tools. 

The main techniques used for the diagnosis of soft or gradual failures are: 
pattern recognition techniques (using artificial neural networks and fuzzy logic), 
expert systems, and mathematical model-based detection techniques. Williams 
(1990) had described different methods of automatic recognition of failure patterns. 
Pattern recognition techniques generally rely upon the use of failure dictionary-
stored information upon the reaction of the system to certain failures. Marzi and 
Martin (1990) reported the design of a neural network that which analyzed the 
gradual failures represented by changes in the transient response at the outlet of the 
pump of a machine tool coolant system. Lee and Kramer (1993) proposed a 
methodology using neural networks to monitor machine tool behavior. A pattern 
discrimination model is used to measure the performance degradation 
quantitatively. Lee (1995) reviewed machine tool condition monitoring and fault 
diagnosis methods. Drake and Pan (1996) presented a method for diagnosing 
multiple failures and the levels of severity of individual faults in the flood coolant 
system of a CNC vertical milling machine tool. The method employed a neural 
network for pattern recognition with features extracted from the transient response 
of the coolant pressure on shut down. 

Ye and Zhao (1996) developed a highly integrated system, integrating neural 
networks with a procedural decision-making algorithm, to implement hypothesis-
test cycles in a manufacturing system diagnosis of tested failure events. Zeng and 
Wang (1991) described an experimental study to investigate the feasibility of 
employing fuzzy set theory in an integrated failure diagnostic system. The main 
monitored signal was assumed to be acceleration transformed into frequency 
spectra. Comparisons between the operating machine patterns and those in the 
failure dictionary were made to define the machine operating system by the use of 
the fuzzy fault assignment technique. Holloway and Krogh (1990) had proposed a 
behavioral model approach for failure detection and analysis in automated 
manufacturing systems. Their model provided the basis for on-line failure detection 
by generating expected system response signals that were compared with the actual 
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sensor signals from the system. Failure analysis was accomplished by maintaining 
a current set of operational assumptions that identify the system components 
possibly causing deviations from the expected behavior.  

Isermann (1991) described mathematical model based techniques for the 
detection of gradual failures in machine tools. The diagnosis techniques were 
described based upon the measurement of the variation of parameters, concluding 
with a description of a knowledge-based diagnosis system. Martin (1994)
discussed model-based failure detection techniques covering the fields of 
modeling, parameter estimation, state estimation, use of observers, and parity space 
approaches. Alexander et al. (1993) developed a model for the diagnosis of CIM 
equipment. Poltavets (1994) presented fault diagnostic parameters (temperature, 
movement accuracy, vibration, and acoustics) and suggested wide use of highly 
effective computer equipment, mathematical modeling, and intensive development 
of sophisticated system investigation methods. 

Rao (1997) reviewed key developments in the area of metal cutting machine 
tool design from a very practical perspective. Defining the drivers of machine tool 
design as higher productivity and higher accuracy, the author examined advances 
in design stemming from the needs of these two drivers. Kwon and Burdekin 
(1998) presented an adjustment technique for controller setting values in CNC 
machine tools by measurement of servo-induced feed drive errors. For 
measurement of the servo-induced errors, an experimental technique which 
incorporated two linear displacement sensors and a steel cube was developed, and 
servo feed drive errors were evaluated along a square corner test path. Based on 
evaluations of servo feed drive errors, different combinations of parameters in the 
machine control system and optimum setting parameters were found. 

Hu et al. (1999) proposed a systematic approach for the failure diagnosis of 
flexible manufacturing systems that integrates condition monitoring, failure 
diagnosis and maintenance planning. Two diagnostic models for PLC-controlled 
flexible manufacturing systems were presented. In another work, Hu et al. (2000) 
designed an intelligent integrated fault-diagnosis system with a modular, and 
reconfigurable structure. The implementation of the integrated diagnosis was 
presented in detail. The system could monitor conditions, and diagnose the major 
failures of a flexible manufacturing system, and give corresponding maintenance 
planning as well. Huang and Liao (2000) developed a maintenance schedule and 
fault diagnosis system that integrates an artificial neural network and an expert 
system for a wire EDM setup. The faults considered were: wire breaking and 
unsatisfactory accuracy. Suggestions were made to eliminate/reduce these faults. 
Rao and Gandhi (2002) presented digraph and matrix methods for failure cause 
analysis of machine tools. Das et al. (2007) discussed reliability aspects of the 
design and analysis of cellular manufacturing systems.  Luis et al. (2006) presented 
details of a sensor-less tool failure monitoring system for drilling machines.    

Most of the techniques or approaches described above have drawbacks. In the 
case of systems such as pattern recognition techniques (using neural networks, 
fuzzy logic), and expert systems, a great deal of research is necessary in order to 
apply these types of systems to machine tool failure diagnosis. Significant amounts 
of data and time are required to define the normal healthy behavior of a machine 
tool. For example, pattern recognition techniques generally rely upon the use of 
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failure dictionary stored information on the reaction of the system to certain 
failures. Because of the complexity of a machine tool, it will be possible to deal 
only with a limited number of failures and therefore, the necessity to define the 
most important failures. If a decision can be made regarding the significant 
failures, there still remains the decision as to which parameter will be sensitive to 
the failure. In certain cases, the parameter is easily definable, and the more 
complex cases will need research in themselves. In the laboratory, it is necessary to 
stimulate faults for which neither the time nor the resources are available to run the 
machine tools until failures occur. Even if this is done, most automatic data 
acquisition systems (DASs) generate excessive amounts of data, and the problem 
lies in data storage and analysis. In the case of mathematical modeling techniques, 
measurements have to be made on healthy systems to define the mathematical 
model, and to store the healthy response. These measurements will probably be 
different for what are normally the same machine tool type, and thus a separate 
machine needs its own measurement; it is not possible to take a measure of one 
machine and assume that this will apply to another.  

As explained above, fault diagnosis and maintenance are knowledge-intensive, 
experimental tasks that may go beyond the capabilities of the practicing 
maintenance engineer. Moreover, ad hoc replacements further aggravate the 
problems at the operational stage, which not only culminates in loss of production 
and increase in machine downtime, but can also lead to human loss and injuries. 
This problem can be minimized to a large extent if failure cause analysis is 
considered. Its implementation at the design stage will lead to the design of failure-
free reliable machine tool systems. It will also help in minimizing downtime, and 
avoiding ad hoc replacements. 

The structure of a machine tool is highly important to understand and model 
its failure. The structure may be physical or abstract. In the system's structure, the 
components of the system/subsystem, the properties relevant to the problem are 
identified and their characteristic interdependence and interactions determined. The 
importance of a system's structure has been emphasized by many researchers 
(Czichos, 1978, 1980; Yoshikawa, 1982; Kokowa and Shingai, 1982; Kokowa et 
al., 1983; Ishida et al., 1985; Sethi and Agrawal, 1993; Gandhi and Agrawal, 1994, 
1996; Clark and Paasch, 1997). 

The subsystems/components of a machine tool are expected to perform 
appropriate function(s) to attain a desired output. The output of a given machine 
tool depends upon how well individual subsystems/components perform. The 
malfunctioning of a machine tool system is attributed to improper functional 
interaction between its components and subsystems. This means a function 
specifies intended behavior of an individual component or subsystem. Moreover, 
the structure of a machine tool system is important for understanding the 
connectivity of its components and subsystems. Therefore, both function and 
structure are key entities in failure consideration as a whole. However, to analyze 
the failure causes of machine tools, it is indispensable to consider the functional 
and structural interaction of the machine tool system especially at the design stage. 
This exercise, which aims to minimize the operational failures, can be implemented 
at the design stage, if appropriate procedures based on this approach are made 
available to the designer. Fault tree analysis (Fussell, 1975, 1976) has been 
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extensively used in chemical and process industries for root cause analysis. 
However, this does not take into account the structure of the system explicitly. 
Hence there is a need for an appropriate procedure to analyze the failure causes of 
a machine tool. This aspect is considered in the present work using graph theory 
and the matrix approach. Graph theory is useful to represent the system structure 
and in conjunction with the matrix approach enables analysis of the problem in a 
more convenient way. Rao and Gandhi (2002) demonstrated this approach for 
machine tool failure cause analysis with the identification of failure contributing 
events and their interaction for a machine tool failure cause. 

Failure cause of a machine tool is analyzed considering the contributing events 
and their interactions, and is demonstrated in the following sections. 

12.2 Identifying Contributing Events of a Failure Cause 

The contributing events of a failure cause of a machine tool are identified by 
examining various aspects such as affected system structure, mating components, 
cutting process, cutting conditions, and the tool and work piece. To illustrate this, 
an example of vibrations of machine tools is considered and the events of this 
failure cause (i.e., vibrations) are considered by examining the following aspects: 

Machine tool: The machine tool structure deflects due to cutting forces and the 
weight of the moving subassemblies. The stiffness of the structure must be 
high with high damping characteristics to minimize the influence of dynamic 
loads. If this is not so, the frequency of vibration may coincide easily with the 
natural frequency of any mode of the machine tool, resulting in complete or 
partial destruction of the machine tool. Besides, vibration decreases the life of 
the machine tool. 
It is commonly experienced that, in any machine shop floor, if anywhere 
dynamic force through vibration is transmitted to the ground, then the machine 
shop floor will vibrate. This vibration may be transmitted to the machine tool 
through its foundation, and cause vibrations in the machine tool and damage 
the job surface. 
Incorrect machine tool leveling will also cause vibrations in the machine tool. 
The disturbances in the machine tool drives also lead to vibrations in the 
machine tool. These disturbances are generated due to many reasons. Some of 
the reasons are: 

Rotating unbalanced masses: The effect of rotating unbalanced masses 
becomes more prominent when rotating bodies, or parts, are supported on 
the top of slender parts. 
Faulty arrangement of drives: Faulty arrangement of drives also produces 
vibrations. If the driving gears have eccentricities, pitch errors, profiles 
errors, damaged portions, etc., then they will produce non-uniform 
rotation which may contribute to machine tool vibrations. In the case of 
belt drives, if the section of the belt used is non-uniform then the effective 
pulley radius will change periodically causing a periodic variation of belt 
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tension. Belts that are too tight or too slack will also cause machine tool 
vibrations. 
Fault in the supporting bearings: If the bearings supporting the rotating 
members of the machine tool are faulty, the rotating members will not be 
fixed in position and will change position periodically depending on the 
nature of the fault. Moreover, if the frequency of the system is of the same 
order, then an appreciable vibration may be generated. Radial and axial 
play in the spindle may lead to vibrations. 
Reciprocating disturbances: The disturbance in the elements of machine 
tool executing rectilinear motion can also cause vibrations. This type of 
vibration may be due to reciprocating imbalance, or to stick-slip motion. 

Type of cutting and cutting conditions: Sometimes, when the cutting process 
itself is intermittent (e.g., milling), or periodically discontinuous (e.g., cutting 
with discontinuous chip formation), then cutting force fluctuates with a 
definite period. Due to this fluctuating or dynamic cutting force, which is 
transmitted to the machine tool via the cutting tool and the job, it is quite likely 
that a forced vibration will be generated due to the elastic nature of the system. 
If the frequency of force fluctuation falls in the range of natural frequency of 
the machine tool, then the vibrations will be severe. In addition, incorrect 
cutting conditions, e.g., cutting speed, feed, and depth of cut, cause vibrations. 
The machine tool can vibrate due to the cutting process itself under particular 
conditions. In these cases, the active force is not from an outside element, but 
is due to the cutting process itself. These types of vibrations are self-induced, 
and commonly known as machine tool chatter. A slight disturbance in the 
cutting process caused by varying chip thickness, varying rate of penetration 
of the tool into the job, or variation in the angular speed of the job may cause 
such vibration. 
Work piece: If any inhomogeneity is present in the work material, an 
impulsive force will be generated due to a sudden increment in the hardness of 
the work material. As an effect of this impulse, a free vibration is set up in the 
cutting tool, and also in the machine tool body. Not-so-rigid work piece 
holding and its balancing, and slenderness of the work material also lead to 
vibrations. 
Cutting tool: Tool overhanging contributes to machine tool vibrations. Proper 
setting is required. A wrong geometry of the tool, or blunt tool lead to 
vibrations. Vibrations decrease the cutting tool life. 
Built-up edge on the cutting tool, formed due to the wrong cutting conditions, 
has an effect on vibrations similar to that of inhomogeneities in the work 
material. If the machine tool system is not dynamically stable, then the effect 
is considerable. 
Sudden impact load on the cutting tool sets up vibrations in the cutting tool 
and also in the machine tool body.  
It may be added that the contributing events for other failure causes of a 

machine tool mentioned earlier can be identified in a similar way as that described 
above. The contributing events identified above are considered for modeling the 
machine tool failure cause using graph theory and the matrix approach, and this is 
discussed in the next section. 
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12.3 Machine Tool Failure Causality Digraph (MTFCD) and its 
Matrix Representation 

The machine tool failure causality digraph (MTFCD) models a failure cause of a 
machine tool system, subsystem, or component, considering the failure 
contributing events and their interaction in terms of cause-effect relationship (i.e.,
causality). A node Vi represents the i-th failure contributing event, and a directed 
edge eij from node i to node j represents the causality relation between i and j 
events. For example, if event i is the cause event, and j is the affected event, then a 
directed edge eij is drawn from node i to node j. If no causality relation exists 
between two events, then no edge is drawn between these nodes, i.e., eij = 0. 
Sometimes it is possible that two events may be cause and effect events to one 
another. In such a case, two directed edges, eij and eji, are drawn, i.e., one from 
node i to node j, and the other from node j to node i. If an event i is the cause and 
effect event to itself, then it shall be represented by a self-loop at that node. For a 
considered failure cause, all the contributing events are to be identified first, and 
also their causality relations. Therefore, every care needs to be taken in identifying 
all the failure contributing events for a failure cause. It is suggested that this 
exercise be carried out by a team consisting of designers, and operating and 
maintenance personnel. 

To develop the machine tool failure causality digraph, a machine tool failure 
cause, i.e., vibrations of the machine tool, is considered, and has been described in 
the previous section. However, for illustration six most important vibration 
contributing events are selected, and these events are listed below: 

1. Machine tool leveling 
2. Type of cutting and the cutting conditions 
3. Inhomogeneities in the work material 
4. Disturbance in machine tool drives 
5. Cutting process 
6. Tool setting and job holding 
These six events are represented in the machine tool failure causality digraph 

shown in Figure 12.1 by six nodes. The directed edges are drawn keeping in mind 
the discussion presented earlier in this section. For example, machine tool leveling 
affects the disturbance in machine tool drives. So, a directed edge is drawn from 
node 1 to node 4 in the digraph. Similarly, other directed edges are drawn and the 
digraph is developed as shown in Figure 12.1. It is likely that there may be more 
causality relations between these events (i.e., six events) and other events not 
shown (of other failure causes of machine tool), and these are represented as 
dashed directed edges. This is, however, for illustration only and is not considered 
further in the analysis.  
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Figure 12.1. Machine tool failure causality digraph (from Rao and Gandhi 2002; reprinted 
with permission from Elsevier)

The machine tool failure causality digraph represents the graphical 
relationship among thee contributing events for a failure cause. If there are a large 
number of contributing events, then due to this large number of nodes and the 
directed edges, the digraph becomes complex. Visual appraisal also may not be 
easy. For instance, in the above example, if there were more than six contributing 
events, then obviously the related digraph would become complicated due to these 
events and their causality relations. So, to handle the machine tool failure causality 
digraph conveniently using a computer, a matrix approach is adapted. From this 
matrix form, an expression that becomes characteristic of the machine tool failure 
cause can be developed. This matrix is named the ‘machine tool failure severity 
and causality matrix’.  

The machine tool failure severity and causality matrix for the failure cause 
‘vibrations’ is written as matrix D. 
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      Events        1 2 3 4 5 6 
           1        S1 0 0 c14 0 c16
  2      0 S2 0 c24 c25 0
 D = 3    0 c32 S3  c34 c35 0
  4   0 c42 0 S4 c45 c46
  5       0 c52 0 c54 S5 0
  6    0 c62 0 c64 c65 S6
                                                       
The diagonal element Si represents a variable of severity of the i-th failure 
contributing event. Off-diagonal element cij represents the causality relation (of 
some degree) between the i-th and j-th events. It may be noted that this matrix 
considers both the severity of the failure contributing events and their causality 
relations for the considered machine tool failure cause ‘vibrations’. 

The permanent of the machine tool failure severity and causality matrix i.e.,
per (D) is named ‘machine tool failure causality function (MTFCF)’. For matrix D, 
MTFCF is written as: 

per (D) = S1 S2 S3 S4 S5 S6+ (c24 c42 S1 S3 S5 S6 + c25 c52 S1 S3 S4 S6 + c45 c54 S1 S2 S3
S6 + c46 c64 S1 S2 S3 S5 ) + [(c24 c45 c52 S1 S3 S6 + c 25 c54 c42 S1 S3 S6 ) + c24 c46 c62 S1
S3 S5 + c46 c65 c54 S1 S2 S3] + [((c25 c52 ) (c46 c64 ) S1 S3 ) + (c24 c46 c65 c52 S1 S3 + c25
c54 c46 c62 S1 S3)]                                                                                                 (12.1) 

MTFCF helps to analyze the failure cause from combinatorial consideration. 
This is desirable to give proper physical meaning to the events and their causality 
relations. Moreover, the permanent function does not contain negative sign, and 
thus no information is lost. The reasons for adapting the permanent function, 
rather than characteristic and other such functions, are explained in Chapter 2. 
Equation 12.1, i.e., machine tool failure causality function, is the characteristic of 
the failure cause as it contains a number of terms that are its structure invariants. 
These are arranged in groupings. The first grouping represents the severity of six 
events (i.e., S1 S2 S3 S4 S5 S6). The second group is absent, as an event can not 
become cause and effect to itself. The third grouping contains four terms. Each 
term represents a 2-event causality loop (i.e., c24 c42, c25 c52, c45 c54, c46 c64), and the 
severity of four events (i.e., S1 S3 S5 S6, S1 S3 S4 S6, S1 S2 S3 S6, S1 S2 S3 S5). 
Similarly, the other terms of MTFCF can be explained. It may be noted that 
Equation 12.1 is characteristic for the considered failure cause of the machine 
tools, i.e., vibrations in this case. 

12.4 General Machine Tool Failure Causality Function 

The machine tool failure causality digraph (MTFCD) represents a machine tool 
failure cause, no matter how complicated it is. For a given machine tool failure 
cause, all the contributing events need to be identified first, and the causality 
relations of these identified events are to be determined for the failure cause.  
MTFCD is the key to the proposed machine tool failure causality analysis. The 
causality relations between the machine tool failure cause events must be 
thoroughly understood before assigning some value to these. If the causality 



Failure Cause Analysis of Machine Tools        159 

relation between two failure cause events is wrongly understood as 0, then this 0 
will cause many terms of the MTFCF to become 0, thereby leading to the loss of 
much information useful during the machine tool failure cause analysis. Hence it is 
desirable that one should interact with as many engineers as possible, preferably of 
different fields (design, operation, maintenance, etc.), to reproduce an exact 
machine tool failure cause representation. It must be emphasized that the process of 
constructing such a MTFCD would need the information and experience acquired 
to date, and if these aspects are taken care of in the digraph representation, this will 
substantially reduce the danger of failing to recognize the possible events and their 
causality relations. Keeping in mind these aspects, a general form of machine tool 
failure causality matrix is described in this section. 

In general, if there are M number of failure contributing events and the 
causality relations exist among all the failure contributing events, then the failure 
severity and causality matrix, P, for the considered MTFCD is written as Equation 
12.2, which is similar to Equation 2.10. 

      Events        1 2 3 - - M 
  1        S1 c12 c13 - - c1M
  2      c21 S2 c23 - - c2M
 P =  3    c31 c32 S3  - - c3M
  -   - - - - - -
  -       - - - - - -
  M    cM1 cM2 cM3 - - SM
                                                                                                              (12.2) 
       The MTFCF for this matrix P contains factorial M (M!) number of terms. In 
sigma form, this is written as Equation 12.3, which is similar to Equation 2.11. 
                        M           M-1      M                         M                               

per (P) =  Si +          ………     (cij cji )Sk Sl Sm Sn So …..St SM

                       i =1         i=1     j=i+1                   M=t+1                                                           

... , M  pus
              M-2     M-1     M                        M                  
            +              ..........   (cij cjk cki + cik ckj cji ) Sl Sm Sn So …..St SM

                     i=1    j=i+1  k=j+1     l=1       M=t+1                                                                           
     k, … , M  pus

                      M- 3     M        M-1      M                     M 

            +[                ………   (cij cji) (ckl clk ) Sm Sn So …..St SM

                       i=1    j=i+1  k=i+1  l=i+2                M=t+1                                                         

     k,l, … , M  pus
             M-3      M-1           M         M                    M                            

            +                    ………  (cijcjk ckl cli +cil clk ckj cji) Sm Sn So …..St SM]
              i=1        j=i+1       k=i+1  l=j+1           M=t+1                                                                                                                          

    k,l, ... , M  pus
                M-2     M-1       M        M-1   M                   M   

            + [                    ……… (cijcjk cki+cik ckj cji)( clm cml)Sn So …..St SM
                   i=1   j=i+1     k=j+1   l=1  m=l+1            M=t+1                                                                                                                  

      k,l,m , ... , M  pus 
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               M-4   M-1    M       M        M                  M

            +              .......... (cijcjkckl clm cmi+cim cmlclk ckj cji)Sn So…..StSM]
                      i=1    j=i+1  k=i+1  l=i+1  m=j+1           M=t+1                                                                                                                

     k,l,m, ... , M  pus 

    M-3   M-1    M    M      M-1  M                    M

            + [(              ……… (cijcjkcklcli+cilclk ckj cji)(cmn cnm)So…..St SM
                   i=1  j=i+1 k=i+1 l=j+1 m=1 n=m+1           M=t+1                                                                                                    

        k,l,m,n, ... , M  pus

                       M-5   M-1  M  M-2  M-1 M              M   

             +    ….… (cijcjkcki+cikckjcji)(clmcmncnl+clncnmcml)So..St SM

                      i=1 j=i+1 k=j+1 l=1 m=l+1 n=m+1     M=t+1 

      k,l,m,n, ... , M  pus

                      M-5  M          M- 3   M        M-1       M                M 

             +                     .........  (cij cji) (ckl clk ) (cmn cnm ) So …..St SM

                     i=1  j=i+1  k=i+1    l=i+2   m=k+1   n=k+2     M=t+1                                                   

     k,l,m,n, ... , M  pus
               M-5  M-1   M     M       M       M          M

             +             ….. (cijcjkcklclmcmncni+cincnmcmlclkckjcji)So…..St SM]
               i=1  j=i+1 k=i+1 l=i+1 m=i+1 n=j+1   M=t+1

   k,l,m,n, ... , M  pus

  + ----------                                                                                             (12.3) 

‘pus’ stands for ‘previously used subscripts’ i.e., in Equation 12.3, k, l, m, n, 
…, and M take those subscripts that are other than previously used subscripts. The 
MTFCF contains terms arranged in (M +1) groups and these groups represent the 
severity measures of failure contributing events and the causality relation loops. 
The first group represents the measures of M events. The second group is absent, 
as there is no self-loop in the digraph. The third group contains 2-event causality 
relation loops and measures of (M-2) events. Each term of the fourth group 
represents a set of a 3-event causality relation loop, or its pair, and measures of (M-
3) events. The fifth group contains two sub-groups. The terms of the first sub-
group is a set of two 2-event causality relation loops and the measures of (M-4) 
events. Each term of the second sub-group is a set of a 4-event causality relation 
loop, or its pair, and the measures of (M-4) events. The sixth group contains two 
sub-groups. The terms of the first sub-group is a set of 3-event causality relation 
loop, or its pair, and a 2-event causality relation loop, and the measures of (M-5) 
events. Each term of the second sub-group is a set of a 5-event causality relation 
loop, or its pair, and the measures of (M-5) events. Similarly other terms of the 
equation are defined. Thus, the MTFCF fully characterizes the considered machine 
tool failure cause, as it contains all possible events and their causality relations. 

12.5 Machine Tool Failure Cause Evaluation 

It is desirable to evaluate the machine tool failure cause subjectively or objectively, 
and in terms of index/measure to ascertain the severity of the machine tool failure 
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cause. The numerical value of the MTFCF is called the machine tool failure 
causality index (MTFCI). This index gives a measure of the severity of failure 
cause. To evaluate MTFCF, the values of Si and cij are required. It is preferable to 
have these values based on shop-floor data or experience of the shop-floor 
personnel. If such objective value is not available, then a ranked value judgement 
on a fuzzy conversion scale may be adapted (e.g., Tables 4.1 or 4.3). It is possible, 
for a failure cause, that some of the Si values may be subjective, and the others 
objective. It is desirable to normalize the objective value of Si on the same scale as 
the subjective value.   

The causality relation, i.e., cij, is also assigned on a scale. If the causality 
relation is strong between two events, then a value of 3 is assigned. If no causality 
relation exists between two events, then a value of 0 is assigned. This is suggested 
in Table 12.1. 

Table 12.1. Quantification of causality relation between two events, cij
__________________________________________________________________
Causality relation between two events   Assigned value, cij
__________________________________________________________________
None      0 
Weak      1 
Medium       2 
Strong      3 
__________________________________________________________________

  However, if one wishes a fuzzy assignment for the causality relation also, this 
can be done by following appropriate fuzzy conversion scale suggested by Chen 
and Hwang (1992), and modifying it suitably.   

It may be mentioned that one can choose any scale for Si or cij. However, a 
lower value for these is desirable to obtain manageable values of the MTFCI. It is 
possible that plant data pertaining to Si and cij are not available. In such cases, these 
are assigned subjective values based on Tables 4.1 (or 4.3) and 12.1. 

With the help of Tables 4.1 (or 4.3) and 12.1 and Equation 12.3, the numerical 
value of the MTFCF i.e., MTFCI is calculated. This index gives a measure of the 
severity of failure cause. A higher value of MTFCI indicates that the considered 
failure cause is a serious one. A lower value of MTFCI indicates that the 
considered failure cause is not serious, and is therefore, desired. 

Using MTFCI, two failure causes of a machine tool can be compared. The 
failure cause having higher value of MTFCI needs to be considered and efforts 
should be made to reduce the value of the index by taking appropriate failure 
minimization steps. Thus, different failure causes of a machine tool can be 
analyzed and arranged in decreasing order of the machine tool failure causality 
indices. The failure analyst can take suitable actions for their prevention in order of 
their severity as understood from the values of MTFCI. 
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12.6 Machine Tool Failure Cause Analysis 

The machine tool failure causality function is a useful expression for the failure 
cause analysis of machine tools, as it represents the severity of the events and the 
causality relations. The analysis is carried out term by term. 

(i) The first term represents the severity of M failure contributing events, and 
is given as:  
/ S1 / S2 / S3 / ………./SM / 

The slash represents a separation mark between the severity of two events. The 
analysis is to be carried out event-wise and turn by turn. A designer or practicing 
engineer needs to consider each and every event in detail. If the severity of an 
event is higher then more attention should be paid to this event, and to finding 
ways and means to minimize the severity of this event. For example, if the analysis 
is carried out for the failure cause ‘vibrations’ of a machine tool, the first term is S1
/ S2 / S3 / S4 / S5 / S6 /. If the event 4 (i.e., disturbances in machine tool drives) has 
more severity then in-depth study may reveal that this can be attributed to: rotating 
unbalanced masses, faulty arrangement of drives, faults in the supporting bearings, 
damaged gears, worn out belts, spindle play, manufacturing faults in the drive 
elements, etc. By the application of appropriate techniques, the severity of this 
event can be reduced. On the same lines, the severity of other events is considered. 

(ii) When self-loops do not exist in the digraph, then this grouping will be 
absent.  

(iii) When self-loops are absent, each term of the third grouping represents a 
set of 2-event causality loops and the severity of (M-2) events. This is given as: 
/ (cij cji ) / Sk / Sl /………./SM /

The entity to be analyzed first is cij cji. This is a 2-event causality loop and 
represents the resultant causality relation between i and j. If the analysis indicates 
that this value is comparatively high, then in-depth study is needed to reduce this 
entity to a lower value. For the present failure cause ‘vibrations’ of a machine tool, 
the third grouping is: / c24 c42 / S1 / S3 / S5 / S6 / + …..   

 The first entity to be analyzed in the first term is c24 c42. This means that the 
effect of type of cutting and cutting conditions on disturbances in machine tool 
drives, and the effect of disturbances in machine tool drives on type of cutting and 
cutting conditions are to be studied. These two events are cause and effect to each 
other, and c24 c42 represents the resultant causality relation between these two 
events. Along with this resultant causality between the first two events, the severity 
of events 3, 5, and 6 is to be considered. Similarly, the other terms of the grouping 
can be analyzed. 

(iv) When self-loops are absent, the fourth grouping contains the terms, each is 
a set of a 3-event causality loop, or its pair, and the severity of (M-3) events. This 
is given as: 
/ (cij cjk cki + cik ckj cji ) / Sl / Sm /………./SM /

The first entity to be analyzed is the 3-event causality loop cij cjk cki, and its 
pair cik ckj cji. If analysis indicates the entity’s value comparatively higher, then 
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efforts should be made to reduce its value. For the present failure cause ‘vibrations’ 
of a machine tool, the fourth grouping is: 
/ (c24 c45 c52 + c25 c54 c42 ) / S1 / S3 / S6 / + …… 

The first entity in the first term to be analyzed is c24 c45 c52. This is the 
resultant causality relation between events 2, 4, and 5. This means that in the 
considered failure cause ‘vibrations’, the causality relations between the type of 
cutting and the cutting conditions and disturbance in machine tool drives, and 
between disturbance in machine tool drives and the cutting process, and between 
the cutting process and type of cutting and cutting conditions are to be studied in 
detail, and this is expected to minimize this entity. Along with the resultant 
causality relation among these events, the severity of events 1, 3 and 6 is to be 
considered. In the same manner, c25 c54 c42 is to be studied. Similarly, other entities 
of the other terms of this grouping can be critically analyzed. Ways and means to 
reduce the value of the entities can be suggested. Finally, this leads to the 
minimization of failure. Proceeding as described above, other groupings of the 
MTFCF can be assessed. 

The above procedure analyzes the failure causes of the machine tools by 
identifying the failure-contributing events and their causality relations. Each and 
every entity in different groupings are analyzed, along with how they are 
contributing to the machine tool failure cause. The analysis, when carried out as 
described above, helps to identify the areas where improvements can be made, and 
leads to minimization of failures in machine tools. For the considered failure cause, 
‘vibrations’, of a machine tool, these may be in terms of proper machine leveling 
along with proper vibration isolation arrangements, improving the stiffness and the 
damping characteristics of the machine tool, balancing of the rotating and non-
rotating drives, correct arrangement of the drives, proper tool setting and job 
holding procedures, selection of right tool and work materials, right cutting 
conditions, maintaining proper belt tension, removing the spindle play, choosing 
right quality bearings, gears, etc. Thus, it would be possible to minimize vibrations, 
a common failure cause in machine tools.  

The above procedure is applicable not only at the design stage of the machine 
tools but also at the operating stage. The designer or the practicing engineer needs 
to list the likely or observed failure causes in order of their probability of 
occurrence. Then the failure cause with the highest probability is attempted first in 
the above-described procedure. Similarly, other failure causes of the machine tool 
are analyzed. 

Comparison of two failure causes can be done by calculating the value of 
coefficient of similarity/dissimilarity based on the numerical value of the terms of 
the MTFCF. The procedure is similar to that described in Section 2.5.2. 

12.7 Methodology 

The methodology for the proposed failure cause analysis of machine tools using 
graph theory and the matrix approach is given below: 
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1. Identify all failure causes attributed to a machine tool under consideration. 
This should be based on shop-floor data on machine tools, and the experience 
of persons involved in its operation, maintenance, and design. 

2. Consider the first failure cause, and identify its contributing events and their 
interrelations. If any event is a cause and effect event to itself, consider that 
aspect also. Assign severity to the events (i.e., Si), and to the causality 
relations (i.e., cij).

3. Develop the machine tool failure causality digraph considering the identified 
failure contributing events and their interrelations (i.e., causality relations) in 
step 2. This digraph consists of nodes and directed edges. The number of 
nodes shall be equal to the number of failure-contributing events (i.e., M). If 
an event is cause and effect to itself, then a self-loop is to be drawn at the node 
representing that event.

4. Develop the machine tool failure causality matrix for the machine tool failure 
causality digraph. This will be an M x M matrix with diagonal elements 
representing the severity of the failure contributing events (plus the causality 
relations for self-loops, if any, in the digraph) and off-diagonal elements 
representing the causality relations among the failure contributing events.

5. Obtain the machine tool failure causality function for the machine tool failure 
causality matrix, on the lines of Equation 12.3. Substitute the values of the 
severity of the failure contributing events and their causality relations obtained 
in step 2 into the machine tool failure causality function, and calculate the 
value of the machine tool failure causality index i.e., MTFCI. 

6. Carry out the failure cause analysis by critically examining each and every 
term of different groupings of the machine tool failure causality function. 
Suggest the ways and means to minimize the severity of the failure cause.

7. Repeat the steps 1 to 6 for all the other failure causes of the machine tool.
8. Arrange the MTFCI values for different failure causes in decreasing order. 

This gives an idea of the severity of the failure causes.
9. Evaluate the coefficients of similarity and dissimilarity for all the failure 

causes. List the values for all combinations. Compile the analysis, and 
document the failure causes for future analysis.

12.8 Summary 

A methodology is presented in this chapter that is applied to a machine tool failure 
cause analysis, with the identification of failure-contributing events and their 
interaction for a machine tool failure cause. The procedure is useful for designers 
of reliable machine tools, and practicing engineers involved in failure minimization 
of the operating machine tool, leading to improved productivity and cost 
minimization. The proposed methodology helps in identifying areas of 
improvement, and minimizing the severity of failure causes, thereby leading to the 
development of a machine tool of increased reliability. The procedure is useful not 
only for the failure cause analysis of machine tools, but also for the failure cause 
analysis of any type of systems. Further, the procedure is useful for comparison 
and evaluation of failure causes. 
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13
__________________________________________________________________ 

Robot Selection for a Given Industrial Application

13.1 Introduction 

The word robot was coined in 1920 by the Czech author K. Capek in his play 
Rossum’s Universal Robots; it is derived from the Czech word robota, meaning 
‘worker’. An industrial robot is commonly defined as a reprogrammable 
multifunctional manipulator, designed to move materials, parts, tools, or other 
devices by means of variable programmed motions, and to perform a variety of 
other tasks. In a broader context, the term robot also includes manipulators that are 
activated directly by an operator. 

Recent developments in information technology and engineering sciences have 
been the main reason for the increased utilization of robots in a variety of advanced 
manufacturing facilities. Robots with vastly different capabilities and specifications 
are available for a wide range of applications. The selection of robots to suit a 
particular application and production environment from among the large number 
available in the market has become a difficult task. Various aspects such as product 
design, production system, and economics, need to be considered before a suitable 
robot can be selected. The selection problem is particularly relevant in view of the 
likely lack of experience of prospective users in employing a robot. Indeed, robots 
are still a new concept in industry as a whole, and so it is not unusual for an 
industry to be a first-time robot purchaser. Many precision-based methods for robot 
selection have been developed to date. 

Knott and Getto (1982) suggested a model to evaluate different robotic 
systems under uncertainty, and different alternatives were evaluated by computing 
the total net present values of cash flows of investment, labor components, and 
overheads. Offodile et al. (1987) developed a coding and classification system that 
was used to store robot characteristics in a database, and then selected a robot using 
economic modeling. While the attempt provides a valuable aid at the stage of final 
selection, such an exercise will be prohibitive at the initial selection stage when the 
number of potential robots is large, and many other considerations have to be taken 
into account. Imang and Schlesinger (1989) presented decision models for robot 
selection, and compared ordinary least squares and linear goal programming 



170        Decision Making in the Manufacturing Environment 

methods. Agrawal et al. (1991) employed the TOPSIS method for robot selection. 
However, the authors had not considered the subjective attributes. 

Boubekri et al. (1991) developed an expert system for industrial robot 
selection considering functional, organizational, and economical attributes in the 
selection process. Wang et al. (1991) presented a decision support system that 
applies a fuzzy set method for robot selection. The objective attributes were 
evaluated via marginal value functions while the subjective attributes were 
evaluated via fuzzy set membership function. Data from both evaluations were 
finally processed such that a fuzzy set decision vector was obtained. However, the 
fuzzy method presented is a complicated one, and requires more computation. 

Booth et al. (1992) proposed a decision model for the robot selection problem 
using both Mahalanobis distance analysis, i.e., a multivariate distance measure, and 
principal-components analysis. Liang and Wang (1993) proposed a robot selection 
algorithm by combing the concepts of fuzzy set theory and hierarchical structure 
analysis. The algorithm was used to aggregate decision makers’ fuzzy assessments 
about robot selection attributes weightings, and to obtain fuzzy suitability indices. 
The suitability ratings were then ranked to select the most suitable robot. Khouja 
and Offodile (1994) reviewed the literature on industrial robots selection problems 
and provided directions for future research. Khouja (1995) presented a two-phase 
robot selection model that involved the application of data envelopment analysis 
(DEA) in the first phase, and a multi-attribute decision-making model in the second 
phase.  

Zhao and Yashuhiro (1996) introduced a genetic algorithm (GA) for an 
optimal selection and work station assignment problem for a computer-integrated 
manufacturing (CIM) system. Goh et al. (1996) proposed a revised weighted sum 
decision model that took into account both objective and subjective attributes of 
the robots under consideration. The model incorporated values assigned by a group 
of experts on different attributes in selecting the robots. Goh (1997) employed the 
analytic hierarchy process (AHP) method for robot selection. Parkan and Wu 
(1999) presented decision-making and performance measurement models with 
applications to robot selection. Particular emphasis was placed on a performance 
measurement procedure called operational competitiveness rating (OCRA) and a 
multiple attribute decision-making method, TOPSIS. The final selection was made 
on the basis of rankings obtained by averaging the results of OCRA, TOPSIS, and 
a utility model. However, the models had not considered the subjective attributes, 
and no explanation was given on how to assign the weightings to different robot 
selection attributes. 

Khouja and Kumar (1999) used options theory and an investment evaluation 
procedure for selection of robots. Braglia and Petroni (1999) carried out investment 
evaluation using DEA for robot selection. Layek and Resare (2000) developed a 
decision support system (DSS) based on analytical algorithms to select machining 
centers and robots concurrently from the market milien. Chu and Lin (2003)
pointed out the limitations of the Liang and Wang (1993) method, and proposed a 
fuzzy TOPSIS method for robot selection. However, the authors had converted the 
available objective values of the robot selection attributes into fuzzy values, which 
violates the basic rule of fuzzy logic, i.e., the available objective values need not be 
fuzzified. Further, only a 5-point scale was adapted for the rating of robots under 
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subjective attributes. Also, the fuzzy method was complicated, and requires more 
computation. Bhangale et al. (2004) listed a large number of robot selection 
attributes, and ranked the robots using TOPSIS and graphical methods, comparing 
the rankings given by these methods. However, the weights assigned by the authors 
to the attributes were not consistent. Karsak and Ahiska (2005) introduced a 
practical common weight MCDM methodology using the DEA method with an 
improved discriminating power for technology selection. Rao and Padmanabhan 
(2006) proposed a methodology based on digraph and matrix methods for 
evaluation of alternative industrial robots. A robot selection index was proposed 
that evaluates and ranks robots for a given industrial application. The index was 
obtained from a robot selection attributes function, in turn obtained from the robot 
selection attributes digraph. The digraph was developed based on robot selection 
attributes and their relative importance for the application considered. A step by 
step procedure for evaluation of a robot selection index was suggested.

The objective of a robot selection procedure is to identify the robot selection 
attributes, and obtain the most appropriate combination of the attributes in 
conjunction with the real requirements of the industrial application. A robot 
selection attribute is defined as a factor that influences the selection of a robot for a 
given industrial application. These attributes include: cost, configuration, load 
capacity, weight and size of the robot, type and number of end effectors, type of 
control, velocity of movements, type of programming, programming flexibility, 
reliability, repeatability, positioning accuracy, resolution, number of degrees of 
freedom, number of joints, their sequence and orientation, motion transformation 
characteristics, ease of operation, work volume, drive system, man-machine 
interface, vendor’s service contract, training, delivery period, maintainability, ease 
of assembly, ease of disassembly, types and number of sensors used, availability or 
assured supply, management constraints, etc.

Efforts need to be extended to determine attributes that influence robot 
selection for a given industrial application, using a logical approach to eliminate 
unsuitable robots, and for selection of a proper robot to strengthen the existing 
robot selection procedure. Pertinent attributes and the alternative robots involved 
are to be identified. Values of the attributes and their relative importance are to be 
obtained. An objective or subjective value, or its range, may be assigned to each 
identified attribute as a limiting value, or threshold value, for its acceptance for the 
considered robot selection problem. An alternative robot with each of its selection 
attributes, meeting the acceptance value, may be short-listed. After short-listing the 
alternative robots, the main task to choose the alternative robot is to see how it 
serves the attributes considered. 

The next section presents applications of the GTMA and fuzzy MADM 
methods for robot selection for a given industrial application. 

13.2 Examples 

Now, to demonstrate and validate the application of decision-making methods, two 
examples are considered. 
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13.2.1 Example 1 

An example is considered to demonstrate the application of the GTMA and fuzzy 
MADM methods. This example problem considers five robot selection attributes, 
and three alternative robots. The objective and subjective information of the 
attributes is given in Table 13.1. Man–machine interface (MI) and programming 
flexibility (PF) are expressed subjectively in linguistic terms, and these attributes 
are assigned objective values with the help of Table 4.3. The objective data of the 
attributes are given in Table 13.2.   

Table 13.1. Robot selection attributes information of example 13.2.1 
______________________________________________________________
Robot PC ($1,000) LC (kg) RE (mm)  MI PF          
______________________________________________________________
Robot 1 73  48 0.15  A      H          
Robot 2 71  46 0.18     AA          VH          
Robot 3 75  51 0.14  BA           H              
______________________________________________________________
PC: Purchasing cost LC: Load carrying capacity  R: Repeatability error 
MI: Man-machine interface  PF: Programming flexibility 
A: Average; AA: Above average; BA: Below average; H: High; VH: Very 
high

Table 13.2. Objective data of the robot selection attributes of example 13.2.1 
______________________________________________________________
Robot PC ($1,000) LC (kg) RE (mm)  MI    PF          
______________________________________________________________
Robot 1 73         48 0.15  0.5          0.665          
Robot 2 71         46 0.18     0.59        0.745          
Robot 3 75         51 0.14  0.41        0.665              
______________________________________________________________

13.2.1.1 Application of GTMA 
In the present work, the attributes considered are PC, LC, R, MI, and PF. The 
objective values of the robot selection attributes, which are given in Table 13.2, are 
to be normalized. LC, MI, and PF are beneficial attributes, and higher values are 
desirable. Values of these attributes are normalized, as explained in Section 2.4, 
and are given in Table 13.3 in the respective columns. PC and R are non-beneficial 
attributes, and lower values are desirable. The values of these attributes for 
different robots are normalized, and given in Table 13.3 in the respective columns.  
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Table 13.3. Normalized data of the robot selection attributes of example 
13.2.1
______________________________________________________________
Robot      PC      LC          RE  MI       PF          
______________________________________________________________
Robot 1 0.9726        0.9412       0.9333           0.8475      0.8926         
Robot 2 1.0000        0.9020       0.7777           1.0000         1.0000        
Robot 3 0.9467        1.0000       1.0000           0.6949      0.8926        
______________________________________________________________

Let the decision maker prepare the following relative importance 
assignments: 
 PC LC RE MI PF 
PC --- 0.745 0.5 0.865 0.745 
LC 0.255 --- 0.255 0.59 0.5 
RE 0.5 0.745 --- 0.865 0.745 
MI 0.135 0.41 0.135 --- 0.41 
PF 0.255 0.5 0.255 0.59 --- 

The robot attributes digraph, robot attributes matrix of the digraph, and robot 
function for the matrix can be prepared. The value of the robot selection index is 
calculated using the values of Ai and aij for each robot. 

The robot selection index values of different robots are given below in 
descending order: 

Robot 2  6.1701 
Robot 1  5.9386 
Robot 3  5.7184 

From the above values of the robot selection index, robot 2 is considered as the 
best choice among the robots considered for the given industrial application. The 
second choice is robot 1, and the third choice is robot 3. 

13.2.1.2 SAW Method 
Let the decision maker assign the following weights of importance to the attributes: 

WPC = 0.40, WLC = 0.08, WR = 0.40, WMI = 0.05, and WPF = 0.08 
Using these weights, and the normalized data of the attributes for different robots, 
the robot selection index values are calculated, and are arranged in descending 
order of the index.

Robot 3  0.9579 
Robot 1  0.9429 
Robot 2  0.9032 

As mentioned above, the ranking depends upon the weights of importance 
assigned to the attributes.   

13.2.1.3 WPM 
Application of WPM leads to the following ranking:

Robot 3  0.9554 
Robot 1  0.9424 
Robot 2  0.8969 



174        Decision Making in the Manufacturing Environment 

13.2.1.4 AHP and its Versions 
If the same weights as those selected for the SAW method are used in this method, 
then the ranking of robots obtained by using the relative as well as ideal mode AHP 
methods will be the same. The multiplicative AHP method also leads to the same 
ranking. 

However, rather than the above, let the decision maker decide to use the AHP 
method to determine the weights (wj) of the attributes, and prepare the following 
matrix:  
 PC LC R MI PF 
PC 1 5 1 7 5 
LC 1/5 1 1/5 2 1 
R 1 5 1 7 5 
MI 1/7 1/2 1/7 1 1/2 
PF 1/5 1 1/5 2 1 

Purchasing cost (PC) is considered as strongly more important than the load 
carrying capacity (LC) in this example. So, a relative importance value of 5 is 
assigned to PC over LC (i.e., a12 = 5), and a relative importance value of 1/5 is 
assigned to LC over PC (i.e., a21 = 1/5). PC and R are considered as equally 
important in this example. So, a relative importance value of 1 is assigned to PC 
over R, and a relative importance value of 1 is assigned to R over PC. Similarly, 
the relative importance among other attributes can be explained.  

The normalized weights of each attribute are calculated and these are: WPC = 
0.3916, WLC = 0.084, WR = 0.3916, WMI = 0.0485, and WPF = 0.0841. The value of 

max is 5.0204 and CR = 0.00455, which is much less than the allowed CR value of 
0.1. Thus, there is good consistency in the judgements made. 

The value of the robot selection index is now calculated, and the robots are 
arranged in descending order of the robot selection index. 

Robot 3  0.9551 
Robot 1  0.9416 
Robot 2  0.9045 

From the above values of the robot selection index, robot 3 is considered as the 
best choice among the robots considered for the given industrial application.  

For the above weights of importance of attributes, multiplicative AHP also 
leads to the same ranking order of 3-1-2. 

13.2.1.5 TOPSIS Method 
The quantitative values of the robot selection attributes, which are given in Table 
13.5, are normalized as explained in Section 3.2.6. 

Relative importance of attributes (aij) is assigned using the AHP method as 
explained in Section 13.2.2.4, and these are WPC = 0.3916, WLC = 0.084, WR = 
0.3916, WMI = 0.0485, and WPF = 0.0841. 

The weighted normalized matrix is calculated, and is shown below: 



Robot Selection        175 

0.2259     0.0482 0.2323 0.0277 0.0466 
0.2323     0.0462 0.1936 0.0327 0.0522 
0.2199     0.0512 0.2489 0.0227 0.0466 

Ideal (best) and negative ideal (worst) solutions are calculated, and these are 
given as:  
VPC

+ = 0.2199  VPC
- = 0.2323 

VLC
+ = 0.0512  VLC

- = 0.0462 
VR

+ = 0.1936  VR
-  =  0.2489 

VMI
+ = 0.0327  VMI

- = 0.0227 
VPF

+ = 0.0522  VPF
- = 0.0446 

Separation measures are calculated, and these are: 
S1

+ = 0.0400  S1
- = 0.0186 

S2
+ = 0.0134  S2

- = 0.0565 
S3

+ = 0.0565  S3
- = 0.0134 

The relative closeness of a particular alternative to the ideal solution is 
calculated, and these are:  
P1 = 0.3169, P2 = 0.8088, and P3 = 0.1912 

This relative closeness to the ideal solution can be named as the ‘robot 
selection index’ in the present work. 

The alternative robots are arranged in descending order of their robot selection 
index. This can be arranged as 2-1-3. 

13.2.1.6 Modified TOPSIS Method 
The positive ideal solution (R+) and the negative ideal solution (R-) are calculated, 
and are given below: 
RPC

+ =  0.5614  RPC
- =  0.5930 

RLC
+ =  0.6087  RLC

- =  0.5489 
RR

+ =  0.5129  RR
- =   0.6595 

RMI
+ = 0.6740  RMI

- =  0.4684 
RPF

+ =  0.6209  RPF
- =  0.5543 

The weighted Euclidean distances are calculated as 
D1

+ = 0.0402  D1
- = 0.0734  

D2
+ = 0.0933  D2

- = 0.0531 
D3

+ = 0.0531  D3
- = 0.0933 

The relative closeness of a particular alternative to the ideal solution is 
calculated (i.e., robot selection index), and these are:  
P1-mod = 0.6460  P2-mod = 0.3625   P3-mod = 0.6375   
                                            

The alternative robots are arranged in descending order of their robot selection 
index, as 1-3-2. From this, it appears that the ranking presented by using the 
modified TOPSIS method is not appropriate for the example problem considered. 
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13.2.2 Example 2 

Bhangale et al. (2004) listed a large number of robot selection attributes, and 
ranked the robots using TOPSIS and graphical methods, comparing the rankings 
given by these methods. The example problem considering five attributes and 
seven alternative robots is shown in Table 13.4. 

Table 13.4. Objective data of the robot selection attributes of example 
13.2.2 (from Bhangale et al. 2004; reprinted with permission from Elsevier) 
_____________________________________________________________
Robot   LC RE MS MC MR                   
_____________________________________________________________
Robot 1   60 0.4 2,540 500 990 
Robot 2   6.35 0.15 1,016 3,000 1,041 
Robot 3   6.8 0.1 1,727.2 1,500 1,676 
Robot 4   10 0.2 1,000 2,000 965 
Robot 5   2.5 0.1 560 500 915 
Robot 6   4.5 0.08 1,016 350 508 
Robot 7   3 0.1 1,778 1,000 920 
_____________________________________________________________
LC: Load capacity (kg)  RE: Repeatability error (mm) 
MS: Maximum tip speed (mm/s) MC: Memory capacity in points or 
steps MR: Manipulator reach (mm) 

13.2.2.1 Application of GTMA 
Now, to demonstrate the proposed procedure of robot selection through GTMA, 
various steps of the methodology, given in Section 2.6, are carried out as described 
below: 

In the present work, the attributes considered are LC, RE, MS, MC and MR. 
The objective values of the robot selection attributes, which are given in Table 
13.4, are to be normalized. LC, MS, MC, and MR are beneficial attributes, and 
higher values are desirable. Values of these attributes are normalized, and are given 
in Table 13.5 in the respective columns. RE is a non-beneficial attribute, and lower 
values are desirable. The values of this attribute for different robots are normalized, 
and given in Table 13.5 in the respective columns.  

Table 13.5. Normalized data of the robot selection attributes of example 
13.2.2
_______________________________________________________________
Robot   LC RE MS MC MR                   
_______________________________________________________________
Robot 1   1 0.2 1 0.1667 0.5907 
Robot 2   0.1058 0.53333 0.4 1 0.6211 
Robot 3   0.1133 0.8 0.68 0.5 1 
Robot 4   0.1667 0.4 0.3937 0.6667 0.5758 
Robot 5   0.0417 0.8 0.2205 0.1667 0.5459 
Robot 6    0.075 1 0.4 0.1167 0.3031 
Robot 7   0.05 0.8 0.7 0.3333 0.5489 
_______________________________________________________________
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Relative importance of attributes (aij) is assigned values as explained in 
Section 2.4. Let the decision maker select the following assignments using the 
AHP procedure: 

 LC RE MS MC MR 
LC - 1/6 1/7 1/7 1/5 
RE 6 - 1/2 1/2 2 
MS 7 2 - 1 3 
MC 7 2 1 - 3 
MR 5 1/2 1/3 1/3 - 

The value of max for this matrix is 5.0874 and CR = 0.0197, and, thus there is 
good consistency in the judgements made (of relative importance of attributes). 

The value of the robot selection index is now calculated, and the robots are 
arranged in the descending order of the robot selection index. 

Robot 3  92.004 
Robot 1  88.074 
Robot 2  84.929 
Robot 7  81.391 
Robot 4  77.954 
Robot 6  72.986 
Robot 5  71.296 

From the above values of the robot selection index, robot 3 is considered as 
the best choice among the robots considered for the given industrial application. 
The second choice is Robot 1 and the last choice is robot 5. However, Bhangale et
al. (2004) gave a ranking order of: robot 4 - robot 1 - robot 3 - robot 7 - robot 2 - 
robot 6 - robot 5. However, the relative importance matrix prepared by Bhangale et 
al. (2004) was completely inconsistent, and it is not possible to justify how the 
authors had calculated the weights of the relative importance of the attributes based 
on such a highly inconsistent judgement matrix.  Thus, the ranking presented here 
for the proposed GTMA method is more genuine.  

It may be mentioned that the ranking depends upon the judgements made by 
the user. The above ranking may change if the user assigns different relative 
importance values to the attributes.                 

13.2.2.2 AHP and its Versions 
Let the decision maker prepares the following relative importance matrix:  

 LC RE MS MC MR 
LC - 1/6 1/7 1/7 1/5 
RE 6 - 1/2 1/2 2 
MS 7 2 - 1 3 
MC 7 2 1 - 3 
MR 5 1/2 1/3 1/3 - 

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are: WLC = 0.036, WRE = 0.192, 
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WMS = 0.326, WMC = 0.326, and WMR = 0.120. The value of max for this matrix is 
5.0874 and CR = 0.0195, and, thus there is good consistency in the judgements 
made. 

The value of the robot selection index is now calculated using the above 
weights, and the normalized data of the attributes given in Table 13.2. The 
alternative robots are arranged in descending order of the robot selection index. 

Robot 3  0.6623   
Robot 2  0.6371   
Robot 7  0.5581   
Robot 1  0.5256   
Robot 4  0.4976   
Robot 6  0.4000   
Robot 5  0.3468   

From the above values of the robot selection index, it is clear that the robot, 
designated as 3 is the best choice among the robots considered for the given 
industrial application.  

For the above weights of importance of attributes, multiplicative AHP leads to 
the same ranking order of 3-2-7-4-1-6-5. 
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__________________________________________________________________ 

Selection of an Automated Inspection System 

14.1 Introduction 

As automation increases in all aspects of manufacturing processes and operations, 
the need for automated inspection has become obvious. Flexible manufacturing 
systems and manufacturing cells have led to the adoption of advanced measuring 
techniques and systems. In fact, installation and utilization of these systems is now 
necessary and essential in manufacturing. 

In the past, a batch of parts was manufactured and sent to be measured in a 
separate quality control room; if this batch passed measurement inspection, it was 
put into inventory. Automated inspection, however, is based on various on-line 
sensor systems that monitor the dimensions of the parts while they are being made, 
and if necessary use these measurements as input to correct the process (Kalpakjian 
and Schmid, 2000). 

Automated inspection techniques can be divided into two broad categories: (1) 
contact inspection and (2) non-contact inspection. In contact inspection, physical 
contact is made between the object and the measuring or gaging instrument, 
whereas in non-contact inspection no physical contact is made. The principal 
contact inspection technologies are: 

Conventional measuring and gaging instruments, manual and 
automated 
Coordinate measuring machines (CMMs) and related techniques 
Stylus type surface texture measuring machines 

Conventional measuring and gaging techniques and CMMs measure dimensions 
and related specifications. Surface texture measuring machines measure surface 
characteristics such as roughness and waviness. 

Non-contact inspection methods utilize a sensor located at a certain distance 
from the object to measure or gage the desired features (Groover, 2001). The non-
contact inspection technologies can be classified into two categories: (1) optical 
and (2) non-optical. Optical inspection technologies make use of light to 
accomplish the measurement or gaging cycle. The most important optical 
technology is machine vision; however, other optical techniques are important in 
certain industries. Non-optical inspection technologies utilize energy forms other 
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than light to perform the inspection; these other energies include various electrical 
fields, radiation and ultrasonics. 

The characteristics and quality of measuring instruments or gages are 
generally described by various specific attributes such as accuracy, repeatability, 
sensitivity, amplification, calibration, stability, linearity, drift, precision, resolution, 
speed of response, volumetric performance, maintainability, reliability, initial cost, 
operation cost, throughput rate, environmental factor requirement (temperature, 
humidity, dust and so on), flexibility in software interface, size and type of parts to 
be measured, operator skills required, etc.    

 The selection of an automated inspection system requires consideration of 
various attributes as mentioned above. Very limited research work was done on 
this selection aspect. Elshennaway (1989) presented a methodology for the 
performance evaluation of CMMs. Golomski (1990) had discussed the selection of 
automated inspection device from accounting point of view. The author had shown 
that using automated inspection equipment can reduce the indirect cost of 
inspection but increase the depreciation cost as well as the maintenance cost. 
Pandey and Kengpol (1995) presented a methodology for selecting the best 
possible automated inspection device for use in FMSs. The problem had been 
modeled as that of multicriterion decision making and solved using Preference 
Ranking Organization METHod for Enrichment Evaluations (PROMETHEE). The 
study had demonstrated the effectiveness of multicriterion decision making 
approach.

Now, to demonstrate and validate the application of proposed decision making 
methods, an example is considered. First GTMA is applied and subsequently few 
MADM methods are applied to rank and select the automated inspection systems. 

14.2 Example 

Pandey and Kengpol (1995) presented a methodology for selecting the best 
possible automated inspection device for use in FMSs. The authors had surveyed 
the Thailand industries and considered 11 attributes and 4 alternative automated 
inspection systems. The eleven attributes considered were accuracy, volumetric 
performance, repeatability, resolution, maintainability, reliability, initial cost, 
operation cost, throughput rate, environmental factor requirement and flexibility in 
software interface. The four alternative automated inspection systems considered 
were CMM1(USA), CMM2(Japan), AVI(USA), LASER SCAN (Japan).The 
corresponding data is presented in Table 14.1. 

14.2.1 Application of Graph Theory and Matrix Approach (GTMA) 

Various steps of the methodology, proposed in Section 2.6, are carried out as 
described below: 

Step 1: In the present work, the attributes considered are the same as of those 
Pandey and Kengpol (1995), and these are: accuracy (A), volumetric performance 
(V), repeatability (R), resolution (S), maintainability (M), reliability (L), initial cost 
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(I), operation cost (O), throughput rate (T), environmental factor requirement  (E), 
and flexibility in software interface (F). 

Table 14.1. Data of the automated inspection system selection attributes 
(from Pandey and Kengpol 1995; reprinted with permission from Elsevier) 
______________________________________________________________
Attributes    A B C D 
______________________________________________________________
Accuracy    90 80 60 75  
Volumetric performance  80 70 50 70 
Repeatability    80 80 50 70 
Resolution    70 70 80 60 
Maintainability   60 60 80 70 
Reliability    85 80 70 70 
Initial cost    40 30 20 25 
Operation cost   2 7 1 4 
Throughput rate   70 70 80 80 
Environmental factor requirement 80 80 60 70 
Flexibility in software interface  80 60 60 70 
______________________________________________________________
A: CMM1 (USA); B: CMM2 (Japan);  C: AVI (USA);    D: LASER 
SCAN (Japan) 

 The quantitative values of the automated inspection system selection 
attributes, which are given in Table 14.1, are to be normalized. A, V, R, S, M, L, T, 
and F are beneficial attributes, and higher values are desirable. Values of these 
attributes are normalized, and are given in Table 14.2 in the respective columns. I, 
O and E are non-beneficial attributes, and lower values are desirable. The values of 
these attributes for different alternative automated inspection systems are 
normalized, and given in Table 14.2 in the respective columns.  

Table 14.2. Normalized data of the automated inspection system selection 
attributes 
_________________________________________________________________
Attributes    A B C D 
_________________________________________________________________
Accuracy    1 0.8889 0.6667 0.8333  
Volumetric performance  1 0.875 0.625 0.875 
Repeatability    1 1 0.625 0.875 
Resolution    0.875 0.875 1 0.75 
Maintainability   0.75 0.75 1 0.875 
Reliability    1 0.9412 0.8235 0.8235 
Initial cost    0.5 0.6667 1 0.8 
Operation cost   0.5 0.1428 1 0.25 
Throughput rate   0.875 0.875 1 1 
Environmental factor requirement 0.75 0.75 1 0.8571 
Flexibility in software interface  1 0.75 0.75 0.875 
_________________________________________________________________
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Let the decision maker (i.e., user organization) prepare the following relative 
importance assignments: 

 A    V           R          S           M        L            I           O        T       E           F  
A  -      0.590    0.500    0.665    0.665    0.665    0.590    0.665   0.5    0.745    0.59  
V  0.41   -         0.410    0.590    0.590    0.590    0.500    0.590   0.41  0.665    0.50 
R  0.50   0.59    -           0.665    0.665    0.665    0.590    0.665   0.5    0.745    0.59 
S  0.335 0.41    0.335     -           0.5        0.5        0.41     0.5       0.335 0.665   0.41 
M 0.335 0.41    0.335    0.5         -           0.5        0.41     0.5       0.335 0.500   0.41 
L  0.335 0.41    0.335    0.5         0.5        -           0.5       0.5       0.41   0.59     0.5 
I   0.41   0.5      0.41      0.59       0.59      0.59      -          0.59     0.41   0.665   0.5 
O 0.335 0.41    0.335    0.5         0.5        0.5        0.41      -         0.335  0.5      0.41 
T  0.5     0.59    0.5        0.665    0.665    0.59      0.5        0.665     -      0.745   0.59 
E  0.255 0.335  0.255    0.335    0.5        0.41      0.335    0.5        0.255  -        0.335 
F  0.41   0.5      0.41     0.59       0.59      0.59      0.5        0.59      0.41   0.665   - 

Step 2: 
1. The automated inspection system selection attributes digraph, showing the 
presence as well as relative importance of the above attributes, is similar to Figure 
2.2, but 11 attributes is drawn. This is not shown here due to obvious reasons. 
2. The automated inspection system selection attributes matrix of this digraph is 
written based on Equation 2.10. However, it is not shown here. 
3. The automated inspection system selection attributes function is written. 
However, it may be added that as a computer program is developed for calculating 
the permanent function value of a matrix, this step can be skipped. 
4 & 5. The automated inspection system selection index (AIS-SI) is calculated 
using the values of Ai and aij for each alternative automated inspection system. The 
AIS-SI values of different automated inspection systems are given below in 
descending order: 

AVI (USA):   31158.7734 
CMM (USA):  29780.7563 
LASER SCAN (Japan): 27462.2604 
CMM (Japan):  25897.6459  

From the above values of AVS-SI, it is understood that the automated 
inspection system AVI (USA) is the right choice for the given inspection 
application under the given conditions. The next choice is CMM (USA), and the 
last choice is CMM (Japan). However, Pandey and Kengpol (1995) suggested 
CMM (USA) as the first choice, LASER SCAN (Japan) as the second choice, AVI 
(USA) as the third choice, and CMM (Japan) as the last choice.  
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14.2.2 AHP and its Versions  

Let the decision maker prepare the following matrix:  

  A     V       R      S      M      L       I       O       T       E     F  
A   1       3       1       4       5       4       3       5       2       6      3 
V   1/3    1       1/3    2       3       2       1       3       1/2    4     1 
R   1       3       1       4       5       4       3       5       2       6      3 
S   1/4    1/2    1/4    1       2       1       1/2    2       1/3    3     1/2 
M 1/5     1/3    1/5    1/2   1       1/2     1/3   1        1/4   2     1/3 
L  1/4    1/2    1/4    1       2       1       1/2    2       1/3    3     1/2 
I    1/3    1       1/3    2       3       2       1       3       1/2    4     1 
O  1/5     1/3    1/5    1/2   1       1/2     1/3   1        1/4   2     1/3 
T   1/2    2       1/2     3      4       3       2       4       1       5      2 
E   1/6    1/4    1/6     1/3   1/2    1/3   1/4    1/2     1/5   1      1/4 
F   1/3    1       1/3    2       3       2       1       3       1/2    4      1 

In the above matrix, accuracy (A) and repeatability (R) are considered more 
important than the remaining attributes.   

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are: WA = 0.2071, WV = 0.0858, 
WR = 0.2071, WS = 0.0518, WM = 0.0325, WL = 0.0518, WI = 0.0858, WO = 
0.0325, WT = 0.1376, WE = 0.0219, and WF = 0.0858. The value of max is 11.1958 
and CR = 0.01332, which is much less than the allowed CR value of 0.1. Thus, 
there is good consistency in the judgements made. 

The value of AIS-SI is now calculated using the above weights and the 
normalized data of the attributes given in Table 14.2. This leads to the ranking 
given by the revised AHP or ideal mode of AHP method. The alternative 
automated inspection systems are arranged in descending order of the AIS-SI: 

CMM (USA):  0.9050 
CMM (Japan):  0.8493 
LASER SCAN (Japan): 0.8487 
AVI (USA):   0.7925  

It may be noted that the ranking depends upon the judgements of relative 
importance of attributes made by the decision maker.   

For the above weights of importance of attributes, multiplicative AHP leads to 
the following ranking order:   

CMM (USA):  0.8837 
LASER SCAN (Japan): 0.8301 
CMM (Japan):  0.8154 
AVI (USA):   0.7738  
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14.2.3 TOPSIS Method  

Following the steps of the methodology given in Section 3.2.6, the TOPSIS 
method gives the ranking order shown below: 

CMM (USA):  0.6811 
CMM (Japan):  0.6074 
LASER SCAN (Japan): 0.5977 
AVI (USA):   0.3813  

It may be observed that the ranking given by the TOPSIS method is same as 
that given by the ideal AHP method.  

14.2.4 Modified TOPSIS Method 

This methods leads to the following ranking order: 
CMM (USA):  0.6308 
LASER SCAN (Japan): 0.5724 
AVI (USA):   0.5280  
CMM (Japan):  0.4572 

The ranking suggested by this method is same as that proposed by Pandey and 
Kengpol (1995) using the PROMETHEE method. 

In this particular example of automated inspection system selection, proposing 
CMM (USA) as the first right choice seems to be more logical and objective. AVI 
(USA) is better than the other alternative inspection systems with respect to six of 
11 attributes. However, the weights of importance assigned to the attributes play an 
important role in the selection process. 
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Selection of Material Handling Equipment 

15.1 Introduction 

Material handling equipment selection is an important function in the design of a 
material handling system, and thus a crucial step for facilities planning. Using 
proper material handling equipment can enhance the production process, provide 
effective utilization of manpower, increase production, and improve system 
flexibility. The importance of material handling equipment selection cannot be 
overlooked. However, with the wide range of material handling equipment 
available today, determination of the best equipment alternative for a given 
production scenario is not an easy task (Chan et al., 2001).  

Material handling accounts for 30-75% of the total cost of a product, and 
efficient material handling can be responsible for reducing the manufacturing 
system operations cost by 15-30% (Sule, 1994). These values underscore the 
importance of material handling costs as an element in improving the cost structure 
of a product. The determination of a material handling system involves both the 
selection of suitable material handling equipment, and the assignment of material 
handling operations to each individual piece of equipment. Hence, material 
handling system selection can be defined as the selection of material handling 
equipment to perform material handling operations within a given working area 
considering all aspects of the products to be handled (Sujono and Lashkari, 2007). 

The material handling system (MHS) plays a crucial role in flexible 
manufacturing systems. When inadequately designed, the MHS can indeed 
interfere severely with the overall performance of the system, and lead to 
substantial losses in productivity and competitiveness, and to unacceptably long 
lead times. Thus, to avoid such pitfalls, MHS selection is considered as an 
important issue in manufacturing industries. 

Material handling equipment has been classified into the following main 
groups of industrial trucks, conveyors, automated guided vehicles (AGVs), cranes, 
storage/retrieval systems and industrial robots (Sule, 1994; Kulak, 2005). This 
module includes examples of 40 move equipment types, and six storage equipment 
with their performance attributes. Table 15.1 presents the material handling 
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equipment types, and Table 15.2 presents the material handling equipment 
selection attributes for manufacturing systems.  

Table 15.1. Types of material handling equipment (from Kulak 2005; reprinted with 
permission from Elsevier) 
__________________________________________________________________________
(1) Industrial trucks:  

Handcart, tier platform truck, handlift truck, power-driven handtruck, power-
driven platform truck, forklift truck, narrow-aisle trucks, material lift, tractortrailer 
train, drum truck, drum lifter 

(2) Conveyors: 
Belt conveyor, roller conveyor, chute conveyor, slat conveyor, screw conveyor, 
chain conveyor, plain chain conveyor, trolley conveyor, wheel conveyor, tow 
conveyor, bucket conveyor, cart-on-track conveyor, pneumatic tube conveyor, 
overhead monorail conveyor  

(3) Automated guided vehicles (AGV): 
Manual load/unload AGV, low-lift AGV, high-lift AGV, tugged AGV, roller deck 
AGV, stationary deck AGV, lift deck AGV 

(4) Cranes: 
Stacker crane, tower crane, gantry crane, jib crane 

(5) Storage/retrieval systems: 
Unit load AS/RS, man-on-board AS/RS, shelf storage system, pallet rack system, 
block stocking on floor, block stocking in rack 

(6) Robots: 
Pneumatic robot, electric robot, hydraulic robot, mechanized manipulator 

__________________________________________________________________________

In the literature, there are various studies focusing on the solution of the 
complicated problem of material handling equipment selection. Malmborg et al.
(1987) developed a prototype expert system considering 17 equipment attributes 
and 47 devices for industrial truck type selection. Velury and Kennedy (1992) 
studied the selection of relevant factors that need to be considered in the design of 
a bulk material handling system, and the selection of equipment once these factors 
had been considered. A model was presented that took into account economics, 
characteristics of the equipment, environmental characteristics, and compatibilities 
between equipment types.  

Swaminathan et al. (1992) developed EXCITE, the expert consultant for in-
plant transportation equipment, addressing 35 equipment types, and 28 material, 
move, and method attributes. Chu et al. (1995) developed a computer-aided 
material handling equipment selection system called ADVISOR. Park (1996) 
developed an intelligent consultant system for material handling equipment 
selection, including 50 equipment types and 29 attributes, i.e., move attributes, 
material characteristics, operation requirements, and area constraints. Kim and 
Eom (1997) introduced a material handling selection expert system. Fisher et al.
(1998) introduced MATHES, the ‘material handling equipment selection expert 
systems’, for the selection of material handling equipment from 16 possible 
choices. MATHES including 172 rules dealing with path, volume of flow, sizes of 
unit, and distance between departments as parameters. MATHES II had been 
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provided with the same procedure as MATHES. However, MATHES II had a 
larger working scope, and greater consultation functions.  

Table 15.2. Material handling equipment selection attributes for manufacturing 
systems (from Kulak 2005; reprinted with permission from Elsevier) 
_________________________________________________________________
Material: 

Material type: individual unit, pallet unit, loose, bulk, packed, bar-stock, etc.
Material weight: light, medium, heavy 
Bottom surface: flat, non-flat 
Material nature: fragile, sturdy 
Material size: small, medium, large 
Annual demands of the material: <X, X, or above 

Operation: 
Function: move, storage/retrieval 
Operation control: controllable, uncontrollable 
Automation: required, not required 
Method of transportation: carry, tow 
Transfer frequency (per shift): <X, X, or above 
Storage/retrieval order: first-in-first-out (FIFO), first-in-last-out (FILO) 

Move:
Type: transportation, conveying, loading/unloading, storage/retrieval 
Direction: decline, horizontal, vertical 
Level: on floor, above floor 
Area and path: fixed, variable 
Distance: <X, X, or above 
Height: <X, X, or above 

Area constraints: 
Floor space: available, not available 
Aisle width: <X, X, or above 
Truss height: <X, X, or above 
Rack deep: single, double X: predefined value 

_________________________________________________________________

Chan et al. (2001) described the development of an intelligent material 
handling equipment selection system called material handling equipment selection
advisor (MHESA). The MHESA was composed of three modules: (1) a database to 
store equipment types with their specifications; (2) a knowledge-based expert 
system for assisting material handling equipment selection; and (3) an analytic 
hierarchy process (AHP) model to choose the most favorable equipment type. The 
concept proposed by the authors could automate the design of a material handling 
equipment selection system. Fonseca et al. (2004) developed a knowledge-based 
system for conveyor equipment selection.  

Lashkari et al. (2004) presented an integrated approach to operation allocation 
(OA) and material handling systems selection (MHSS) in cellular manufacturing 
systems. The OA model assigns the operations of a set of part types to a group of 
machines, and provides this information as input to the MHSS model. The MHSS 
model allocates equipment for handling the parts between machines, as well as at 
the single machine level. This information was then fed back as an input to the OA 
model. An iterative algorithm was developed to solve the two models sequentially, 
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and a numerical example was provided to demonstrate the applicability of the 
models. 

Intelligent computer systems have been developed, such as experts systems, 
and decision support systems for the selection of material handling equipments. 
One of the successful applications of experts systems was SEMH, selection of 
equipment for material handling. SEMH searches its knowledge base to 
recommend the degree of mechanization, and the type of material handling 
equipment to be used, based on various characteristics, i.e., type, weight, size, etc.
(Fonseca et al., 2004).  

Kulak (2005) developed a decision support system called FUMAHES-fuzzy 
multi-attribute material handling equipment selection. FUMAHES consists of a 
database, a rule-based system, and multi-attribute decision-making modules. The 
database includes detailed data about equipment types and their properties. The 
rule-based system module provides rules that are utilized by inference engine for 
determining the most appropriate material handling equipment type. Ultimately, a 
final decision was made for the most proper equipment among the alternatives of 
the same type, using the information axiom of axiomatic design principles. 

Sujono and Lashkari (2007) proposed a method for simultaneously 
determining operation allocation and material handling system selection in an FMS 
environment with multiple performance objectives. The 0–1 integer programming 
model was developed to select machines, assign operations of part types to the 
selected machines, and assign material handling equipment to transport the parts 
from machine to machine, as well as to handle the part in a given machine. The 
selection was based on the compatibility between the material handling equipment 
and the parts. The objective was to minimize the costs of operations, material 
handling, and machine setups, and to maximize the part–equipment compatibility.  

Chakraborthy and Banik (2006) focused on the application of the AHP 
technique in selecting the optimal material handling equipment for a specific 
material handling equipment type. The relative importance of each criterion, 
subcriterion and sub-subcriteria was measured using pair-wise comparison 
matrices, and the overall ranking of each alternative equipment was then 
determined.  

A better approach in material handling equipment selection can be the 
identification of pertinent attributes, and of the potential alternative equipment by a 
team consisting of experts at different levels. The values of the attributes (Ai) with 
the equipment specifications and requirements can be obtained, and their relative 
importance (aij) can be determined and stored in a database. An objective or 
subjective value, or its range, may be assigned to each identified attribute as a 
limiting value or threshold value for its acceptance for the material handling 
equipment selection problem considered. Alternative material handling equipment 
with each of its selection attributes, meeting the acceptance value, may be short-
listed. After short-listing the alternative material handling equipment, the main task 
to choose the alternative material handling equipment is to assess how it serves the 
considered attributes. The multiple attribute decision-making methods proposed in 
this book can be used for this purpose. 
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Now, an example is considered to demonstrate the application of GTMA and 
other decision-making methods for material handling equipment selection for an 
industrial application. 

15.2 Example 

A case of material handling equipment selection, similar to the one presented by 
Kulak (2005), is considered. Here, the problem under consideration is to determine 
the most appropriate conveyor among the alternatives of the same type. The related 
objective and subjective data of the attributes are given in Table 15.3. The 
flexibility attribute is defined subjectively. Hence, appropriately using Table 4.3, 
the objective values are assigned, and shown in Table 15.4.  

Table 15.3. Objective and subjective data of the conveyor selection attributes
_________________________________________________________________________
Alternative conveyor FC VC SC IW W F 
_________________________________________________________________________
1   2 0.45 12 15 10 Very good 
2   2.3 0.44 13 20 10 Excellent 
3   2.25 0.45 11 30 20 Excellent 
4   2.4 0.46 10 25 15 Very good 
_________________________________________________________________________
FC: Fixed costs per hour VC: Variable costs per hour SC: Speed of conveyor (m/min) 
IW: Item width (cm) W: Item weight (kg) F: Flexibility 

Table 15.4. Objective data of the conveyor selection attributes 
______________________________________________________________
Alternative conveyor FC VC SC IW W F 
______________________________________________________________
1   2 0.45 12 15 10 0.745 
2   2.3 0.44 13 20 10 0.955 
3   2.25 0.45 11 30 20 0.955 
4   2.4 0.46 10 25 15 0.745 
______________________________________________________________

15.2.1 Application of Graph Theory and Matrix Approach (GTMA) 

Various steps of the methodology, proposed in Section 2.6, are carried out as 
described below: 

Step 1: In the present work, the attributes considered are the same as those 
considered by Kulak (2005) and these are: fixed costs per hour (FC), variable costs 
per hour (VC), speed of conveyor (SC), item width (IW), item weight (W), and 
flexibility (F). The objective values of the attributes, which are given in Table 15.4, 
are to be normalized. FC and VC are non-beneficial attributes, and the remaining 
four attributes are considered as beneficial attributes. The conveyor should have 
low fixed and variables costs, higher speed, ability to handle large item widths, and 
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weights, and have higher flexibility. Values of these attributes are normalized, and 
are given in Table 15.5 in the respective columns.  

Table 15.5. Normalized data of the conveyor selection attributes 
_________________________________________________________________
Alternative conveyor FC VC SC IW W F 
_________________________________________________________________
1   1 0.9778 0.9231 0.5 0.5 0.7801 
2   0.8696 1 1 0.6667 0.5 1 
3   0.8889 0.9778 0.8461 1 1 1 
4   0.8333 0.9565 0.7692 0.8333 0.75 0.7801 
_________________________________________________________________

Let the decision maker assign equal importance to the attributes as shown 
below: 
         FC VC SC IW W F 
 FC       --- 0.50 0.50 0.50 0.50 0.50
 VC      0.50 --- 0.50 0.50 0.50 0.50
 SC    0.50 0.50 ---  0.50 0.50 0.50  
 IW   0.50 0.50 0.50 -- 0.50 0.50
 W       0.50 0.50 0.50 0.50 -- 0.50 
 F    0.50 0.50 0.50 0.50 0.50 --- 
                                                       

Step 2: 
Conveyor selection attributes digraph, conveyor selection attributes matrix of the 
digraph, and conveyor selection attributes function for the matrix can be prepared. 
The value of the conveyor selection index is calculated using the values of Ai and 
aij for each alternative conveyor. The conveyor selection index values of different 
conveyors are given below in descending order: 

Conveyor 3 : 27.7449 
Conveyor 2 : 21.8354 
Conveyor 4 : 21.3136 
Conveyor 1 : 19.3483 

Thus, GTMA suggests conveyor 3 as the correct choice for the considered 
material handling application and conveyor 1 as the last choice. The difference 
between the index values of conveyors 2 and 4 is small, and these may be 
considered as equal to each other. 

15.2.2 SAW Method 

Considering equal weights of importance of the six conveyor selection attributes 
and using the normalized data of the attributes given in Table 15.5, the SAW 
method leads to the following values of conveyor selection index: 

Conveyor 3 : 0.9521 
Conveyor 2 : 0.8394 
Conveyor 4 : 0.8204 
Conveyor 1 : 0.7802 
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Thus, the SAW method also suggests conveyor 3 as the correct choice for the 
material handling application considered, and conveyor 1 as the last choice.  

15.2.3 WPM 

Considering equal weights of importance of the six conveyor selection attributes, 
the conveyor selection index value for each conveyor is calculated, and the values 
are arranged as given below: 

Conveyor 3 : 0.9501 
Conveyor 4 : 0.8177 
Conveyor 2 : 0.8135 
Conveyor 1 : 0.7486 

WPM also suggests conveyor 3 as the correct choice for the considered 
material handling application and conveyor 1 as the last choice. The difference 
between the index values of conveyors 2 and 4 is very small, and these may be 
considered as equal to each other. 

15.2.4 AHP and its Versions  

The AHP method gives the same results as those of the SAW method. The 
multiplicative AHP method gives the same results as those of WPM.   

15.2.5 TOPSIS Method  

Following the steps of the methodology given in Section 3.2.6, the TOPSIS 
method gives the following weighted normalized matrix: 

0.0743   0.0833   0.0866   0.0539   0.0580   0.0724 
0.0855   0.0815   0.0940   0.0719   0.0580   0.0928 
0.0836   0.0833   0.0794   0.1079   0.1161   0.0928 
0.0892   0.0852   0.0721   0.0899   0.0871   0.0724 

The ideal (best) and negative ideal (worst) solutions are obtained, and these are 
given as:  
VFC

+ = 0.0743  VFC
- = 0.0892 

VVC
+ = 0.0815  VVC

- = 0.0852 
VSC

+ = 0.0940  VSC
- = 0.0721 

VIW
+ = 0.1079  VIW

- = 0.0539 
VW

+ = 0.1161  VW
- = 0.0580 

VF
+ = 0.0928  VF

- = 0.0724 
The separation measures are: 

S1
+ = 0.0822  S1

- = 0.0208 
S2

+ = 0.0692  S2
- = 0.0352 

S3
+ = 0.0173  S3

- = 0.0823 
S4

+ = 0.0478  S4
- = 0.0462 
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The relative closeness of a particular alternative to the ideal solution is 
calculated; this is named the ‘conveyor selection index (CSI)’ in the present 
example, and these values are arranged in descending order as:  

Conveyor 3 : 0.8267 
Conveyor 4 : 0.4915 
Conveyor 2 : 0.3369 
Conveyor 1 : 0.2020 

TOPSIS method also suggests conveyor 3 as the correct choice for the material 
handling application considered, and conveyor 1 as the last choice.  

15.2.6 Modified TOPSIS Method 

For equal relative importance weights of six conveyor selection attributes, the 
modified TOPSIS method gives the following results: 

The weighted Euclidean distances are: 
D1

+ = 0.2012  D1
- = 0.0509 

D2
+ = 0.1694  D2

- = 0.0861 
D3

+ = 0.0423  D3
- = 0.2017 

D4
+ = 0.1171  D4

- = 0.1132 
The conveyor selection index values are calculated and these are arranged in 

descending order as:  
Conveyor 3 : 0.8267 
Conveyor 4 : 0.4915 
Conveyor 2 : 0.3369 
Conveyor 1 : 0.2020 

The results presented by the modified TOPSIS method are exactly the same as 
those given by simple TOPSIS method. 

All decision-making methods presented in this chapter suggest conveyor 3 as 
the correct choice for the application considered, and conveyor 1 as the last choice. 
In this example, the conveyor selection attributes are considered to have equal 
relative importance. However, the methods covered in this chapter can deal with 
unequal relative importance values of the attributes also. Further, in the present 
example, the most appropriate material handling equipment selection from among 
the alternatives of the same type (i.e., conveyor) is considered. The proposed 
methods can also be applied with equal ease for the selection problem of choosing 
the most appropriate material handling equipment from among the alternatives of 
different type. 
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16
__________________________________________________________________ 

Selection of Rapid Prototyping Process in Rapid 
Product Development 

16.1 Introduction 

In the development of a new product, there is invariably a need to produce a single 
example, or prototype, of a designed part or system, before the allocation of large 
amounts of capital funds to new production facilities or assembly lines. The main 
reason for this need is that the capital cost is extremely high, and production 
tooling takes much time to prepare; consequently, a working prototype is needed 
for ‘troubleshooting’ and for design evaluation, before a complicated system is 
ready to be produced and marketed (Kalpakjian and Schmid, 2000). In a 
competitive market, the speed with which a product flows from concept to 
marketable product plays a crucial role. It is well known that products that are 
introduced before their competitors are generally more profitable and enjoy a larger 
share of the market. At the same time, there are important concerns regarding the 
production of high-quality products.  For these reasons, there is a concerted effort 
to bring high-quality products to market quickly. 

A new technology that considerably speeds the iterative product development 
process is the concept and practice of rapid prototyping (RP). The advantages of 
rapid prototyping include: 

Cost reduction up to 50%.  
Processing time reduction up to 75%. Physical models from CAD data 
files can be manufactured in a matter of hours to allow rapid evaluation of 
manufacturability and design effectiveness. 
Better visualization and concept verification.    
High design flexibility to enable short-term component modifications.  
Usage of prototype in subsequent manufacturing operations to obtain the 
final parts.  
Cost-effective component production for demonstration purposes, and 
functional test samples. 
Use of rapid prototyping operations for production of rapid tooling for 
manufacturing operations. 
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Rapid prototyping processes can be classified into three major groups: 
subtractive, additive, and virtual. As the names imply, subtractive processes 
involve material removal from a work piece larger than the final part; additive 
processes build up a part by adding material incrementally; and virtual processes 
use advanced computer-based visualization technologies. 

Rapid prototyping systems have been used mainly in manufacturing industries 
such as automobiles, electric home appliances and aerospace. Generally, RP 
processes begin with a stereolithography (STL) file that describes a model created 
by a CAD surface or a solid modeler. The RP models can be used to visualize or 
verify designs, to check for form, fit and function, or to produce a tooling (or 
master) pattern for casting or molding (Williams et al., 1996). Due partly to the 
rapid growth of RP technology, the selection of the most appropriate RP process to 
meet users’ requirements from among a number of RP systems has become 
increasingly important. However, it is difficult for users with RP experience as 
well as those who employ a service bureau, to select a suitable system because 
there are so many RP systems worldwide, and the best selection depends on many 
attributes. Furthermore, each system has its own strengths, defects, applications, 
utilities, and limitations. This is a complex problem that cannot be solved readily 
using conventional statistical techniques alone. Selection of an appropriate process 
requires a sound understanding of the interactions between the part quality, part 
properties, cost, build envelope, build time (speed), and other concerns (Byun and 
Lee, 2004).   

Several studies have focused on developing RP systems selection procedures. 
Schmidt (1994) made a benchmark comparison of rapid prototyping technologies. 
Bauer et al. (1996) developed the rapid prototyping system selector, a software tool 
that helps find the best RP system to manufacture a physical prototype. It aimed to 
help RP users, designers, or RP job shops choose the best combination of materials 
and RP machines to fabricate a prototype rather than to select the most suitable RP 
process based on specific selection attributes. Phillipson (1997) developed RP 
Advisor for choosing an appropriate RP system that uses build time, cost and 
quality, as selection attributes. It considered six commercially available RP 
systems and also ran on MS Access. The best RP system was chosen using multi-
attributes optimization theory; however, the system did not consider various 
attributes such as material properties and had limitation in calculations and ease of 
use. Pham and Gault (1998) presented an overview of RP technologies, and 
comments on their strengths and weaknesses. A taxonomy was also suggested, 
along with a preliminary guide to process selection based on the end use of the 
prototype. Bibb (1999) developed a computer-based RP design advice system to 
help small manufacturing enterprises solve problems encountered when attempting 
to apply RP and tooling technologies in product development 

Kengpol and O’Brien (2001) outlined a decision support tool to assess the 
value of investing in time compression technologies (TCTs) to achieve rapid 
product development. The authors presented a data structure to monitor the 
effectiveness of a decision and a decision model that consolidated quantitative and 
qualitative variables through the use of the analytic hierarchy process (AHP), 
cost/benefit and statistical analyses. Masood and Soo (2002) presented an expert 
system-based RP system selection program incorporating 39 RP systems 
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commercially available from 21 RP manufacturers worldwide. The program 
allowed the user to choose one of four options, namely, quick selection, detailed 
selection, build technology, or machine style for system selection, with each option 
considers a systematic selection attributes. The program is a rule based expert 
system, and recommends the RP system along with its full specifications on the 
basis of interactive question–answer session, with the user. The system is believed 
to be the first expert system-based RP selection program, and has the potential for 
future expansion into a full-fledged RP selector system. 

Masood et al. (2003) presented a generic mathematical algorithm to determine 
the best part orientation for building a part in a layer-by-layer rapid prototyping 
system. Byun and Lee (2004) presented an effective methodology for selecting the 
RP system most appropriate for the end use of the part when multi-attributes 
included both uncertain and crisp data. The major factors used for RP process 
selection included accuracy, surface roughness, strength, elongation, the cost of the 
part and build time. Crisp data, such as accuracy and roughness, were obtained by 
the new test part, which was utilized for the benchmarking of the capabilities of the 
various RP systems. It was designed with conjoint analysis to reflect the users’ 
knowledge and experience. With the part cost and build time classified as 
imprecise data, linguistic variables, which were treated as fuzzy numbers with 
triangular membership functions, were used. A modified TOPSIS approach was 
also proposed to analyze both quantitative and qualitative data. This method 
determined ranks between the RP systems and effectively reflected the information 
produced for the decision using the multiple attributes. The ranks were then altered 
using the weights assigned by a pair-wise comparison matrix to provide the final 
ranking. However, the fuzzy approach used by the authors for assigning the values 
to the cost and build time attributes makes them even fuzzier, and requires more 
computation. In another work, Byun and Lee (2006) attempted to determine the 
optimal build-up direction of a part for different RP systems. The best orientation 
was selected using the simple additive weighing method. The validity of the 
algorithm was demonstrated by a few examples. 

Some studies mentioned above were based on a rule-based knowledge 
representation with IF–THEN rules. It is difficult to order the ranking of the most 
suitable RP systems using conditional expressions such as IF, THEN, ELSE, or 
CASE statements, although various authors attempted to do so. In addition, 
because some did not consider various selection attributes, the selection of an RP 
system could not provide the desirable solution (Byun and Lee, 2004). Most of all, 
when the selection attributes include vague values such as ease of use, and 
environmental affinity for an RP system or an attribute for which it is difficult to 
obtain an exact numerical value (as with the build time and part cost), decision 
makers experience several difficulties in selecting an appropriate RP system by 
conventional decision methods using deterministic values (Byun and Lee, 2004). 
There is a need for a simple, systematic and logical scientific method, or 
mathematical tool, to guide user organizations in taking a proper RP system 
selection decision that can solve the problems mentioned by Byun and Lee (2004). 
The objective of an RP system selection procedure is to identify the RP system 
selection attributes, and obtain the most appropriate combination of RP system 
selection attributes in conjunction with the real requirement. An RP system 
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selection attribute is defined as a factor that influences the selection of RP system 
for making the prototype of a given product. Thus, efforts need to be extended to 
determine attributes that influence RP system selection, using a simple logical 
approach, to eliminate unsuitable RP systems and for selection of a proper RP 
system to strengthen the existing RP system selection procedure. This is considered 
in this chapter using the graph theory and matrix approach (GTMA) and fuzzy 
MADM methods.  

Now, to demonstrate and validate the application of decision-making methods, 
an example is considered. First GTMA is applied, and subsequently a few MADM 
methods are applied to rank and select the RP systems. 

16.2 Example 

Byun and Lee (2004) developed a decision support system for the selection of a 
rapid prototyping process using the modified TOPSIS method. On the basis of the 
data obtained by the questionnaires from different user groups such as the service 
bureau, governmental institutes and industry users, the authors argued that 
attributes such as dimensional accuracy, surface roughness, part cost, build time 
and material properties (tensile strength and elongation) were the major ones in 
assessing RP parts, as these can provide sufficient information for the selection of 
an appropriate RP process.  

A case study of a designed test part comparing six RP systems was conducted. 
Six attributes, accuracy (A), surface roughness (R), tensile strength (S), elongation 
(E), cost of the part (C) and build time (B), were identified as evaluation attributes 
for the selection of the RP system. The build time included the pre-processing time, 
building time and post-processing time. The part cost included both the material 
and the labor costs. Attributes C and B were expressed in linguistic terms. The test 
part design and dimensions are shown in Figure 16.1 and the objective and 
subjective data of the attributes are given in Table 16.1.

Table 16.1. Data of the RP system selection attributes (from Byun and Lee 
2004; with kind permission from Springer Science and Business Media)
_____________________________________________________________
RP system  A B S E C B 
_____________________________________________________________
SLA3500  120 6.5 6.5 5 VH M 
SLS2500  150 12.5 40 8.5 VH M 
FDM8000  125 21 30 10 H VH 
LOM1015  185 20 25 10 SH SL 
Quadra  95 3.5 30 6 VH SL 
Z402  600 15.5 5 1 VVL VL 
_____________________________________________________________
A: Accuracy R: Surface roughness S: Tensile strength 
E: Elongation C: Cost of the part  B: Build time 
VVL: Very very low VL: Very low  SL: Slightly low 
M: Medium  SH: Slightly high  H: High  
VH: Very high 
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Figure 16.1. Test part design and its dimensions (from Byun and Lee 2004; with kind 
permission from Springer Science and Business Media)

16.2.1 Application of Graph Theory and Matrix Approach (GTMA) 
Various steps of the methodology, proposed in Section 2.6, are carried out as 
described below: 

Step 1: In the present work, the attributes considered are the same as those of 
Byun and Lee (2004) and these are: accuracy (A), surface roughness (R), tensile 
strength (S), elongation (E), cost of the part (C) and build time (B). Attributes C 
and B, which are expressed in a fuzzy manner are quantified using Table 4.3. The 
objective data of all six attributes are given in Table 16.2.  

Table 16.2. Objective data of the RP system selection attributes 
____________________________________________________________
RP system A B S E C B 
____________________________________________________________
SLA3500 120 6.5 6.5 5 0.745 0.5 
SLS2500 150 12.5 40 8.5 0.745 0.5 
FDM8000 125 21 30 10 0.665 0.745 
LOM1015 185 20 25 10 0.59 0.41 
Quadra  95 3.5 30 6 0.745 0.41 
Z402  600 15.5 5 1 0.135 0.255 
____________________________________________________________

The quantitative values of the RP system selection attributes, which are given 
in Table 16.2, are to be normalized. S and E are beneficial attributes and higher 
values are desirable. Values of these attributes are normalized, as explained in 
Section 2.4, and are given in Table 16.3 in the respective columns. The values 
given for A and R in Table 16.1 are in fact related with dimensional inaccuracy and 
surface roughness. Hence A, R, C, and B are considered as non-beneficial 
attributes and lower values are desirable. The values of these attributes for different 
RP systems are normalized, and are given in Table 16.3 in the respective columns.  
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Table 16.3. Normalized data of the RP system selection attributes 
_________________________________________________________________
RP system  A B S E C B 
_________________________________________________________________
SLA3500  0.7917 0.5385 1 0.5 0.1812 0.51  
SLS2500  0.6333 0.28 0.6154 0.85 0.1812 0.51  
FDM8000  0.76 0.1667 0.4615 1 0.2030 0.3423 
LOM1015  0.5135 0.175 0.3846 1 0.2288 0.6219 
Quadra  1 1 0.4615 0.6 0.1812 0.6219 
Z402  0.1583 0.2258 0.0769 0.1 1 1 
_________________________________________________________________

Relative importance of attributes (aij) is also assigned values, as explained in 
Section 2.4. Let the decision maker (i.e., user organization) select the following 
assignments: 
        A R S E C B 
A       - 0.5 0.665 0.665 0.745 0.745
R      0.5 - 0.665 0.665 0.745 0.745
S    0.335 0.335 -  0.5 0.665 0.665  
E   0.335 0.335 0.5 - 0.665 0.665
C       0.255 0.255 0.335 0.335 - 0.5 
B    0.255 0.255 0.335 0.335 0.5 -
                                                       

In this case, A and R are considered more important than the remaining four 
attributes. S and E are considered more important than C and B. However, in actual 
practice, the user organization depending on the requirements can judiciously 
decide these values of relative importance. The assigned values are for 
demonstration purposes only.       

Step 2: 
1. The RP system selection attributes digraph, showing the presence as well as 
relative importance of the above attributes is similar to Figure 2.2, but with six 
attributes drawn. This is not shown here due to obvious reasons. 
2. The RP system selection attributes matrix of this digraph is written based on 
Equation 2.10. However, it is not shown here. 
3. The RP system selection attributes function is written but not shown here. 
However, it may be added that as a computer program is developed for calculating 
the permanent function value of a matrix, this step can be skipped. 
4 & 5. RP system selection index (RPSI) is calculated using the values of Ai and aij
for each alternative RP system. The RPSI values of the different RP systems are 
given below in descending order: 

 Quadra  10.7085 
SLA3500 9.4606 
SLS2500 8.0812 
LOM1015 7.6081 
FDM8000 7.5736 
Z402  6.6198 
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From the above values of RPSI, it is understood that the RP system Quadra is 
the correct choice for the given application under the given conditions. The next 
choice is SLA3500 and the last choice is Z402. These results match those obtained 
by Byun and Lee (2004) using the TOPSIS approach. In their work also, Byun and 
Lee (2004) proposed Quadra as the first choice, SLA3500 as the second choice, 
and Z402 as the last choice.  

Suppose, in the relative importance matrix, that the assignments are made as 
shown below: 
 A R S E C B 
A       - 0.5 0.665 0.665 0.335 0.335
R      0.5 - 0.665 0.665 0.335 0.335
S    0.335 0.335 -  0.5 0.255 0.255  
E   0.335 0.335 0.5 - 0.255 0.255
C       0.665 0.665 0.745 0.745 - 0.5 
B    0.665 0.665 0.745 0.745 0.5 -
                                                       

In this example, C and B are considered more important than the other four 
attributes. A and R are considered more important than S and E. For these 
assignments, the RPSI values for different RP systems are calculated, and are given 
below in descending order: 

Quadra  10.5126 
SLA3500 9.4849 
SLS2500 8.1792 
LOM1015 7.7134 
FDM8000 7.6659 
Z402  6.5914 

 From the above values of RPSI, it is understood that the RP system Quadra is 
the correct choice for the given application. The next choice is SLA3500, and the 
last choice is Z402. Byun and Lee (2004) assessed this relative importance matrix 
case also and proposed Z402 as the first choice, LOM1015 as the second choice 
and FDM8000 as the last choice. A closer look at the values of the alternatives 
reveals that Z402 has the least values compared to the other alternatives for the 
four attributes A, R, S and E, but better for the two attributes C and B. Thus, 
proposing Z402 as the first choice may not be appropriate. Further, the fuzzy 
calculations made by Byun and Lee (2004) are not necessary, and also require 
more computation. Moreover, the relative importance matrix prepared by Byun and 
Lee (2004) shows inconsistency in judgements, with the calculated value of CR 
almost equaling the maximum allowed value of 0.1. For example, if A is 3 times as 
important as S, and 1/5 asf important as C, then S can not be 1/3 as important as C. 
Such errors were present in the relative importance matrix prepared by Byun and 
Lee (2004).    

16.2.2 SAW Method 

The procedure suggested by Edwards et al. (1982) to assess weights for each of the 
attributes to reflect relative importance to the RP system selection decision is 
followed here. First, the attributes are ranked in order of importance and 10 points 
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each are assigned to the least important attributes C and B. Attributes S and E are 
considered as equally important in the present example, and given 20 points each 
to reflect their relative importance. A and R are considered as equally important, 
and given 50 points each. The final weights are obtained by normalizing the sum of 
the points to one. Thus, the weights of A, R, S, E, C, and B are calculated as 
0.3125, 0.3125, 0.125, 0.125, 0.0625, and 0.0625, respectively. Using these 
weights, and the normalized data of the attributes for different RP systems, the 
RPSI values are calculated, and are arranged in descending order of the index. 

Quadra  0.8079 
SLA3500 0.6464 
SLS2500 0.5118 
FDM8000 0.5064 
LOM1015 0.4414 
Z402  0.2671 

The SAW method also suggests the RP system Quadra as the correct choice 
for the given problem of RP system selection, and Z402 as the last choice. 

16.2.3 WPM 

Using the same weights of attributes as those selected for the SAW method, RPSI 
for each RP system is calculated, and the values are arranged as given below: 

Quadra  0.7431 
SLA3500 0.6054 
SLS2500 0.4628 
FDM8000 0.4029 
LOM1015 0.3700 
Z402  0.1921 

WPM also suggests the RP system Quadra as the correct choice for the given 
problem of RP system selection, and Z402 as the last choice. 

16.2.4 AHP and its Versions  

The AHP method may use the same weights as those selected for the SAW 
method. In that case, the ranking of the RP systems will be the same. However, let 
the decision maker prepare the following matrix:  
        A R S E C B 
A        1 1 3 3 5 5
R      1 1 3 3 5 5
S    1/3 1/3 1  1 3 3
E   1/3 1/3 1  1 3 3
C       1/5 1/5 1/3 1/3 1 1
B    1/5 1/5 1/3 1/3 1 1

       In the above matrix, accuracy (A) and surface roughness (R) are considered 
more important than the remaining four attributes. S and E are considered more 
important than C and B.  
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The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are: WA = 0.3185, WR = 0.3185, 
WS = 0.1291, WE = 0.1291, WC = 0.0524, and WB = 0.0524. The value of max is 
6.077 and CR = 0.0124, which is much less than the allowed CR value of 0.1. 
Thus, there is good consistency in the judgements made. 

The value of the RP system selection index is now calculated using the above 
weights, and the normalized data of the attributes given in Table 16.3. This leads to 
the ranking given by the revised AHP or ideal mode of AHP. The alternative RP 
systems are arranged in descending order of the RPSI: 

Quadra  0.8182 
SLA3500 0.6552 
SLS2500 0.5173 
FDM8000 0.5138 
LOM1015 0.4429 
Z402  0.2459 

For the above weights of importance of attributes, the multiplicative AHP 
method leads to the same ranking order.   

It may be observed that the ranking depends upon the judgements of relative 
importance of attributes made by the decision maker.   

16.2.5 TOPSIS Method  

Following the steps of the methodology given in Section 3.2.6, the TOPSIS 
method gives the following ranking order: 

SLA3500 0.8434 
Quadra  0.8256 
SLS2500 0.7149 
FDM8000 0.5870 
LOM1015 0.5608 
Z402  0.1681 

It may be observed that SLA3500 is proposed as the first choice, and Quadra 
as the second choice. 

16.2.6 Modified TOPSIS Method 

This methods leads to the following ranking order: 
SLA3500 0.7808 
Quadra  0.7415 
SLS2500 0.6863 
FDM8000 0.5745 
LOM1015 0.5570 
Z402  0.2170 

Like TOPSIS, this method also suggests SLA3500 as the first choice, and Quadra 
as the second choice. 



206        Decision Making in the Manufacturing Environment 

16.2.7 Compromise Ranking Method (VIKOR)  

Step 1: The objective is to evaluate the six rapid prototyping systems, and the 
attributes are: accuracy (A), surface roughness (R), tensile strength (S), elongation 
(E), cost of the part (C), and build time (B). The best, i.e., (mij)max, and the worst, 
i.e., (mij)min, values of all attributes are also determined.  

Step 2: The values of Ei and Fi are calculated using Equations 3.26 and 3.27 
and are given below. The same weights as used in the SAW method are considered 
and these are: WA = 0.3125, WR = 0.3125, WS = 0.125, WE = 0.125, WC = 0.0625, 
and WB = 0.0625.  
E1 = 0.0155+0.0536+0.1196+0.0695+0.0625+0.03125 = 0.35195 
E2 = 0.034+0.1607+0+0.0208+0.0625+0.03125 = 0.30925 
E3 = 0.0186+0.3125+0.0357+0+0.0543+0.0625 = 0.4836 
E4 = 0.0557+0.2947+0.0536+0+0.0466+0.0198 = 0.4704 
E5 = 0+0+0.0357+0.0556+0.0625+0.0198 = 0.1736 
E6 = 0.3125+0.2143+0.125+0.125+0+0 = 0.7768 
Ei-min = 0.1736 Ei-max = 0.7768 
R1 = 0.1196 R2 = 0.1607 R3 = 0.3125 R4 = 0.2947 R5= 0.0625 
R6 = 0.2392 R7 = 0.3125 
Fi-min = 0.0625 Fi-max = 0.3125 
       Step 3: The values of Pi are calculated using Equation 3.28 and for v = 0.5. 
P1 = 0.26205 P2 = 0.30884 P3 = 0.75695 P4 = 0.7104 
P5 = 0  P6 = 1

Step 4: The alternatives are arranged in ascending order, according to the 
values of Pi. Similarly, the alternatives are arranged according to the values of Ei
and Fi separately. Thus, three ranking lists are obtained. The best alternative, 
ranked by Pi, is the one with the minimum value of Pi.
P5 = 0  E5 = 0.1736  F5 = 0.0625 
P1 = 0.26205 E2 = 0.30925  F1 = 0.1196 
P2 = 0.30884 E1 = 0.35195  F2 = 0.1607 
P4 = 0.7104 E4 = 0.4704  F4 = 0.2947 
P3 = 0.75695 E3 = 0.4836  F3 = 0.3125 
P6 = 1  E6 = 0.7768  F6 = 0.3125 

Step 5: For the given attribute weights, the compromise solution alternative 
rapid prototyping system 5 (i.e., Quadra), which is best ranked by the measure P, is 
suggested, as it satisfies both the conditions given in Section 3.2.7.  
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__________________________________________________________________ 

Selection of Software in Manufacturing Industries 

17.1 Introduction 

Application of software in design and manufacturing processes is one of the 
resolutions many industries have resorted to in the 21st century. This has been a 
result of increased complexity of products, globalization, rapid changes in 
technology, and so on. The idea was that the application of software would 
increase the competitive advantage of an industry. Various types of software are 
used by manufacturing industries, such as product development process (PDP) 
software, product data management (PDM) software, product life-cycle 
management (PLM) software, enterprise resource planning (ERP) software, 
computer-aided design (CAD) software, computer-aided manufacturing (CAM) 
software, computer aided engineering (CAE) software, etc.

The software used in various industries can be either COTS or in-house 
developed. COTS is acronym for commercial off-the-shelf, an adjective that 
describes software or hardware products that are ready-made, and available for sale 
to the general public. For example, Microsoft Office is a COTS product that is a 
packaged software solution for businesses. COTS products are designed to be 
implemented easily into existing systems without the need for customization. 
Given the high interest in motivation to the use of commercially available software 
in manufacturing industries, the evaluation and selection of COTS products is an 
important activity in software development projects. Selecting an appropriate 
COTS product is often a non-trivial task in which multiple attributes need to be 
carefully considered (Shyur, 2006). Many decision makers select COTS products 
according to their experience and intuition. However, this approach is obviously 
subjective, and its weakness has been addressed by Kontio (1996), Leung and 
Leung (2002), Mikhailov and Singh (2003).   

The analytic hierarchy process (AHP) has been widely used by both 
researchers and practitioners in COTS selection peocessess (Hong and Nigam, 
1981; Min, 1992; Finnie et al., 1995; Kontio, 1996, Lai et al., 1999, 2002; Wei et
al., 2005). Santhanam and Kyparisis (1995, 1996) proposed a nonlinear 
programming model to optimize resource allocation, and their model considered 
interdependencies between projects in the information system selection process.   
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Carney and Wallnau (1998) observed that there are almost as many 
perspectives on the topic of software evaluation as there are evaluation techniques. 
The authors developed some basic principles applicable for evauation of 
commercial off-the-shelf software. Lee and Kim (2000) used the analytic network 
process (ANP) and goal programming for interdependent information system for 
project selection. Sarkis and Sundarraj (2000) discussed various factors for 
strategic evaluation of enterprise information technologies. Teltumbde (2000) 
presented a framework for evaluating ERP projects.  

Badri et al. (2001) presented a goal programming model to select an 
information system project considering multiple criteria including benefits, 
hardware, software and other costs, risk factors, preferences of decision makers 
and users, completion time, and training time constraints. Lai et al. (2002) reported 
the results of a case study where the analytic hierarchy process (AHP) technique 
was employed to support the selection of a multimedia authorizing system (MAS) 
in a group decision environment. Three MAS products were identified and 
ultimately ranked using the AHP. Six software engineers, who were technically 
competent and experienced, participated in the study.  

Morisio et al. (2002) investigated COTS-based software development within a 
particular NASA environment, with an emphasis on the processes used. Fifteen 
projects using a COTS-based approach were studied, and their actual process was 
documented. This process was evaluated to identify essential differences in 
comparison to traditional software development. The authors concluded that the 
main differences, and the activities for which projects require more guidance, were 
requirements definition and COTS selection, high-level design integration, and 
testing. Starting from these empirical observations, a new process and set of 
guidelines for COTS-based development were developed and presented. 

Sarkis and Talluri (2004) presented a decision framework that could aid 
members of the supply chain and a supply chain director in deciding which 
electronic commerce technology media and software would be most suitable for 
the whole supply chain. The techniques used in this approach included both 
qualitative and quantitative measurements for the evaluation or justification of 
these systems. The framework used an integrative set of models based on the 
analytical hierarchy process and goal programming. 

Wei et al. (2005) presented a comprehensive framework for selecting a 
suitable enterprise resource planning (ERP) system using an AHP-based approach. 
A real-world example was presented to demonstrate the feasibility of the 
framework. Mulebeke and Zheng (2006) carried out a case study to introduce 
analytic network process (ANP) as a multiple attribute strategic decision making 
approach to help in the selection of appropriate software to suit the product 
development process of a particular product. Shyur (2006) modeled the COTS 
evaluation problem, and proposed a five-phase COTS selection model combining 
the techniques of the analytic network process (ANP) and modified TOPSIS. ANP 
was used to determine the relative weights of multiple attributes. The modified 
TOPSIS approach was used to rank the competing COTS products in terms of their 
overall performance.  

For an enterprise to gain a competitive advantage, managers need to have 
outlined a set of objectives. Usually, these objectives are a reflection of market and 
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business drivers. In acquisition of software, this software has to be able to satisfy a 
basic evaluation criterion based on its performance attributes, and also needs to 
meet the market and business drivers of the industrial enterprise, thereby satisfying 
the overall objectives. Wei et al. (2005) suggested to consider factors (or attributes) 
such as total costs, implementation time, functionality, user friendliness, flexibility, 
reliability, vendor’s reputation, technical capability, and service while selecting 
ERP software.   

Shyur (2006) proposed different evaluation criteria and related attributes. The 
criteria (and the attributes) are: cost (license fee, modular pricing, maintenance, 
documentation, consultant fee, resource utilization, conversion cost, etc.),
supplier’s support (vendor responsiveness, consulting, hotline, training, technical 
support personnel, continuing enhancement, time-sharing access, warranty, 
documentation, financial stability, local branch office, third vendor support, growth 
of customer base, active R&D, etc.), technological risk (non-robust and incomplete 
packages, complex and undefined, COTS-to-legacy-system interfaces, middleware 
technology bugs, poor custom code, and poor system performance, software 
maturity, hardware maturity, etc.), closeness of fit to the company’s business  
(main target, included functionality, etc.), ease of implementation (shorter 
implementation time, user friendliness, multisite implementation, etc.), flexibility 
to easy change as the company’s business changes (adaptability, openness for 
customer development, openness for working with other systems, etc.), and system 
integration (internal connectivity, external connectivity, etc.).

The initial approach in software selection can be the identification of pertinent 
criteria (and the attributes), and the alternative software involved in the selection 
problem, i.e., to obtain the values of the attributes (Ai) with the system 
specifications and requirements, and their relative importance (aij). An objective or 
subjective value, or its range, may be assigned to each identified attribute as a 
limiting value, or threshold value, for its acceptance for the software selection 
problem considered. Alternative software with each of its selection attribute, 
meeting the acceptance value, may be short-listed. After short-listing the 
alternative software, the main task in choosing the alternative is to see how it 
serves the attributes considered. 

Now, an example of software selection is considered to demonstrate the 
applicability of the decision methods proposed in this book. 

17.2 Example 

Shyur (2006) modeled a COTS evaluation problem, and proposed a five-phase 
COTS selection model combining the techniques of analytic network process 
(ANP) and modified TOPSIS. ANP was used to determine the relative weights of 
multiple attributes. The modified TOPSIS approach was used to rank the 
competing COTS products in terms of their overall performance. To illustrate how 
the approach was used for the COTS evaluation problem, an empirical study of a 
real case was conducted. Using the AHP method, four alternative softwares and 
seven criteria were considered. The criteria considered were cost (CO), supplier’s 
support (SS), ease of implementation (EI), closeness of fit to the company’s 
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business (FB), flexibility to easy change as the company’s business changes (FC), 
technological risk (TR), and system integration (SI). Here, each criterion is a 
broader one, and includes many attributes) as mentioned in Section 17.1. The 
weights of these criteria were obtained using ANP method and these were 0.242, 
0.360, 0.042, 0.102, 0.030, 0.157, and 0.067 respectively. All seven criteria were 
considered as beneficial, and the normalized values were calculated, and are given 
in Table 17.1. 

Table 17.1. Normalized values of software selection criteria (from Shyur 
2006; reprinted with permission from Elsevier) 
_______________________________________________________________
Software CO SS EI FB FC TR SI 
_______________________________________________________________
A1  0.55 0.70 0.39 0.64 0.61 0.30 0.55 
A2  0.46 0.35 0.55 0.40 0.41 0.69 0.39 
A3  0.28 0.35 0.63 0.32 0.30 0.59 0.39 
A4  0.64 0.52 0.39 0.56 0.61 0.30 0.63 
_______________________________________________________________

The attribute values of TR determined by Shyur (2006) showed that TR was a 
beneficial criterion. Using the modified TOPSIS procedure, Shyur (2006) obtained 
the following ranking for the softwares considered: 

A4 0.652 
A1 0.645 
A2 0.433 
A3 0.236 

Rather than using the modified TOPSIS method, if AHP is selected with the 
same criteria weights for the above software selection problem, then the following 
ranking results: 

A1 0.5690 
A4 0.5231 
A2 0.4480 
A3 0.3806 

Thus, application of the AHP method leads to A1 as the first choice, and A4 as 
second choice. 

Rather than using the modified TOPSIS method, if the simple TOPSIS method 
is selected, then the following ranking is obtained, which suggests A1 as the first 
choice:

A1 0.6908 
A4 0.5520 
A2 0.3556 
A3 0.2261 

Independently applying the modified TOPSIS method (using the same weights 
of importance of the criteria) leads to the ranking order of A1-A4-A2-A3. It seems 
that Shyur (2006) had some errors in computing the closeness coefficient values of 
the alternative softwares.  

Now, let the graph theory and matrix approach be used with the following 
assignments of relative importance: 
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 CO SS EI FB FC TR SI 
CO - 0.41 0.865 0.745 0.865 0.665 0.745 
SS 0.59 - 0.955 0.865 0.955 0.745 0.865 
EI 0.135 0.045 - 0.335 0.5 0.255 0.41 
FB 0.255 0.135 0.665 - 0.745 0.41 0.59 
FC 0.135 0.045 0.5 0.245 - 0.255 0.41 
TR 0.335 0.255 0.745 0.59 0.745 - 0.59 
SI 0.255 0.135 0.59 0.41 0.59 0.41 - 

The value of the software selection index is calculated using the values of Ai
and aij for each alternative software. The software selection index values of 
different softwares are given below in descending order: 

A1 15.4045  
A4 14.5715 
A2 12.3263 
A3 10.8532 

From the above values of the software selection index, software A1 is 
interpreted as the best choice among the software alternatives considered for the 
given software selection problem.  

17.3 General Remarks 

This chapter has presented the details of selection of software in manufacturing 
industries. The selection of suitable software would increase the competitive 
advantage of an industry. Once all possible software alternatives are identified and 
appropriately screened, the best alternative software can be chosen by using any of 
the fuzzy decision-making methods proposed in this book.  
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__________________________________________________________________ 

Welding Process Selection for a Given Application 

18.1 Introduction 

Welding is a process of joining two or more pieces of the same or dissimilar
materials to achieve complete coalescence. Almost all materials can be welded but
not always by the same welding process. Some welding processes are known to be
associated with specific jobs and industries (Parmar, 1995). For example, sub-
merged arc welding is the sole process used in joining thick plates in long linear
seams in ships, pressure vessels, bridges, structural work and nuclear reactors. Gas
tungsten arc welding is used extensively by the aircraft industry, rocket and missile
fabricators, and chemical and nuclear fabricators. Resistance spot welding is used
mainly for lap welding of thin sheets, particularly in the welding of automobile and
refrigerator bodies. In all these cases, the selection of the said processes can be
attributed to the fact that the desired quality weld joint is accomplished at the least
cost. Thus cost is the main selection criterion. In such specific cases, there may not
be any other choice, and the exercise for selection of a welding process would be
redundant. However, there are many instances where a number of processes can be
nearly equally effective in producing the end product (Muralidharan et al., 1999).
Each process will have its merits and demerits, and hence from a group of welding
processes, a particular process has to be chosen based on its overall benefits. The
process selection is aimed for such situations, and the need for a systematic
procedure for efficient and effective selection of a welding process is overdue.
Efforts need to be extended to determine the factors that influence welding process
selection for a given application (i.e., end product), using a logical approach, to
eliminate unsuitable welding processes, and for selection of a welding process to
strengthen the existing welding process selection procedure.

Darwish et al. (1997) developed a knowledge-based system for identifying
the most appropriate welding processes to suit specific circumstances. Thirty
welding processes of industrial importance were incorporated into the system.
Only the product type and some of the process capabilities, namely, material type,
material thickness, method of use, quality level, joint type, and welding position,
were used to determine the best selection among competitive welding processes.
Yeo and Neo (1998) emphasized the need for inclusion of environmental



216        Decision Making in the Manufacturing Environment 

performance for decision making of welding processes. Muralidharan et al.
(1999) discussed the application of AHP for the selection of a welding process
considering subjective attributes. 

A welding process is defined by independent and dependent process variables
among which exist different relations. Independent process variables are the
process input variables, and include: properties/characteristics of the work material
(such as mechanical, metallurgical, chemical, and thermal properties, etc.),
welding conditions (such as welding current, voltage, welding speed, etc.), elec-
trode size, welding machine capacity, operator’s inherent skill, etc. Dependent
process variables are the process output variables, and include: welding joint prop-
erties (such as mechanical properties, metallurgical properties, etc.), processed
weld quality, welded joint distortion, cleaning required after welding, post-heat
treatment, consumption of consumables, cost involved, etc. Output process
variables are functions of input process variables. A welding process selection
attribute is defined as a welding process variable (i.e., dependent or independent).
Welding process selection can be carried out based upon these attributes. 

Now, an example is considered to demonstrate and validate the proposed 
GTMA and fuzzy MADM methods for welding process selection. 

18.2 Example 

The following three arc welding processes are most commonly used to join mild 
steel (0.2% C) of 6 mm thickness, known to be the best weldable metal in arc 
welding processes: (i) shielded metal arc welding (SMAW),  (ii) gas tungsten arc 
welding (GTAW), and (iii) gas metal arc welding (GMAW). 

The selection of a welding process for mild steel is usually based on economic 
considerations and welded joint properties. The economic analysis of the welding 
can be broadly divided into four components: equipment cost, consumables cost, 
labor cost, and overhead cost. Apart from this, mechanical analysis and the 
metallurgical analysis of the joint are also considered before selecting a particular 
process. In general, process selection in the above case will consider only the 
above attributes, i.e., objective attributes. Indeed, subjective attributes of each 
welding process seem to have been neglected so far in the selection process.  

18.2.1 Graph Theory and Matrix Approach (GTMA)   

Various steps of the GTMA methodology proposed in Section 2.6 are carried out 
as given below: 

Step 1:The attributes considered are: weld quality (WQ), operator fatigue
(OF), skill required (SR), cleaning required after welding (CR), availability of
consumables (AC) and initial preparation required (IP). These attributes are
subjective, and are to be assigned values. As the data regarding the objective
attributes are not available, only subjective attributes are considered. When the
objective data of the attributes are also available, then such data are to be
normalized as described in Section 2.4. The welding process selection attributes
OF, SR, CR, and IP are non-beneficial, and lower values are desirable. A welding
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process is preferred if it offers lower values of these attributes. Attributes WQ
and AC are considered as beneficial attributes. A welding process is preferred if
it offers higher values of these attributes. Values of all six attributes are assigned,
and are given in Table 18.1 in the respective columns. Table 18.1 shows the
values of Ai for different welding processes. The normalized values of the
attributes are given in Table 18.2.

Table 18.1. Welding process attribute values for the example considered 
_________________________________________________________________
Welding process WQ OF SR CR AC IP 
_________________________________________________________________
SMAW  0.5 0.5 0.5 0.665 0.745 0.5  
GTAW  0.745 0.665 0.745 0.5 0.5 0.665 
GMAW  0.59 0.745 0.665 0.59 0.665 0.745 
_________________________________________________________________

Table 18.2. Normalized data of the attributes of the example considered 
__________________________________________________________________
Welding process WQ OF SR CR AC IP 
__________________________________________________________________
 SMAW  0.6711 1 1 0.7519 1 1 
GTAW  1 0.7519 0.6711 1 0.6711 0.7519 
GMAW  0.7919 0.6711 0.7519 0.8475 0.8926 0.6711 
__________________________________________________________________

Relative importance of attributes (aij) is assigned values, using Table 2.4. Let 
the decision maker prepare the following assignments: 

        WQ OF SR CR AC IP 
WQ       - 0.59 0.665 0.665 0.745 0.865
OF      0.41 - 0.59 0.665 0.745 0.745
SR    0.335 0.41 -  0.59 0.665 0.745  
CR   0.335 0.335 0.41 - 0.59 0.59
AC       0.255 0.255 0.335 0.41 - 0.59 
IP    0.135 0.255 0.255 0.41 0.41 -
                                                       

Step 2:  
1. The welding process selection attributes graph, showing the presence as well as 
relative importance of the above attributes, is similar to Figure 2.2 but with six 
attributes drawn. However, this is not shown here for obvious reasons. 
2. The welding process selection attributes matrix of this graph can be written 
based on Equation 2.10.  
3. The welding process selection attributes function is written. However, as a 
computer program is developed for calculating the permanent function value of a 
matrix, this step can be skipped. 
4 & 5. The welding process selection index is calculated using the values of Ai and 
aij for each alternative welding process. The welding process selection index values 
of different welding processes are given below in descending order: 
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SMAW  18.1927 
GTAW  14.7962 
GMAW  13.6832 

From the above values of the welding process selection index, it is interpreted 
that the SMAW process is the preferred process, followed by GTAW and GMAW 
for the considered example of welding 6-mm mild steel.  

18.2.2 SAW method 

Let the attributes be ranked in order of importance and 10 points be assigned to the
least important attribute, IP. Attribute AC is given 15 points to reflect its relative
importance. CR, SR, OF, and WQ are given 20, 30, 40, and 50 points, respectively.
Thus, the weights of WQ, OF, SR, CR, AC, and IP are calculated as 0.303, 0.242,
0.182, 0.121, 0.091, and 0.061, respectively. Using these weights, and the
normalized data of the attributes for different welding processes, the welding
process selection index values are calculated, and are arranged in descending order
of the index.

SMAW  0.8703 
GTAW  0.8350 
GMAW  0.7639 

From the above values of the welding process selection index, it is clear that 
the SMAW process is the best choice among the welding processes considered. 

18.2.3 WPM 

For the same weights of relative importance of the attributes as those used in the 
SAW method, WPM leads to the following ranking of the welding processes: 

SMAW  0.8561 
GTAW  0.8226 
GMAW  0.7605 

This method also suggests SMAW as the correct choice for the given welding 
application. 

18.2.4 AHP and its Versions 

If the same weights as those used in the SAW method are selected for this method, 
then the ranking of welding processes obtained by using the relative as well as 
ideal mode AHP will be the same. The multiplicative AHP method also leads to 
the same ranking as that given by WPM. However, let the decision maker prepare 
the following matrix of relative importance:  
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                WQ OF SR CR AC IP 
                           WQ       1 2 3 3 4 5
              OF      1/2 1 2 3 4 4
        SR    1/3 1/2 1  2 3 4  
                           CR   1/3 1/3 1/2 1 2 3
                           AC       1/4 1/4 1/3 1/2 1 2
                            IP    1/5 1/4 1/4 1/3 1/2 1
                                                       

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are WWQ = 0.3534, WOF = 0.2526, 
WSR = 0.1669, WCR = 0.1103, WAC = 0.0695, and WIP = 0.0473. The consistency 
ratio is 0.029, and thus there exists good consistency.    

The value of the welding process selection index is now calculated using the
above weights, and the normalized data of the attributes given in Table 18.2. The
alternative welding processes are arranged in descending order of the welding
process selection index. 

SMAW  0.8564 
GTAW  0.8478 
GMAW  0.6908 

Thus, the SMAW process is suggested as the best for the given application. 
It may be observed that the above ranking is for the given preferences of the 

decision maker.  

18.2.5 TOPSIS Method 

The quantitative values of the welding process selection attributes, which are given 
in Table 18.1, are normalized as explained in Section 3.2.6. 

Relative importance of attributes (aij) is assigned using the AHP method as 
explained in Section 18.2.4. After performing the calculations, the alternative 
welding processes are arranged in descending order of their welding process 
selection index. This can be arranged as GTAW-SMAW-GMAW. This ranking is 
somewhat surprising. For the same weights of attributes as those used in the AHP 
method in Section 18.2.4, TOPSIS gives a different ranking. The reason may be 
that the TOPSIS method is biased toward the alternative in which the highest value 
of the attribute with maximum weight of relative importance occurs.    
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Geometric Moldability Analysis of Parts 

19.1 Introduction 

In molding or casting manufacturing processes, material is reshaped in a hollow 
mold. A simple reusable mold consists of two rigid halves that are removed in 
opposite directions; the orientation of the removal directions is called the parting 
direction. In order for part geometry to be de-moldable, it must be oriented relative 
to the parting direction so that the two mold halves can be removed from the part 
via translation along the parting direction, without colliding with the part. Surfaces 
where collisions occur, preventing extraction of the part, are called undercuts. They 
occur where the mold extends into the area between the part and the parting 
surface, relative to the parting direction. Forming undercuts requires additional 
mold inserts that increase the cost of the mold; it is desirable to avoid these if 
possible. Finding a feasible two part molding orientation (one without undercuts) 
for an arbitrary geometry is subject to geometric accessibility constraints; not all 
geometries admit such an orientation (McMains and Chen, 2004).  

A major cost for a part to be molded lies in the mold design and its operation, 
which are greatly influenced by certain design decisions made in the part design 
process. Thus, it is important to establish a link between part design and mold 
design that allows part designers to make design decisions that do not adversely 
affect mold design. This leads to the research of design for moldability. The 
moldability of a part refers to its manufacturability in the injection molding process 
and reflects, its ability to be extracted from the mold core and cavity when the 
mold opens. A part with good moldability requires simple mold structure and short 
operation time. Generally, the moldability of a part depends on its geometry and 
other factors, such as the material used for molding. Geometric moldability 
analysis aims to discern and represent the constraints on moldability that emerge 
strictly from the geometry and topology of the part to be molded (Yin et al., 2004). 
On the other hand, parting direction (PD), parting line (PL), and undercut features 
(UF) are the three main parameters in mold design that greatly influence the 
moldability of parts. A combination of these parameters determines a cavity design 
scheme (CDS), by dictating the number and shape of cores, draw depth (DD), draft 
angles, and the machining complexity of the parting surface, and affects all 
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subsequent steps in mold design, such as designs of the feed, rejection, and cooling 
systems. Hence, to perform geometric moldability analysis, it is necessary to 
identify these parameters from the part’s geometry early in the part design cycle.  

Ravi and Srinivasan (1990) presented a scientific approach developed for 
design of parting surfaces of patterns, molds and dies used in the manufacture of 
cast, forged, injection-molded and die-cast components. This had enabled 
computer-aided generation of parting surfaces, and the determination of projected 
area, flatness and draw for a parting surface, identification of surfaces to which 
draft is provided, recognition of component segments causing undercuts, testing for 
dimensional stability, and location of flash, machined surfaces and feeders. 
Influencing criteria for parting-surface design were formulated, and developed into 
algorithms implemented on a personal computer. However, the authors did not 
address the problem of how to generate PL or parting surfaces according to the 
considered decision criteria.  

Chen et al. (1993) defined two levels of visibility, complete and partial 
visibility, on the basis of conditions for demoldability. The viewing directions from 
which a surface was completely visible were represented as a convex region on the 
unit sphere, called the visibility map of the surface. Algorithms were given for 
subdividing a given object into pockets, for which visibility and demoldability 
could be determined independently, for constructing visibility maps, and for 
selecting an optimal pair of parting directions for a mold that minimizes the 
number of cores. An example illustrated the algorithms. Woo (1994) described a 
way in which a three-dimensional work piece was mapped onto the unit sphere, 
and its visibility was determined. For applications, manufacturing machines were 
classified by their degrees of freedom into point, line, and surface visible 
processes. Algorithms for optimal work piece orientation were then formulated as 
simple intersections on the sphere.  

Wuerger and Gadh (1997a, 1997b) applied a similar approach to select part 
orientation and die-open direction by detecting features that obstruct possible 
opening directions, and then by computing their restrictions with respect to the 
whole part. Weinstein and Manoochehri (1996, 1997) divided the part surfaces into 
concave and convex regions, which influence the PD and PL location of the part, 
respectively. Majhi et al. (1999) presented algorithms to compute a flattest 
undercut free parting line for a convex polyhedron based on different flatness 
criteria. However, the algorithms fail to determine PD or PL when there exist 
internal undercuts, or interacting undercuts to be formed by two or more cores.  
Hui (1997) developed a subdivision technique based on the concept of blockage in 
a given direction, to evaluate the geometry of an undercut. Based on the notion of 
internal and external undercut, the moldability of a component was studied. A local 
and a global blockage tests were introduced to detect any interference between the 
molded component and a side core, or a split core. A search strategy was also 
developed for selecting a suitable combination of main parting, side core, and split 
core directions.  

Kurth and Gadh (1997) dealt with two special kinds of interacting undercut 
feature, by transiting these into two-dimensional space. However, the approach was 
simply a rule of thumb approximation and is limited to special cases of interacting 
undercut features. Yin et al. (2000) proposed a procedure to solve a specific 
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accessibility and setup problem in mold parting, NC-machining and CMMs 
inspection path planning, to perform visibility analysis with respect to the 
geometry of the part, the shape of the effector, and degrees of freedom between 
part/effector. A new method for computing visibility cones was formulated by 
identifying C-obstacles in configuration space (C-Space), in which a general and 
efficient algorithm was presented and implemented using visibility culling. The 
algorithm was efficient even in very complex cases.  

Chen et al. (2000) presented a method for automatic mold parting direction 
selection in computer-aided design of molds and dies. When given a three-
dimensional CAD model, the minimum volume bounding box of the model was 
found first. Three pairs of possible parting directions were defined based on the 
bounding box surface normal vectors. These were in the length direction, the width 
direction, and the height direction of the bounding box. Then, a dexel model was 
constructed along each parting direction. Parting lines corresponding to the three 
possible parting directions were estimated using a slice method. Finally, criteria 
such as undercut, draw, projected area and flatness in all parting directions were 
quantified using the dexel model of the part. A designer's preferences, coded as 
fuzzy weighting factors, were setup for the evaluation of the most promising 
parting direction. 

Ye et al. (2001) described a hybrid method to recognize undercut features 
from molded parts with planar, quadric, and free-form surfaces. The hybrid method 
took advantage of graph-based and hint-based approaches. Various undercut 
features, including interacting undercut features, were defined by extended 
attributed face-edge graphs (EAFEG). Unlike conventional graph-based methods, 
which recognize features by graph matching, the new approach recognized the 
undercut features by searching the cut-sets of subgraphs. Face properties and 
parting lines were used as hints to guide the search of cut-sets. To recognize 
undercut features from parts with free-form surfaces, a convex-hull algorithm was 
used to determine the face properties (positive, negative, and horizontal). The case 
study showed that the method can recognize various undercut features successfully. 
However, this method is time consuming. In addition, it can not guarantee correct 
results.  

Yin et al. (2001) presented a virtual prototyping (VP) approach for geometric 
moldability analysis of near-net-shape manufactured parts. A virtual prototype 
(VP) of a mold, which was a realistic digital product model, was generated by 
combining automated and interactive approaches to evaluate the moldability of a 
part in the early stages of the product development cycle. The automated 
approaches for generating a VP were proposed to construct the parting surface, 
cores, and cavity of the mold based on the recognized undercut features. 
Interaction with the VP in the virtual reality environment allowed the designers to 
evaluate the moldability of a part in an intuitive way. A new volume-based feature 
recognition method and data structure using a non-directional blocking graph 
(NDBG) was developed to recognize both isolated and interacting undercut 
features in a uniform way. A system configuration for the VP was developed and 
implemented using virtual reality technologies.  

McMains and Chen (2004) considered the problem of whether a given 
geometry can be molded in a two-part, rigid, reusable mold with opposite removal 
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directions. An algorithm was developed for solving the opposite direction 
moldability problem for a two-dimensional polygon bounded by edges that may be 
either straight or curved. A structure called the normal graph of the polygon was 
defined that represented the range of normals of the polygon’s edges, along with 
their connectivity.  

Yin et al. (2004) found that most existing methods focus on PD selection, PL 
determination, or UF recognition, with more or less limitations. Since the mold 
design parameters or attributes influence each other, it is necessary to develop a 
methodology to consider these in an integrated manner. Hence, the authors 
presented a methodology for moldability analysis by finding the optimal cavity 
design scheme (CDS) based on manufacturing and cost considerations using part 
geometry, where a CDS refers to a combination of the parting direction, parting 
line (PL), and undercut features (UF). The methodology took advantage of 
geometric reasoning and fuzzy evaluation, and consisted of two main stages: (1) 
generating all possible design alternatives, and (2) choosing the best alternative. In 
the first stage, after recognizing the potential UF from the given part, a spherical 
arrangement was constructed by partitioning the unit direction sphere using 
outward normals of the part’s surfaces, with the property that each cell in this 
arrangement had a unique combination of PL and UF set. Thus, all design 
alternatives were identified. In the second stage, the fuzzy multiple attribute 
decision-making model was employed to choose the optimal scheme from the set 
of design alternatives with respect to a set of criteria related to the number and 
volume of undercuts, flatness of the PL, draw depth, and draft angle. 

Now, the example problem presented by Yin et al. (2004) is considered to 
demonstrate the applicability of GTMA and fuzzy MADM methods to the 
geometric moldability analysis problem. 

19.2 Example

Yin et al. (2004) generated 14 CDSs by geometric reasoning, considered five 
attributes and used fuzzy weighted average and ranking methods to evaluate 
possible CDSs. These attributes include: number of external undercut features 
(NEU), volume of undercut features (VU), flatness of the PL (FPL), draw depth 
(DD), and draft factor (DF). The values of these attributes are desired to be 
relatively low. The authors presented the normalized attribute values of plausible 
design alternatives for a mouse part. The normalized values are shown in Table 
19.1.
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Table 19.1. Normalized data of the possible cavity design alternatives 
(from Yin et al., 2004; reprinted with permission from Elsevier) 
__________________________________________________________
   Design scheme  NEU VU FPL DD DF 
__________________________________________________________
1   0.2 0.001 0.6672 0.363 1 
2   0.2 0.001 0.8862 0.616 1 
3   0.2 0.001 0.6852 0.290 1 
4   0.2 0.001 0.4013 0.254 1 
5   0.2 0.001 0.5663 0.346 0.8 
7   0.2 0.001 0.6562 0.323 0.8 
8   0.2 0.001 0.2157 0.282 1 
9   1 1 0.9937 0.9964 0.8 
10   0.25 0.043 1 1 1 
11   0.2 0.001 0.9981 0.290 0.2 
12   0.2 0.001 0.3042 0.283 0.8 
13   0.2 0.001 0.5501 0.270 0.6 
14   0.25 0.001 0.9994 0.561 0 
__________________________________________________________

19.2.1 Graph Theory and Matrix Approach (GTMA) 

In the present work, the attributes considered are the same as of those of Yin et al.
(2004) and these are: number of external undercut features (NEU), volume of 
undercut features (VU), flatness of the PL (FPL), draw depth (DD) and draft factor 
(DF). The quantitative values of these attributes are already normalized as given in 
Table 19.1. Let the decision maker prepare the following assignments of relative 
importance:  

 NEU  VU FPL DD DF  
 NEU - 0.745 0.59 0.665 0.745 
 VU 0.255 - 0.335 0.41 0.335 
 FPL 0.41 0.665 - 0.59 0.665 
 DD 0.335 0.59 0.41 - 0.59 
 DF   0.255 0.665 0.335 0.41 - 

The CDS selection attributes digraph, CDS selection attributes matrix of the 
digraph, and CDS selection function for the matrix can be prepared. The value of 
the CDS selection index is calculated using the values of Ai and aij for each CDS. 
The CDS selection index values of different CDSs are given below in descending 
order: 

9  8.0153 
10  3.7619 
2  3.0146 
1  2.5383 
3  2.4800 
7  2.3298 
6  2.2769 
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4  2.2018 
14  2.1124 
8  2.0668 
5  2.0506 
11  2.0437 
13  2.0477 
12  2.0100 

From the above values of the CDS selection index, CDS 9 is understood as the 
best choice among the alternatives considered, CDS 10 as the second best choice, 
and CDS 12 as the last choice. The ranking order proposed by Yin et al. (2004) 
was 9-10-2-14-1-3-11-7-6-4-13-5-8-12. This also suggests CDS 9 as the first 
choice, CDS 10 as the second choice, and CDS 12 as the last choice.  

 19.2.2 SAW Method 

For a start, the attributes are ranked in order of importance and 10 points each are 
assigned to the least important attributes VU and DF. Attribute DD is given 20 
points to reflect its relative importance. FPL is considered more important, and 
given 30 points. NEU is considered as very important compared to all other 
attributes, and is given 40 points. The final weights are obtained by normalizing the 
sum of the points to one. Thus, the weights of NEU, VU, FPL, DD, and DF are 
calculated as 0.364, 0.091, 0.273, 0.182, and 0.091, respectively. Using these 
weights, and the normalized data of the attributes for different CDSs, the CDS 
selection index values are calculated and are arranged in descending order of the 
index. 

9  0.9804 
10  0.6409 
2  0.5179 
14  0.4649 
11  0.4164 
1  0.4121 
3  0.4037 
7  0.3836 
6  0.3633 
13  0.3268 
5  0.3255 
4  0.3197 
12  0.2802 
8  0.2741 

The SAW method also suggests CDS 9 as the correct choice, and CDS 10 as 
the second choice for the given CDS selection problem. 

19.2.3 AHP Method 

The AHP method may use the same weights as those selected for the SAW 
method. In that case, the ranking of the CDSs will be the same. However, let the 
decision maker prepare the following matrix:  
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  NEU  VU FPL DD       DF  
NEU 1 5 3 4 5 
VU 1/5 1 1/4 1/3 1 
FPL 1/3 4 1 3 4 
DD 1/4 3 1/3 1 3 
DF   1/5 1 1/4 1/3 1 

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are: WNEU = 0.4673, WML = WDF = 
0.0658, WFPL = 0.260, and WDD = 0.1409. The value of max is 5.2046 and CR = 
0.0461, which is much less than the allowed CR value of 0.1.  

The value of CDS selection index is now calculated using the above weights, 
and the normalized data of the attributes given in Table 19.1. The alternative CDSs 
are arranged in descending order of the CDS selection index: 

9  0.9849 
10  0.5853 
2  0.4757 
14  0.4559 
11  0.4072 
1  0.3834 
3  0.3778 
7  0.3619 
6  0.3417 
13  0.3139 
5  0.3119 
4  0.2989 
12  0.2648 
8  0.2546 

The AHP method also suggests CDS 9 as the correct choice and CDS 10 as the 
second choice for the given CDS selection problem. The ranking is the same as that 
obtained by using the SAW method. 

19.2.4 TOPSIS Method 

Using the same weights as those for the AHP method, and following the steps of 
the methodology given in Section 3.2.6, The TOPSIS method gives the following 
ranking order of CDSs: 

9  0.9866 
10  0.2542 
14  0.2179 
11  0.1951 
2  0.1921 
3  0.1383 
1  0.1363 
7  0.1285 
6  0.1096 
13  0.0995 
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5  0.0955 
4  0.0813 
8  0.0635 
12  0.0574 

The TOPSIS method also suggests CDS 9 as the correct choice and CDS 10 as 
the second choice for the given CDS selection problem. CDS 12 is proposed as the 
last choice.

19.2.5 Modified TOPSIS Method 

For the same weights as those used in the AHP method, the modified TOPSIS 
method gives the following ranking order: 

9  0.9705 
10  0.3217 
2  0.2461 
14  0.2454 
11  0.2189 
1  0.1872 
3  0.1689 
7  0.1530 
6  0.1436 
4  0.1328 
8  0.1328 
13  0.1309 
5  0.1276 
12  0.1130 

The modified TOPSIS method also suggests CDS 9 as the correct choice, CDS 
10 as the second choice, and CDS 12 as the last choice. 

19.3 General Remarks 

This chapter presented a methodology for moldability analysis by determining the 
optimal CDS using part geometry. Once all possible design alternatives are 
generated using geometric reasoning, the best alternative can be chosen by using 
any of the fuzzy decision-making methods proposed in this book.  
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__________________________________________________________________ 

Evaluation of Metal Stamping Layouts

20.1 Introduction 

In stamping, sheet metal parts of various levels of complexity are produced 
rapidly, often in very large volumes, using hard tooling. The production process 
operates efficiently, and material costs can typically represent 75% or more of 
total costs in stamping facilities (Industry Canada, 1998). Due to the high volume 
of parts produced, even small inefficiencies in material utilization per part can lead 
to very large amounts of wasted material over a die’s life. Hence, the choice of an 
efficient strip-layout is an important step during die design, because only the 
optimum layout can reduce wastage of the strip material, and reduce the overall 
cost of production. 

Originally, strip-layout problems were solved manually, for example, by 
cutting blanks from cardboard and manipulating these to obtain a good layout. In 
recent years, however, the trend is two-dimensional layout solutions based on 
computer-aided design. Fogg and Jamieson (1975) described the attributes 
influencing the optimization of press tool die layouts, and presented a solution 
using computer aids. Adamowicz and Albano (1976) presented the nesting aspects 
of two-dimensional shapes in rectangular modules. Chow (1979) presented nesting 
of a single shape on a strip.  Albano and Saruppo (1980) used heuristic search 
methods for optimum allocation of two-dimensional irregular shapes. Nee and 
Venkatesh (1984) presented a heuristic algorithm for optimum layout of metal 
stamping blanks. Nee (1984) reported a presented computer-aided layout of metal 
stamping blanks. Qu and Sanders (1987) presented a nesting algorithm for irregular 
parts, and attributes affecting trim losses. Martin and Stephenson (1988) discussed 
about the emplacement of objects into boxes.  

Nee (1989) described PC-based computer aids in sheet metal working. 
Karoupi and Loftus (1991) discussed accommodating diverse shapes within 
hexagonal pavers. Prasad and Somasundaram (1991) presented a heuristic 
algorithm named CASNS for the nesting of irregularly shaped sheet metal blanks. 
In another work, Prasad and Somasundaram (1992) presented an automated die 
design system, CADDS, for sheet metal blanking. Jain et al. (1992) used a non-
traditional optimization technique called simulated annealing for optimal blank 
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nesting. Ismail and Hon (1992) presented the nesting aspects of two-dimensional 
shapes for press tool design. Joshi and Sudit (1994) reviewed the procedures for 
solving single pass strip-layout problems. Theodoracates and Grimsley (1995) used 
simulated annealing and polynomial time cooling schedules for the optimal 
packing of arbitrarily shaped polygons. 

Prasad et al. (1995) presented a sliding algorithm for optimal nesting of 
arbitrarily shaped sheet metal blanks. Cheok et al. (1996) reported an intelligent 
planning tool for the design of progressive dies. Huang et al. (1996) discussed 
automated design of progressive dies. Ismail et al. (1996) presented a feature based 
design concept of progressive dies. Cheok and Nee (1998) described various 
configurations of progressive dies. Choi et al. (1998) presented a compact and 
practical CAD system for blanking or piercing of irregularly shaped metal products 
and stator and rotor parts. Singh and Sekhon (1996) used digraph and matrix 
methods for evaluation of metal stamping layouts.  In another work, Singh and 
Sekhon (1998) presented a low-cost modeler for two-dimensional metal stamping 
layouts. Nye (2000) used computer-aided design methods for stamping strip-
layouts for optimum raw material utilization. In another work, Nye (2001) 
described a new algorithm for optimizing the layout of an irregular convex 
polygonal blank in a strip. This algorithm could orient a single blank such that the 
utilization of the strip material was maximized.   

Rao (2004) applied the AHP method for evaluation of metal stamping layouts. 
A strip-layout selection index was proposed that could be used for evaluation and 
ranking of strip-layouts. Ciurana et al. (2006) presented an activity model for 
defining sheet metal process planning. Gomes and Oliveira (2006) used simulated 
annealing and linear programming methods together for solving irregular strip 
packing problems. Kamalapurkar and Date (2006) viewed wastage in totality and 
attempted to minimize the total wastage arising from layout as well as rejections. 
Highly strained regions in a sheet metal blank were identified. Based on the 
permissible window of variation in the material properties, a ‘defect map’ was 
generated on the sheet. The blanks were laid, out and the possible number of 
rejections was predicted probabilistically, leading to the prediction of actual 
utilization of the material. Bortfeldt (2006) suggested a genetic algorithm for two-
dimensional strip packing problems that functions without any encoding of 
solutions. Rather fully defined layouts were manipulated as such by means of 
specific genetic operators. GA performed best, compared to eleven competing 
methods from the literature. 

Most of the above approaches were aimed mainly at achieving better material 
utilization. However, the strip-layout with maximum material saving may not be 
the best strip-layout. Indeed, the die construction may become more complex 
which could offset the savings due to material economy unless a large number of 
parts are to be produced. Whatever the chosen procedure for obtaining alternative 
strip-layouts, it is desirable to make an optimum choice among the available 
layouts. The decision of selecting a particular strip-layout depends on attributes 
(i.e., attributes) such as material utilization, die cost, stamping operational cost, 
required production rate, job accuracy, nature of stock (strip or coil), slitting 
allowance, balance of blanking pressure, space available in the die set, press 
specifications, bridge width, shearing strength and thickness of the blank material, 
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facilities available on the shop floor, etc. (Fogg and Jamieson, 1975; Donaldson et
al., 1976; Paquin and Crowley, 1986). Ideally, it is essential ideally to choose the 
attributes that are relevant to the particular problem at hand. The actual 
identification of evaluating attributes may involve discussions with experts 
working in the fields of production, die making, tool design, and product design. 
Further more, the relative importance of one attribute over the other is also 
required. Very few published studies are available on the aspect of die design 
problem. 

The objective of a strip-layout selection procedure is to identify the strip-
layout attributes and obtain the most appropriate combination of the attributes in 
conjunction with the real requirement of the stamping operation. Thus, efforts need 
to be extended to determine attributes that influence strip-layout selection for a 
given stamping operation, using a logical approach, to eliminate unsuitable strip-
layouts, and for selection of a proper strip-layout to strengthen the existing strip-
layout selection procedure. This is considered in this chapter using the graph theory 
and matrix approach (GTMA) and fuzzy MADM methods. 

20.2 Example 

Singh and Sekhon (1996) presented a strip-layout selection methodology using the 
digraph and matrix approach. The authors considered an annual production of 
400,000 numbers of a blank, shown in Figure 20.1. The dimensions shown are in 
centimeters. Six alternative strip-layouts, shown in Figure 20.2, were synthesized. 

Figure 20.1. Blank profile (from Singh and Sekhon 1996; reprinted with permission from 
Elsevier)

Five strip-layout selection attributes were identified relevant to the case, and 
these were: economical material utilization (Ur), die cost (Dc), stamping 
operational cost (Oc), required production rate (Pr) and job accuracy (Ja). Table 
20.1 presents the estimated quantitative values of Ur, Dc, Oc, Pr, and assigned 
qualitative values of Ja.
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Figure 20.2. Alternative strip-layouts (from Singh and Sekhon 1996; reprinted with 
permission from Elsevier) 

20. 2.1 Application of Graph Theory and Matrix Approach (GTMA) 

In the present work, the strip-layout selection attributes (i.e., attributes) considered 
are the same as those of Singh and Sekhon (1996), and these are: Ur, Dc, Oc, Pr and 
Ja. The objective values of the attributes, which are given in Table 20.1, are to be 
normalized. Ur, Pr, and Ja are beneficial attributes, and higher values of these 
attributes are desired for the given stamping operation. It may be mentioned here 
that Singh and Sekhon (1996) assigned values to Ja qualitatively, and higher values 
on the qualitative scale indicate better job accuracy. Dc and Oc are the non-
beneficial attributes, and lower values of these attributes are desired for the given 
stamping operation. The values of these attributes for different strip-layouts are 
normalized, and given in Table 20.2 in the respective columns.  

Relative importance of attributes (aij) is assigned the values, as explained in 
Section 2.4. Let the decision maker prepare the following assignments: 

 Ur  Dc Oc Pr Ja
Ur - 0.665 0.745 0.5 0.5 
Dc 0.335 - 0.665 0.335 0.335 
Oc 0.255 0.335 - 0.255 0.255 
Pr 0.5 0.665 0.745 - 0.5 
Ja   0.5 0.665 0.745 0.5 - 
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Table 20.1. Alternative strip-layout data (from Singh and Sekhon 1996; reprinted with 
permission from Elsevier) 
__________________________________________________________________ 
Layout Ur Dc  Oc Pr Ja
__________________________________________________________________________
(a) 0.26  25,000  130  80  4 
(b) 0.40  28,560  138  120  3 
(c) 0.33  31,109  90  150  3 
(d) 0.32  31,702  150  125  2 
(e) 0.31  32,390  160  110  2 
(f) 0.31  32,663  116  108  2 
__________________________________________________________________________
Ur is expressed in %; Dc, in Rupees; OC in Rupees/1,000 pieces; Pr in pieces/minute. 

Table 20.2. Normalized data of the alternative strip-layouts 
__________________________________________________________________ 
Layout Ur Dc  Oc Pr Ja
__________________________________________________________________________
(a) 0.65  1  0.6923  0.5333            1 
(b) 1  0.8754  0.6522  0.8            0.75 
(c) 0.825  0.8036  1  1            0.75 
(d) 0.8  0.7886  0.6  0.8333            0.5 
(e) 0.775  0.7718  0.5625  0.7333            0.5 
(f) 0.775  0.7654  0.7759  0.72            0.5 
__________________________________________________________________________

The strip-layout selection attributes digraph, strip-layout attributes matrix of 
the digraph, and strip-layout selection function for the matrix can be prepared. The 
value of the strip-layout selection index is calculated, using the values of Ai and aij
for each strip-layout. 

The strip-layout selection index values of the different strip-layouts are given 
below in descending order: 

Strip-layout (c): 6.5096 
Strip-layout (b): 5.6506 
Strip-layout (a): 5.1466 
Strip-layout (f): 4.5414 
Strip-layout (d): 4.4613 
Strip-layout (e): 4.1421 

From the values of the strip-layout selection index, it is clear that the strip-
layout, designated as (c) is the best choice among the strip-layouts considered for 
the given stamping operation. The next choice is strip-layout (b), and strip-layout 
(e) is the last choice. This ranking matches with that suggested by Singh and 
Sekhon (1996). However, Singh and Sekhon (1996) had not applied the digraph 
and matrix methods correctly. For example, Singh and Sekhon (1996) assumed a 
range for each attribute, and the attribute values were normalized within that range. 
A different range might lead to different normalized values. When actual values of 
the attribute are available, there is no need to assume a range, and the values of the 
attribute can be normalized within the available values (as the comparison is 
between the available alternatives). Further, the relative importance values 
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assigned by Singh and Sekhon (1996) were not logical, and sometimes 
contradictory. By contrast, the procedure explained in this chapter is systematic 
and logical.

Following the graph theory and matrix approach, the coefficients of 
similarity/dissimilarity are also calculated for different strip-layouts using 
Equations 2.15 and 2.16. The coefficient of similarity values are given in Table 
20.3. These are useful for strip-layout documentation, and for easy storage and 
retrieval of the strip-layout data for the given stamping operation.  

Table 20.3. Values of coefficient of similarity for the strip-layouts of 
the example considered 
________________________________________________________
Strip-layout  (b) (c) (d) (e) (f) 
________________________________________________________
(a)  0.9108 0.7906 0.8668 0.8048 0.8824  
(b)   0.8680 0.7895 0.7330 0.8037  
(c)    0.6853 0.6363 0.6976 
(d)     0.9285 0.9824 
(e)      0.9121  
________________________________________________________

20.2.2 SAW Method 

The procedure suggested by Edwards and Newman (1982) to assess weights for 
each of the attribute to reflect its relative importance to the strip-layout selection 
decision is followed here. The attributes are ranked in order of importance, and 10 
points are assigned to the least important attribute, Oc. Attribute Dc is given 20 
points to reflect its relative importance. Ur, Pr, and Ja are considered as equally 
important and given 30 points each. The final weights are obtained by normalizing 
the sum of the points to one. Thus, the weights of Ur, Pr, and Ja are calculated as 
0.25 each, and the weights of Dc and Oc as 0.1667, and 0.0833 respectively. Using 
these weights, and the normalized data of the attributes for different strip-layouts, 
the strip-layout selection index values are calculated, and are arranged in 
descending order of the index.

Strip-layout (c): 0.8610 
Strip-layout (b): 0.8377 
Strip-layout (a): 0.7702 
Strip-layout (d): 0.7148 
Strip-layout (f): 0.6909 
Strip-layout (e): 0.6776 

From the above values of the strip-layout selection index, it is clear that the 
strip-layout, designated as (c) is the best choice among the strip-layouts considered.  

20.2.3 WPM 

Using the same weights of the attributes as those selected for the SAW method, the 
following ranking of strip-layouts is obtained: 
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Strip-layout (c): 0.8552 
Strip-layout (b): 0.8307 
Strip-layout (a): 0.7442 
Strip-layout (d): 0.7000 
Strip-layout (f): 0.6806 
Strip-layout (e): 0.6665 

The ranking is the same as that obtained by using the SAW method in this 
example. 

20.2.4 AHP and its Versions 

If the same weights as those for the SAW method are used in this method, then the 
ranking of strip-layouts obtained by using the relative as well as ideal mode AHP 
will be the same. The multiplicative AHP method yields the same ranking as that 
given by WPM. 

Let the decision maker prepare the following matrix:  
 Ur  Dc Oc Pr Ja
Ur 1 3 5 1 1 
Dc 1/3 1 3 1/3 1/3 
Oc 1/5 1/3 1 1/5 1/5 
Pr 1 3 5 1 1 
Ja   1 3 5 1 1 

Ur, Pr, and Ja are considered as equally important. These three attributes are 
considered as moderately more important than Dc, and strongly more important 
than Oc, and the relative importance values are assigned accordingly in the above 
matrix. The assigned values in this paper are for demonstration purposes only.  

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are WUr = 0.2815, WDc = 0.1054, 
WOc = 0.0501, WPr = 0.2815, and WJa = 0.2815. The value of max is 5.0417 and 
CR = 0.0093, which is much less than the allowed CR value of 0.1. Thus, there is 
good consistency in the judgements made. 

The value of the strip-layout selection index is now calculated using the above 
weights and the normalized data of the attributes given in Table 20.2. This leads to 
the ranking given by the revised AHP or ideal mode of AHP. The alternative strip-
layouts are arranged in descending order of the strip-layout selection index. 

Strip-layout (c): 0.8597 
Strip-layout (b): 0.8428 
Strip-layout (a): 0.7546 
Strip-layout (d): 0.7137 
Strip-layout (f): 0.6811 
Strip-layout (e): 0.6749 

From the above values of the strip-layout selection index, it is clear that the 
strip-layout designated as (c) is the best choice among the strip-layouts considered. 

For the above weights of importance of attributes, the multiplicative AHP 
method also leads to the same ranking order. 
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It may be observed that the above ranking is for the given preferences of the 
decision maker. The ranking depends upon the judgements of relative importance 
of attributes made by the decision maker.   

20.2.5 TOPSIS Method 

The quantitative values of the strip-layout selection attributes, which are given in 
Table 20.1, are normalized as explained in Section 3.2.6. 

Relative importance of attributes (aij) is assigned using the AHP method, as 
explained in Section 20.2.4. 

The weighted normalized matrix, V6x5, is calculated and is shown below: 

0.0921   0.0354   0.0200   0.0783   0.1666 
0.1417   0.0405   0.0213   0.1175   0.1245 
0.1169   0.0441   0.0139   0.1468   0.1245 
0.1134   0.0450   0.0231   0.1224   0.0830 
0.1098   0.0459   0.0246   0.1077   0.0830 
0.1098   0.0464   0.0178   0.1057   0.0830         

Ideal (best) and negative ideal (worst) solutions are calculated, and these are 
given as:  
VUr

+ = 0.1417  VUr
- = 0.0921 

VDc
+ = 0.0355  VDc

- = 0.0464 
VOc

+ = 0.0139  VOc
- = 0.0246 

VPr
+  = 0.1468  VPr

- =  0.0783 
VJa

+  = 0.1660  VJa
-  = 0.0830 

Separation measures are calculated, and these are: 
S(a)

+ = 0.0848  S(a)
- = 0.0838 

S(b)
+ = 0.0516  S(b)

- = 0.0759 
S(c)

+ = 0.0491  S(c)
- = 0.0846 

S(d)
+ = 0.0920  S(d)

- = 0.0489 
S(e)

+ = 0.0983  S(e)
- = 0.0343 

S(f)
+ = 0.0986  S(f)

- = 0.0333 
The relative closeness of a particular alternative to the ideal solution is 

calculated, and these are:  
P(a) = 0.4971; P(b) = 0.5952; P(c) = 0.6326;  
P(d) = 0.3473; P(e) = 0.2586; P(f) = 0.2526 

This relative closeness to ideal solution can be named the ‘strip-layout 
selection index’ in the present work. 

The alternative strip-layouts are arranged in descending order of their selection 
index. This can be arranged as (c)-(b)-(a)-(d)-(e)-(f). 

20.2.6 Modified TOPSIS Method 

The positive ideal solution (R+) and the negative ideal solution (R-) are calculated. 
RUr

+ = 0.5035  RUr
- = 0.3273 

RDc
+ = 0.3362  RDc

- = 0.4393 
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ROc
+ = 0.2769  ROc

- = 0.4924 
RPr

+  = 0.5216  RPr
-  = 0.2782 

RJa
+  = 0.5898  RJa

-  = 0.2949 
The weighted Euclidean distances are calculated as 

D(a)
+ = 0.1618  D(a)

- = 0.1613 
D(b)

+ = 0.1026  D(b)
- = 0.1444 

D(c)
+ = 0.0949  D(c)

- = 0.1654 
D(d)

+ = 0.1789  D(d)
- = 0.0925 

D(e)
+ = 0.1921  D(e)

- = 0.0647 
D(f)

+ = 0.1885  D(f)
- = 0.0686 

The relative closeness of a particular alternative to the ideal solution is 
calculated (i.e., strip-layout selection index), and these are:  
P(a)-mod = 0.4992; P(b)-mod = 0.5848; P(c)-mod = 0.6353 
P(d)-mod = 0.3409;  P(e)-mod = 0.2518; P(f)-mod = 0.2667 
       The alternative strip-layouts are arranged in descending order of their strip-
layout selection index. This can be arranged as (c)-(b)-(a)-(d)-(f)-(e). This ranking 
is more logical than the ranking presented by the simple TOPSIS method. 

It can be observed that all the above decision-making methods propose strip-
layout designated as (c) as the first right choice. The decision makers can choose a 
method for evaluation of metal stamping layouts.  
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__________________________________________________________________ 

Selection of Forging Conditions for Forging a Given 
Component

21.1 Introduction 

Forging is the process by which metal is heated and is shaped by plastic 
deformation by suitably applying compressive force. Usually, the compressive 
force is in the form of hammer blows using a power hammer or a press. Forging 
refines the grain structure and improves the physical properties of the metal. With 
proper design, the grain flow can be oriented in the direction of principal stresses 
encountered in actual use. Grain flow is the direction of the pattern that the crystals 
take during plastic deformation. Physical properties (such as strength, ductility and 
toughness) are much better in a forging than in the base metal, which has crystals 
oriented randomly.  

Forgings are consistent from piece to piece, without porosity, voids, 
inclusions, and other defects. Thus, finishing operations such as machining do not 
expose voids, because there are none. Also, coating operations such as plating or 
painting are straightforward due to a good surface that needs very little preparation. 
Forgings yield parts that have high strength to weight ratio. Thus, these are often 
used in, e.g., the design of aircraft frame members. The metal can be forged hot 
(above recrystallization temperatures) or cold. The common forging processes are 
open-die forging/hand forging, impression die forging/precision forging, press 
forging, upset forging, roll forging, swaging and net shape/near-net shape forging. 

Since the 1980s, the problem of manufacturing defect-free parts has been 
tackled with simulation tools. Nowadays, computer simulation is used in metal 
forming to reduce experimental investigation and tests required in a real trial 
process. Usually, specialists have some freedom in obtaining the desired forged 
parts, which is why numerical simulations are applied in most engineering offices 
and manufacturing industries to evaluate forming difficulties in metal forming 
processes, including forging processes. Many studies been carried out in this 
regard. Szyndler and Klimkiewicz (1992) described the method of the design of the 
open-die elongation process using optimization procedures. Based on numerical 
analysis and experimental results, the function relations between the technological 
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parameters for various shapes of dies were defined. These relations were the base 
for the formulation of the objective function for the optimization model.  

Jugo and Anza (1994) presented the results of the numerical simulation of 
some industrial hot forging processes based on the use of commercial finite 
element codes. Illustrative cases, giving rise to flow defects in industrial 
conditions, were reproduced and redesigned to eliminate the defects using finite-
element method (FEM) as a tool for carrying out the necessary alternatives 
analysis. Both, two-dimensional axisymmetrical and three-dimensional omplex 
forging shapes were considered.  

Duggirala et al. (1994) described a new method for design optimization of 
process variables in cold forging sequences. An adaptive microgenetic algorithm 
was implemented to minimize the possibility of the initiation of tensile fracture in 
the outer race preform of a constant velocity joint manufactured by cold forming 
operations. The chosen design variables were the preform diameter, the maximum 
number of forming operations, the number of extrusion and upset operations, the 
amount of area reduction in each pass, the amount of upset in each upset, and the 
included angles in the extrusion and upset dies.  

Forcellese et al. (1996) used a decision-making method based on the analytic 
hierarchy process (AHP) method for the selection of the best forging condition for 
manufacturing Al-MMC automotive components. Zhao et al. (1997) developed a 
sensitivity analysis method for preform die shape design in net-shape forging 
processes using the rigid viscoplastic finite-element method. The preform die 
shapes were represented by cubic B-spline curves. The control points or 
coefficients of B-spline were used as the design variables. The optimization 
problem was to minimize the zone where the realized and desired final forging 
shapes do not coincide. The sensitivities of the objective function, nodal 
coordinates, and nodal velocities with respect to the design variables were 
developed in detail. A procedure for computing the sensitivities of history-
dependent functions was presented. The method developed was used to design the 
preform die shape of H-shaped forging processes, including plane strain and 
axisymmetric deformations.  

Liou and Jang (1997) utilized the finite-element method and robust design 
methodology to identify the controlling process parameters that could monitor 
residual stresses in forged products. In the optimizing process of the forging 
operation, experimental planning was performed by using the orthogonal array and 
concept of the signal-to-noise ratio. Frictional coefficient, length of die land, 
reduction percentage, inlet angle, and corner fillet were selected as process 
parameters. ANOVA showed that the inlet angle, friction coefficient, and length of 
die land had the most significant effects on the optimum residual stresses.  

Roy et al. (1997) described a new method for design optimization of process 
variables in multistage metal forming processes. The selected forming processes 
were multi-pass cold wire drawing, multipass cold drawing of a tubular profile, and 
cold forging of an automotive outer race preform. An adaptive microgenetic 
algorithm ( GA) scheme was implemented for minimizing a wide variety of 
objective-cost functions relevant to the respective processes. The chosen design 
variables were die geometry, area reduction ratios, and the total number of forming 
stages. Significant improvements in the simulated product quality, and reduction in 
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the number of passes were observed to result from the microgenetic algorithms-
based optimization process. 

Picart et al. (1998) presented and applied an optimization technique to metal 
forming design problems with damage occurrence. Biglari et al. (1998) reported a 
novel shape optimization method for the design of preform die shapes in multistage 
forging processes using a combination of the backward deformation method and a 
fuzzy decision-making algorithm. In the backward deformation method, the final 
component shape was taken as the starting point, and the die was moved in the 
reverse direction with boundary nodes being released as the die was raised. The 
optimum die shape was thereby determined by taking the optimum reverse path. A 
fuzzy decision-making approach was developed to specify new boundary 
conditions for each backward time increment, based on geometrical features and 
the plastic deformation of the work piece.  

Duan and Sheppard (2002) developed a parameter optimization system in 
order to increase the reliability and the application range of FEM programs for 
metal forming by combining the general nonlinear finite-element analysis software 
with the improved constrained variable metric strategy. Park et al. (2001) 
optimized the powder forging process parameters for an aluminum-alloy piston, 
namely, the composition, mixing time, sintering time, sintering temperature, shape 
of the preform, etc., through experiments, and developed a high-strength 
aluminum-alloy piston with an optimized process.  

Sousa et al. (2002) presented an approach to optimal shape design in forging.  
The design problem was formulated as an inverse problem incorporating a finite-
element three-dimensional analysis model, and an optimization technique 
conducted on the basis of design sensitivities. Ou et al. (2003) outlined a die shape 
optimization system for the net-shape forging of aerofoil blades. In forging 
simulation using finite elements (FEs), a compensation approach was used in order 
to eliminate the aerofoil thickness errors due to die elasticity. The optimized die 
shape was obtained by modifying the nominal die shape with a fraction of the die-
elastic deflections through an introduced weighting factor.  

Dyja et al. (2004) discussed the influence of the main parameters of the 
forging process, and the shape of tools on distribution of the values of local 
deformations within the volume of forged material. The theoretical analysis of 
investigations was verified by laboratory tests. The values of the main 
technological forging parameters were determined, and the application of a group 
of tools appropriate for the forging process was proposed. The optimization of free 
hot forging process with respect to relative reduction, relative feed, and tilting of 
forging was the aim of the investigation.  

Ou et al. (2004) presented a finite element (FE)-based forging simulation and 
optimization approach in order to achieve net-shape forging production for 
aeroengine components. In the hot forging of aerofoil sections, forging errors due 
to die-elastic deformation, thermal distortion and press elasticity were quantified, 
revealing distinctive dimensional and shape error patterns. Integrating a general-
purpose FE package and an optimization code, a forging simulation and 
optimization system was developed.  

Bariani et al. (2004) presented a joint application of finite element-based 
numerical simulation and real material-based physical simulation techniques for 
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design and optimization of hot forging operations to manufacture high-strength 
stainless steel turbine blades. Zhao et al. (2004) introduced an optimization method 
for metal forming processes, especially for forging process designs using the finite 
element-based sensitivity analysis method. An approach for improving the 
computational efficiency was introduced and demonstrated. After introducing the 
optimization method of multistage forming processes, the authors presented an 
optimization method for single stage forming processes.  

Castro et al. (2004) presented an approach to optimal design in forging. The 
design problem was formulated as an inverse problem incorporating a finite- 
element thermal analysis model and an optimization technique, based on an 
evolutionary strategy. A rigid viscoplastic flow-type formulation was adopted, 
valid for both hot and cold processes. In order to demonstrate the efficiency of the 
inverse evolutionary search, specific forging cases were presented, considering the 
optimization of the process parameters aiming to reduce the difference between the 
realized and the prescribed final forged shape under minimal energy consumption, 
and restricting the maximum temperature. Chen et al. (2004) presented a novel die-
design approach, known as the least squares approach, to minimize the component 
errors. 

Thiagarajan and Grandhi (2005) developed a three-dimensional preform shape 
optimization method for the forging process using the reduced basis technique. 
Several critical techniques and new advances that enable the use of the reduced 
basis technique were presented. The primary objective was to reduce the enormous 
number of design variables required to define the three-dimensional preform shape. 
The method was demonstrated on the preform shape optimization of a 
geometrically complex three-dimensional steering link. 

Banaszek and Szota (2005) proposed an optimal shape of profiled anvils for 
the process of ingot blacksmith forging, and determined appropriate technological 
parameters that would assure a homogeneous distribution of strain intensities 
within forgings. The authors presented the results of theoretical studies simulating 
the operations of stretch forging of large ingots over profiled anvils with specified 
technological parameters. An assessment of the effectiveness of ingot stretch 
forming operations was made, and an analysis of energy and force parameters was 
performed for particular technological parameters. A significant effect of the 
relative feed and anvil profile angle on the parameters analyzed were found. 
Conclusions were drawn that proposed the use of optimal anvil shape and 
technological parameters to enhance the effectiveness of stretch forging operation, 
and reduce the values of the energy and force parameters of the process. 

Vijian and Arunachalam (2006) analyzed the influence of process parameters 
on surface roughness in squeeze casting of LM6 aluminum alloy using the Taguchi 
method. Analysis of variance and F-test values were used to determine the most 
significant process parameters affecting surface roughness. The results indicated 
that the squeeze pressure and the die preheating temperature were key parameters 
causing appreciable improvement in the surface finish of the squeeze cast 
components.  

Chastel et al. (2006) defined a new state variable to represent grain flow 
orientation, and implemented in the finite-element code so that forging could be 
simulated to predict grain flow in a forged part. Khoury et al. (2006) developed a 
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finite-element package to solve elasto-plasticity problems with ductile damage in 
large deformation. An experimental design was presented in order to show the 
influence of geometric parameters of a turbine engine disk on the total strain 
energy and the average of the elasto-plastic strain.  

Mulyadi et al. (2006) examined various methods for parameter optimization in 
constitutive equations applied to the hot deformation of a popular –  titanium 
alloy. The use of direct search and gradient methods were shown to be effective, 
even with a limited dataset. However, a hybrid approach, whereby genetic 
algorithms were used to find an initial parameter starting point, and then a direct 
search (simplex) method was applied to obtain a global minimum, was shown as a 
more promising approach. 

Poursina et al. (2006) presented a numerical method for shape optimization of 
preform dies in two-stage hot forging. The objective of optimization was to 
eliminate work-piece defects that may arise during the forging process. A two-
dimensional finite-element code was developed for the simulation of the 
mechanical process and prediction of the defects. The optimization method was 
based on a genetic algorithm supported by an elitist strategy. The scheme 
developed was used to design optimal preform dies for two axisymmetric 
examples. The objective function was associated with the quality of the final 
product.  

Choi et al. (2006) performed a three-dimensional rigid-plastic finite-element 
method (FEM) analysis to optimize an open-die forging process in the production 
of circular shapes. The finite-element method was used to analyze the practice of 
open-die forging, focusing on the effects of feed rate and rotation angle for optimal 
forging pass design. The optimal combination of feed rate and rotation angle was 
determined by quantifying the radius profile in the longitudinal direction and 
roundness of the product. From an analysis of the results, optimal process 
conditions were proposed for the production of circular shapes with good
dimensional accuracy by open die forging. 

It may be said that the optimization of forging process design and forging 
process plan for various work materials can be based on the maximization of 
production rate, maximization of product quality, minimization of production cost, 
minimization of die cost, minimization of forging loads, etc. The optimum solution 
is the one that best satisfies these different requirements. Ideally, it is essential to 
choose the criteria (or attributes) that are relevant to the particular problem at hand. 
The actual identification of evaluating attributes may involve discussions with the 
experts working in the areas of production, die making, tool design, and product 
design. Furthermore, the relative importance of the one criterion (or attribute) over 
the other criterion (or attribute) is also required. Very few published studies are 
available on the aspect of die design problems. In order to solve such a problem, 
decision-making methods can be used. A number of appropriate alternatives, given 
by different sets of forging parameters, can be defined. Then, such alternatives can 
be evaluated by using different criteria (or attributes) that can be properly defined. 
The alternative with the highest level of satisfaction can be chosen. This is 
considered in this chapter, using the graph theory and matrix approach (GTMA) 
and fuzzy MADM methods. 
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21.2 Example

Forcellese et al. (1996) used a decision-making method based on the analytic 
hierarchy process (AHP) for the selection of the best forging conditions for 
manufacturing Al-MMC automotive components. Three candidate solutions, in 
terms of three different sets of initial die and billet temperatures, and die speed, 
were defined by means of FEM simulations; these were performed within proper 
strain rate and temperature windows determined by hot formability studies on 
6061/Al2O3/10p composite. Five criteria (or attributes) for evaluating the different 
alternatives with respect to the overall goal of selection of the best forging 
conditions were defined and these were: (i) product quality, (ii) production rate, 
(iii) die cost, (iv) heating cost, and (v) forging load. The AHP method allowed 
establishing the alternative characterized by an initial die temperature of 350°C, an 
initial billet temperature of 400°C, and a die speed of 3 mm/s as the optimum 
solution. The data of the forging attributes are summarized in Table 21.1. The 
attributes DC and HC are expressed subjectively in Table 21.1. Hence, 
appropriately using Table 4.3, the objective values are assigned and shown in 
Table 21.2.  

Table 21.1. Objective and subjective data of the forging conditions selection attributes 
(from Forcellese et al., 1996; reprinted with permission from Elsevier) 
________________________________________________________________________
Alternative forging conditions PQ PR DC HC      FL 
IBT(°C) IDT(°C) DS (mm/s) (%)     (pieces/h)        (N)  
________________________________________________________________________
400 350 3  4.01 73.97 Low  Very low     15,773 
500 450 2  2.19 67.92 Very high   Low        9,119 
425 350 0.1  1.46 12 Low  Very high    15,110 
________________________________________________________________________
PQ: product quality  PR: production rate   DC: die cost 
HC: heating cost  FL: forging load per unit length 
IBT: initial billet temperature  IDT: initial die temperature DS: die speed  

Table 21.2. Objective data of the forging conditions selection attributes  
________________________________________________________________________
Alternative forging conditions PQ PR DC HC      FL 
IBT(°C) IDT(°C) DS (mm/s) (%)     (pieces/h)        (N)  
________________________________________________________________________
400 350 3  4.01 73.97 0.335 0.255     15,773 
500 450 2  2.19 67.92 0.745 0.335      9,119 
425 350 0.1  1.46 12 0.335 0.745     15,110 
________________________________________________________________________

21.2.1 Graph Theory and Matrix Approach 

Various steps of the methodology, proposed in Section 2.6, are carried out as 
described below: 
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Step 1: In the present work, the attributes considered are the same as those 
used by Forcellese et al. (1996) and these are product quality (PQ), production rate 
(PR), die cast (DC), heating cost (HC), and forging load (FL). The objective values 
of the attributes, which are given in Table 21.2, are to be normalized. PR is the 
only beneficial attribute, and the remaining four attributes are considered as non-
beneficial. Values of these attributes are normalized, and are given in Table 21.3 in 
the respective columns.  

Table 21.3. Normalized data of the forging conditions selection attributes 
__________________________________________________________________
Alternative forging conditions PQ PR DC HC FL 
IBT(°C) IDT(°C) DS (mm/s)   
__________________________________________________________________
400 350 3  0.3641 1 1 1 0.5781 
500 450 2  0.6667 0.9182 0.45 0.7612 1 
425 350 0.1  1 0.1622 1 0.3423 0.6035 
__________________________________________________________________

Let the decision maker assign equal importance to the attributes as shown 
below: 
 PQ  PR DC HC FL  
PQ - 0.335 0.59 0.865 0.665 
PR 0.665 - 0.665 0.955 0.745 
DC 0.41 0.335 - 0.745 0.59 
HC 0.135 0.045 0.255 - 0.335 
FL   0.335 0.255 0.41 0.665 - 

Step 2: The forging conditions selection attributes digraph, forging conditions 
selection attributes matrix of the digraph, and forging conditions selection 
attributes function for the matrix can be prepared. The value of forging conditions 
selection index is calculated using the values of Ai and aij for each alternative 
forging condition. The forging conditions selection index values of different 
forging conditions are given below in descending order: 

Forging conditions 1 : 4.0834 
Forging conditions 2 : 3.8433 
Forging conditions 3 : 2.3075 

Thus, GTMA suggests forging conditions 1 as the correct choice for the 
forging conditions selection problem considered and forging conditions 3 as the 
last choice. This ranking matches well with the results presented by Forcellese et
al. (1996). 

21.2.2 SAW Method 

Forcellese et al. (1996) used the following weights of importance of the five 
selection attributes: 
WPQ = 0.236, WPR = 0.459, WDC = 0.179, WHC = 0.037, and WFL = 0.089 
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Using the same weights of importance of the attributes, SAW leads to the 
following ranking order: 

Forging conditions 1 : 0.8124 
Forging conditions 2 : 0.7765 
Forging conditions 3 : 0.5558 

Thus, the SAW method also suggests forging conditions 1 as the correct 
choice for the forging conditions selection problem considered. This ranking 
matches well with the results presented by Forcellese et al. (1996). 

21.2.3 WPM 

For the same weights of importance of the attributes, WPM leads to the following 
ranking order: 

Forging conditions 1 : 0.7503 
Forging conditions 2 : 0.7498 
Forging conditions 3 : 0.3987 

WPM also suggests forging conditions 1 as the correct choice.  

21.2.4 AHP Method  

Forcellese et al. (1996) had already used the AHP method, and the ranking was 
given as: 

Forging conditions 1 : 0.386 
Forging conditions 2 : 0.358 
Forging conditions 3 : 0.256 

AHP also suggests forging conditions 1 as the correct choice.  

21.2.5 TOPSIS Method  

Following the steps of the methodology given in Section 3.2.6, the TOPSIS 
method gives the following weighted normalized matrix: 

     0.1973     0.3357     0.0679     0.0110     0.0593 
     0.1078     0.3082     0.1510     0.0145     0.0343 
     0.0718     0.0545     0.0679     0.0322     0.0568 

The ideal (best) and negative ideal (worst) solutions are obtained, and these 
are given as:  
VPQ

+ = 0.0718  VPQ
- = 0.1973 

VPR
+ = 0.3357  VPR

- = 0.0545 
VDC

+ = 0.0679  VDC
- = 0.1510 

VHC
+ = 0.0110  VHC

- = 0.0322 
VFL

+ = 0.0343  VFL
- = 0.0593 

The separation measures are: 
S1

+ = 0.1279  S1
- = 0.2940 

S2
+ = 0.0947  S2

- = 0.2709 
S3

+ = 0.2829  S3
- = 0.1505 
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The relative closeness of a particular alternative to the ideal solution is 
calculated and named the ‘forging conditions selection index (FCSI)’ in the present 
example; these are arranged in descending order as:  

Forging conditions 2 : 0.7409 
Forging conditions 1 : 0.6968 
Forging conditions 3 : 0.3473 

TOPSIS method suggests forging conditions 2 as the correct choice for the 
forging conditions selection problem considered. However, this result seems not to 
be genuine.  

21.2.6 Modified TOPSIS Method 

The modified TOPSIS method gives the following results: 
The weighted Euclidean distances are: 

D1
+ = 0.2715  D1

- = 0.4723 
D2

+ = 0.2146  D2
- = 0.4357 

D3
+ = 0.4361  D3

- = 0.3246 
The FCSI values are calculated, and these are arranged in descending order as:  

Forging conditions 2 : 0.6700 
Forging conditions 1 : 0.6349 
Forging conditions 3 : 0.4267 

The results presented by the modified TOPSIS method are exactly the same as 
those given by the simple TOPSIS method. 

It may be noted from the values of the five selection attributes of the three 
alternative forging conditions, that proposing alternative 1 as the first correct 
choice seems to be more genuine. Thus, TOPSIS and modified TOPSIS methods 
are not very suitable for this particular example problem.  
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22
__________________________________________________________________ 

Evaluation of Environmentally Conscious 
Manufacturing Programs 

22.1 Introduction 

Environmentally conscious manufacturing (ECM) is concerned with developing 
methods for designing and manufacturing of new products from conceptual design 
to final delivery, and ultimately to the end-of-life disposal such that all the 
environmental standards and requirements are satisfied. In recent years, 
environmental awareness and recycling regulations have been putting pressure on 
many manufacturers and consumers to produce, and dispose of products in an 
environmentally responsible manner. Almost every function within organizations 
has been influenced by external and internal pressures to become environmentally 
sound. Issues such as green consumerism and green product development have 
impacted marketing. Finance, information systems and technology, human 
resources and training, engineering and research, and development are all 
organizational functions that have been influenced by these environmental 
pressures. One of the functions that has been profoundly influenced by 
environmental pressures is the organizational operations and manufacturing 
function. The traditional reactive responses to these pressures are now being 
supplemented and replaced by more proactive, strategic, competitive responses. 
Many businesses have begun to realize that there is some profitability to 
environmentally conscious business practices (Sarkis, 1995a; Klassen and 
McLaughlin, 1996; Cordeiro and Sarkis, 1997; Gungor and Gupta, 1999).  

The research topics on ECM programs have focused on managerial practices, 
business processes, and technology. ECM programs include proactive measures 
such as life-cycle analysis of products, design for the environment, design for 
disassembly, total quality environmental management, remanufacturing, ISO14000 
certification, and green supply chains. Each of these programs crosses inter- and 
intra-organizational boundaries. These programs work hand in hand with other 
environmental alternatives such as development of environmental management 
systems, and green purchasing (Sarkis and Lin, 1994; Sarkis, 1995b, 1999; Sarkis 
and Rasheed, 1995).  
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As mentioned above, many organizations have begun to consider ECM 
programs from a strategic and competitive advantage perspective. Yet, to 
determine whether these programs fit within the strategic direction and scope of the 
organization, and whether they can improve performance, requires some analysis 
and justification. To help decipher the benefits of these programs, a number of 
attributes, both environmental and strategic, should be evaluated. For organizations 
to accept the results, any methodology to help evaluate these systems should be 
able to handle traditional financial and non-financial measures of performance. In 
this case, the non-financial measures should include specific attributes that will 
help determine how well these programs, when implemented, will perform with 
respect to the natural environment (Sarkis, 1999).  

Many precision-based methods for ECM program selection have been 
developed. Wilhelm et al. (1993) described the selection of waste management 
technologies to implement manufacturing pollution prevention strategies. Presley 
and Sarkis (1994) used an activity-based strategic justification methodology for 
ECM technology. Sarkis (1995a) linked the manufacturing strategy with the 
environmental consciousness. Further, Sarkis (1995b) linked supply chain 
management aspects with environmentally conscious design and manufacturing. 
Munoz and Sheng (1995) presented an analytical approach for determining the 
environmental impact of machining processes. Klassen and McLaughlin (1996) 
discussed the impact of environmental management on firm performance. Cordeiro 
and Sarkis (1997) presented the aspects of environmental proactivism and firm 
performance as evidenced from industry analyst forecasts. Gungor and Gupta 
(1999) surveyed issues in ECM and product recovery. Sarkis (1998) evaluated 
environmentally conscious business practices. Further, Sarkis (1999) presented an 
illustrative problem for evaluating ECM programs for an industrial application. 
The role of environmentally friendly cutting fluids, which is an important factor in 
ECM programs, was described in Chapter 8.    

Sarkis and Weinrach (2001) evaluated environmentally conscious waste 
treatment technologies using the DEA method. Khan et al. (2002) proposed a 
holistic and integrated methodology, GreenPro-I, for process/product design by 
combining the traditional LCA approach with multiple criteria decision-making 
methods. The methodology was simple and applicable at the early design stage, 
and was more robust against uncertainty in the data. Madu et al. (2002) presented a 
hierarchic metric approach for integration of green issues in manufacturing. A 
paper recycling application was considered for demonstration. Rao (2004) used 
digraph and matrix methods for the evaluation of ECM programs. Kuo et al. (2006) 
presented an innovative method, namely, green fuzzy design analysis (GFDA), 
which involves simple and efficient procedures to evaluate product design 
alternatives based on environmental consideration using fuzzy logic. The 
hierarchical structure of environmentally conscious design indices was constructed 
using the analytical hierarchy process (AHP), which included five aspects: (1) 
energy, (2) recycling, (3) toxicity, (4) cost, and (5) material. After weighting 
factors for the environmental attributes were determined, the most desirable design 
alternative could be selected based on the fuzzy multiple attribute decision-making 
technique. Morrow et al. (2006) presented environmental aspects involved in laser-
based and conventional tool and die manufacturing.    
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The objective of an ECM program selection procedure is to identify the ECM 
program selection attributes, and obtain the most appropriate combination of the 
attributes in conjunction with the real requirements of the industrial application. 
Efforts need to be extended to determine attributes that influence ECM program 
selection for a given application, using a logical approach, to eliminate unsuitable 
ECM programs and for selection of a proper ECM program to strengthen the 
existing ECM program selection procedure. This is considered in this chapter, 
using graph theory and fuzzy MADM methods. 

22.2 Example 

Now, an example is considered to demonstrate and validate the proposed 
procedures. Sarkis (1999) presented an illustrative problem for evaluating ECM 
programs for an industrial application. Sarkis (1999) assumed that the management 
had determined its missions, priorities, and objectives in place. It was also assumed 
that a set of fifteen alternatives had been determined, and that all could be 
evaluated on each of the six attributes identified for the given industrial 
application. The problem considering six attributes and fifteen alternative ECM 
programs is shown in Table 22.1.  

Table 22.1. Quantitative data of ECM program selection attributes (from 
Sarkis 1999; reprinted with permission from Elsevier) 
_________________________________________________________ 
Alternative C  Q R PWR PGR RC
_______________________________________________________________
1  706,967  2 29 17 0 51 
2  181,278  3 5 14 7 45 
3  543,399  4 5 3 7 71 
4  932,027  7 15 10 17 57 
5  651,411  4 19 7 0 21 
6  714,917  5 15 6 19 5 
7  409,744  1 8 17 1 35 
8  310,013  6 23 15 18 32 
9  846,595  2 28 16 19 24 
10  625,402  3 21 16 7 34 
11  285,869  2 1 13 12 54 
12  730,637  3 3 4 1 12 
13  794,656  5 27 14 14 65 
14  528,001  1 6 5 9 41 
15  804,090  2 26 6 5 70  
_______________________________________________________________
C: Costs ($) Q: Quality (% defects) R: Recyclability (% recyclable 
material) PWR: Process waste reduction (%) PGR: Packaging waste 
reduction (%)       RC: Regulatory compliance (% reduction in violations) 
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22.2.1 Graph Theory and Matrix Approach 

In the present work, the attributes considered are the same those of Sarkis (1999), 
and these are: costs involved (C), quality (Q, expressed in % of defects), 
recyclability (R), process waste reduction (PWR), packaging waste reduction 
(PGR), and regulatory compliance (RC). The quantitative values of the ECM 
program selection attributes, which are given in Table 22.1, are to be normalized. 
R, PWR, PGR, and RC are beneficial attributes, and higher values are desirable. 
Values of these attributes are normalized, and given in Table 22.2 in the respective 
columns. C and Q are non-beneficial attributes and lower values are desirable. The 
values of these attributes for different ECM programs are normalized, and given in 
Table 22.2 in the respective columns. 

Let the decision maker make the following assignments of relative importance:  

         C Q R PWR PGR RC 
 C        - 0.335 0.41 0.255 0.41 0.59
 Q      0.665 - 0.59 0.335 0.665 0.745
 R    0.59 0.41 -  0.255 0.59 0.665  
 PWR   0.745 0.665 0.745 - 0.665 0.865
 PGR      0.59 0.335 0.41 0.335 - 0.665 
 RC    0.41 0.255 0.335 0.135 0.335 -
                                                       

The ECM selection attributes digraph, ECM selection attributes matrix of the 
digraph, and ECM selection function for the matrix can be prepared. The value of 
the ECM selection index is calculated using the values of Ai and aij for each ECM 
program.  

Table 22.2. Normalized data of the alternative ECM programs 
________________________________________________________ 
Alternative C Q R PWR PGR RC
______________________________________________________________
1  0.2564 0.5 1 1 0 0.7183 
2  1 0.3333 0.1724 0.8235 0.3684 0.6338 
3  0.3336 0.25 0.1724 0.1765 0.3684 1 
4  0.1945 0.1429 0.5172 0.5882 0.8947 0.8028 
5  0.2783 0.25 0.6552 0.4118 0 0.2958 
6  0.2536 0.2 0.5172 0.3529 1 0.0704 
7  0.4424 1 0.2759 1 0.0526 0.493 
8  0.5847 0.1667 0.7931 0.8823 0.9474 0.4507 
9  0.2141 0.5 0.9655 0.9412 0.3684 0.4789 
10  0.2899 0.3333 0.7241 0.9412 0.3684 0.4789 
11  0.6341 0.5 0.0345 0.7647 0.6316 0.7606 
12  0.2481 0.3333 0.1034 0.2353 0.0526 0.169 
13  0.2281 0.2 0.931 0.8235 0.7368 0.9155 
14  0.3433 1 0.2069 0.2941 0.4737 0.5775 
15  0.2254 0.5 0.8965 0.353 0.2631 0.9859 
______________________________________________________________
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The ECM program selection index values of different ECM programs are 
given below in descending order: 
Alternative ECM program 9 : 11.0883 
   13 : 10.2018 
   8 : 10.063 
   1 : 8.9617 
   11 : 8.6541 
   2 : 8.6065  
   7 : 8.38 
   15 : 8.1909 
   10 : 8.1322 
   4 : 7.9691 
   14 : 7.2478 
   3 : 5.9276 
   6 : 5.8365 
   5 : 5.1647 
   12 : 3.9799 

From the values of the ECM program selection index, it is understood that the 
ECM program designated as 9 is the best choice among the ECM programs 
considered for the given industrial application. The next choice is 13, and the last 
choice is 12. However, Sarkis (1999) had used the ANP and DEA methods 
together, and had suggested ECM program 11 as the first choice, 8 as the second 
choice and 12 as the last choice. A closer look at the values of the attributes of 
these ECM programs reveals that ECM program 9 is better than ECM program 11 
for three attributes (i.e., R, PWR, and PGR) and equals in performance for Q, 
whereas ECM program 11 is better than ECM program 9 only for two attributes 
(i.e., C and RC). Thus, proposing ECM program 9 as the first choice in the present 
work appears to be more genuine and the ranking presented by the proposed 
method is more reliable. Also, the proposed approach ranks the alternatives in a 
single stage, unlike the two-stage approach used by Sarkis (1999). It may be 
mentioned that the ranking depends upon the judgements made by the user.   

22.2.2 SAW Method 

Let the attributes be ranked in order of importance, and 10 points be assigned to the 
least important attribute RC. Attribute C is given 15 points to reflect its relative 
importance. PGR, R, Q, and PWR are given 20, 25, 30, and 40 points respectively. 
Thus, the weights of PWR, Q, R, PGR, C, and RC are calculated as 0.375, 0.1875, 
0.125, and 0.3125, respectively. Using these weights, and the normalized data of 
the attributes for different ECM programs, the ECM program selection index 
values are calculated, and are arranged in descending order of the index.
Alternative ECM program 9 : 0.7484 
   8 : 0.6595 
   1 : 0.6501 
   13 : 0.6394 
   7 : 0.6393 
   10 : 0.5875  
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   11 : 0.5441 
   2 : 0.5424 
   15 : 0.5002 
   4 : 0.4971 
   14 : 0.4808 
   6 : 0.4110 
   5 : 0.3391 
   3 : 0.2945 
   12 : 0.2032 

From the above values of the ECM program selection index, it is clear that the 
alternative ECM program, designated as 9 is the best choice among the ECM 
programs considered. 

22.2.3 AHP and its Versions 

If the same weights as those of the SAW method are used in this method, then the 
ranking of ECM programs obtained by using the relative as well as ideal mode 
AHP method will be the same.  

22.2.4 TOPSIS Method 

The quantitative values of the ECM program selection attributes, which are given 
in Table 22.1, are normalized as explained in Section 3.2.6. Let the relative 
importance of attributes (aij) be assigned using the AHP method as explained 
below: 
        C Q R PWR PGR RC 
 C        1 3 2 1 2 3
 Q      1/3 1 1/3 1/4 1/3 1
 R    1/2 3 1  1/2 1/2 2
 PWR   1 4 2 1 2 4
 PGR      1/2 3 2 1/2 1 2
 RC    1/3 1 1/2 1/4 1/2 1
                                                       
       The assigned values are for demonstration purposes only. The normalized 
weight of each attribute is calculated following the procedure presented in step 4 of 
Section 3.2.3 and these are: WC = 0.2613, WQ = 0.0659, WR = 0.1371, WPWR = 
0.2876, WPGR = 0.1727, and WRC = 0.0754. The value of max is 6.1087 and CR = 
0.0174. Thus, there is good consistency in the judgements made. 

The ideal (best) and negative ideal (worst) solutions are obtained, and these 
are given as:  
VC

+ = 0.0191  VC
- = 0.098 

VQ
+ = 0.0045  VQ

- = 0.0317 
VR

+ = 0.0564  VR
- = 0.0019 

VPWR
+ = 0.1055  VPWR

- = 0.0186 
VPGR

+ = 0.0747  VPGR
- = 0 

VRC
+ = 0.0303  VRC

- = 0.0021 
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The separation measures are: 
S1

+ = 0.0934  S1
- = 0.1094 

S2
+ = 0.0704  S2

- = 0.1110 
S3

+ = 0.1166  S3
- = 0.0589 

S4
+ = 0.0984  S4

- = 0.0871 
S5

+ = 0.1135  S5
- = 0.0542 

S6
+ = 0.0983  S6

- = 0.0852 
S7

+ = 0.0865  S7
- = 0.1080 

S8
+ = 0.0357  S8

- = 0.1297 
S9

+ = 0.0732    S9
- = 0.1245 

S10
+ = 0.0708    S10

- = 0.1015 
S11

+ = 0.0673    S11
- = 0.1079 

S12
+ = 0.1346    S12

- = 0.0292 
S13

+ = 0.0724    S13
- = 0.1058 

S14
+ = 0.1029    S14

- = 0.0654 
S15

+ = 0.1097    S15
- = 0.0675 

The relative closeness of a particular alternative to the ideal solution is 
calculated (which can be named the ‘ECM program selection index (ECMP-SI)’ in 
the present work) and these are:  
P1 = 0.5394, P2 = 0.6120, P3 = 0.3355, P4 = 0.4694, P5 = 0.3233, P6 = 0.4644, P7 = 
0.5552, P8 = 0.7839, P9 = 0.6298, P10 = 0.5889, P11 = 0.6158, P12 = 0.1784, P13=
0.5937, P14 = 0.3887, and P15 = 0.3809. 

The alternative ECM programs are arranged in descending order of their 
ECMP-SI. This can be arranged as 8-9-11-2-13-10-7-1-4-6-14-15-3-5-12. 

22.2.5 Modified TOPSIS Method 

Following the procedure of the modified TOPSIS method and using the same 
weights as those selected for the TOPSIS method, the following ECMP-SI values 
are obtained: 
P1 = 0.5423, P2 = 0.5617, P3 = 0.3852, P4 = 0.4924, P5 = 0.3429, P6 = 0.4823, P7 = 
0.5163, P8 = 0.7074, P9 = 0.6259, P10 = 0.5727, P11 = 0.5828, P12 = 0.2199, P13=
0.6185, P14 = 0.4366, and P15 = 0.4699. 

The alternative ECM programs are arranged in descending order of their 
ECMP-SI. This can be arranged as 8-9-13-11-10-2-1-7-4-6-15-14-3-5-12. 

It may be observed from the application of the TOPSIS and modified TOPSIS 
methods, that both methods suggest alternative ECM program 8 as the first choice 
and 12 as the last choice. One need not be confused when comparing the rankings 
obtained by using the TOPSIS and modified TOPSIS methods with those presented 
by other methods such as GTMA, SAW, AHP, etc. As mentioned above, the 
ranking depends upon the judgements of relative importance of attributes made by 
the decision maker.   
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23
__________________________________________________________________ 

Environmental Impact Assessment of Manufacturing 
Processes

23.1 Introduction 

Recently, there has been a strong move toward environmentally conscious 
manufacturing with an emphasis on life-cycle assessment. The intention is that life-
cycle assessment be integrated into a holistic or systemic approach to product 
design. Such an approach allows consideration of the total energy expended, the 
resources used, and the waste created. Hence, enabling the entire environmental 
impact to be determined and minimized is very important. Currently, design for 
environment (DFE) and life-cycle assessment (LCA) are the strategies to 
incorporate environmental concerns into product design and process design. The 
design of the product, the material selection and the manufacturing method are the 
critical factors causing impact on the environment.   

Munoz and Sheng (1995) presented a model of the environmental impact of 
machining processes. The analytical model integrated aspects of process 
mechanics, wear characteristics and lubricant flows. The quantifiable dimensions 
in the analysis included energy utilization, process rate, work piece primary mass 
flow, and secondary flow of process catalysts. The generation of multiple waste 
streams could be compared by examining factors such as toxicity and flammability. 
The sensitivity of environmental factors to variations in operating parameters such 
as depth of cut, speed, feed, and tool rake angle were examined. The prioritizations 
of environmental factors were evaluated for both high-rate transfer line and flexible 
job shop environment through utility analysis. This model could serve as a 
framework for decision-making in environmentally conscious manufacturing, 
including the design of parts for machining, process planning, and the selection of 
operating parameters. 

Choi et al. (1997) established an assessment model for manufacturing 
processes in terms of environmental impact for quantitative evaluation of product 
design. An assessment methodology was developed on the basis of the ‘material 
balance’ of a process, and the relationships among different processes. As a result, 
the amount of slid waste generated, the energy consumed, waste water incurred, as 
well as the level of noise were obtained. A case study of the production of a toy 
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train with 12 scenarios was performed to illustrate and examine the assessment 
model. The aim of the case study was to give an assessment of the product in terms 
of securing less environmental damage by changing the following: (a) one 
component of the product being produced by different manufacturing processes,
(b) the recycling concept being introduced into the product, and (c) the design of 
the product being altered.  

Hanssen (1998) discussed environmental impacts of product systems from a 
life-cycle perspective and surveyed five product types based on life-cycle 
assessment studies. The author summarized the results of 18 LCA studies of a 
variety of products from Norway and Sweden. The products were categorized into 
five groups based on functionality and application characteristics, in order to 
investigate the feasibility of generalization of LCA results. The five product groups 
were: products that were transformed chemically in their application; stationary, 
inert products without intrinsic energy consumption in the use phase; stationary, 
inert products with energy consumption in the use phase; transport products 
without intrinsic energy consumption in the use phase; and transport products with 
energy consumption in the use phase. Statistical tests were carried out to analyze 
the significance of the characterization into product groups, both within the groups 
and between the groups. It was concluded that there were large differences between 
product types and life-cycle stages, and that these differences were probably even 
larger when looking to average European conditions.   

Culaba and Purvis (1999) presented a methodology for the life-cycle and 
sustainability analysis of manufacturing processes. The authors described a general 
methodology for the life-cycle analysis of manufacturing processes taking into 
account the flexibility and decision-making potential of knowledge-based systems. 
Emphasis was placed on on-site waste minimization and associated sustainability 
characteristics in relation to environmental impact assessment and process 
improvement. The software model was applied with some success to an initial 
study of pulp and paper manufacturing. 

Karakoussis et al. (2001) presented the environmental impact of 
manufacturing planar and tubular solid oxide fuel cells. The authors examined the 
environmental impact of manufacturing two types of solid oxide fuel cell (SOFC) 
systems. The tubular SOFC was based on a 100 kW Siemens–Westinghouse 
design, and the planar SOFC was based on a 1 kW Sulzer design. Using different 
levels of details, the environmental impact of the manufacturing of the PEN and 
interconnect, the balance of the plant, and the production of precursor materials 
had been assessed for both systems. The results demonstrated that the production 
and supply of materials for the manufacture of both the balance of plant and the 
fuel cell were responsible for a significant share of the overall environmental 
burden associated with each of the fuel cell systems studied. Nonetheless, the total 
emissions associated with the manufacturing stage contributed an additional 1% to 
lifetime CO2 emissions for both fuel cell types. The relative contribution arising 
from the manufacturing phase relative to several other regulated pollutants was 
high, but this reflected the low levels associated with the SOFC in use phase, rather 
than a significant burden arising from manufacture. It was proposed that end-of-life 
reuse or recycling could play a key role in further reducing environmental burdens. 
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Ong et al. (1999) described the development of a semi-quantitative pre-LCA 
tool for assessing the environmental impacts of the production of a printer. This 
tool provides a quick and easy means of assessing the environmental impacts of a 
complex product. The tool allows a designer to easily compute a total 
environmental impact value for each of the various alternative designs. The pre-
LCA tool computes an environmental impact value by considering factors such as 
airborne and waterborne emissions, the recyclability potential, waste disposal, the 
global warming factor, the energy content of raw materials, the divertible plastic 
waste potential, etc. In another work, Ong et al. (2001) used the AHP method to 
derive a single environmental score based on process emissions for each of the 
products or alternatives evaluated. Based on the environmental scores, the products 
could be ranked with respect to their environmental merits. The AHP method was 
incorporated into the pre-LCA tool to assign accurate environmental scores to 
products. The AHP model developed was applied to a case study, this being a 
comparative study on polystyrene and porcelain plates. The results showed that the 
system developed was able to provide sound evaluation. 

El-Fadel et al. (2001) presented a critical assessment of the Lebanese 
industrial sector, namely the current status and classification of industrial 
establishments based on a comparative synthesis and analysis of nationwide 
surveys and studies pertaining to industrial waste management. Characterization of 
solid and liquid industrial wastes generated, including hazardous wastes, was 
presented together with current and projected waste loads, recycling opportunities, 
and export/import practices. Institutional capacity and needs pertaining to the 
enforcement of relevant environmental legislation, staffing and resources, 
monitoring schemes, and public participation were critically evaluated. Finally, 
realistic options for industrial-waste management were outlined within the context 
of country-specific institutional economic and technical limitations.  

Leão and Pashby (2004) presented a literature survey on the use of dielectric 
fluids that provide an alternative to hydrocarbon oil. It has been reported that 
water-based dielectrics might replace oil-based fluids in die sink applications. 
Gaseous dielectrics such as oxygen might also be an alternative. Nonetheless, these 
need further research in order to become commercially viable. Donnelley et al.
(2006) presented a case study of implementing ecodesign principles by means of 
product-based environmental management system. Socolof et al. (2005) presented 
final impact results from an industry-wide environmental life-cycle assessment of 
cathode ray tube (CRT) and liquid crystal display (LCD) computer monitors for 20 
environmental impact categories. Considering the entire life-cycle of each monitor, 
water eutrophication and aquatic ecotoxicity impacts for the baseline analysis were 
greater for the LCD, while all other impact categories (e.g., resource use, energy, 
ozone depletion, landfill space use, human health toxicity) were greater for the 
CRT. Comparing the manufacturing stages of each monitor type in the baseline 
scenario, the LCD had greater relative environmental burdens in eight categories. 
Energy, global warming, and human health toxicity impacts were also presented in 
greater detail, showing contributions from each life-cycle stage.  

Zackrisson (2005) presented environmental aspects when manufacturing 
products mainly out of metals and/or polymers. The author examined 
environmental data from companies manufacturing products mainly from metals 
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and/or polymers. The data were collected in a uniform way by use of special 
guidelines. Weighting or valuation methods often used in life-cycle assessment 
served to quantitatively compare and rank environmental aspects. The study 
suggested that weighting or valuation methods could aid in determining the 
significance of environmental impacts and aspects within the context of ISO 
14001. 

English et al. (2006) considered how a cold roll forming company could 
ensure its status as a sustainable and environmentally conscious manufacturer. 
Hussey and Eagan (2006) presented some insights from structural equation 
modeling, which was used to evaluate the development of an environmental 
performance model for small and medium size enterprises (SMEs). The model was 
based on the Malcolm Baldrige Criteria. The authors reviewed SEM methodology 
and shared results from a population of SMEs in the plastics manufacturing sector. 
Fit statistics confirmed the overall model fit, but not all paths in the model were 
statistically significant. An assessment of the non-significant paths (from 
leadership and from the system components of the model to environmental results) 
led the authors to conclude that an improved definition of environmental results 
was critical. Education of SMEs on the benefits of improved environmental 
performance was also warranted. 

This chapter presents the results of applications of the proposed GTMA and 
fuzzy MADM methods for the assessment of environmental impact of 
manufacturing processes.  

23.2 Example 

Now, to demonstrate and validate the application of the proposed decision-making 
methods, the case study presented by Choi et al. (1997) is considered. 

Choi et al. (1997) established an assessment model for manufacturing 
processes in terms of environmental impact for quantitative evaluation of product 
design. An assessment methodology was developed on the basis of the ‘material 
balance’ of a process and the relationships among different processes. As a result, 
the amount of solid waste generated, the energy consumed, the waste water 
incurred as well as the level of noise were obtained. A case study of the production 
of a toy train with 12 scenarios was performed to illustrate and examine the 
assessment model. The aim of the case study was to give an assessment of the 
product in terms of securing less environmental damage by changing the following: 
(a) one component of the product being produced by different manufacturing 
processes, (b) the recycling concept being introduced into the product, and (c) the 
design of the product being altered. The product structure is described below along 
with the related manufacturing processes: 

Engine funnel (two pieces): The product is a plastic one and hence the 
injection molding process was employed so that machining operations and the 
EDM process were required for the production of the tooling and the mold set. 
Engine boiler (sheet metal): This was produced by the drawing process and 
drilling operations. With regard to the former, the machining operation was 
employed to produce the mold set. 
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Engine cabin (zinc): This was produced by the die-casting process and drilling 
operations. With regard to the former, machining operations and the EDM 
operation were employed to produce the mold set. 
Steel pin (three pieces, mild steel): This was produced by turning operations. 
Base (zinc): This was produced by the die-casting process and drilling 
operations. With regard to the former, machining operations and the EDM 
operation were employed to produce the mold set. 
Bush (six pieces, mild steel): These were produced by turning and drilling 
operations. 
Wheel (six pieces, mild steel): This was also produced by turning and drilling 
operations. 
Screw (6 pieces, mild steel): These were produced by turning operations. 
Cover: As this was a plastic product, the injection molding process was 
employed, so that the machining operation and EDM process were required for 
the production of the tooling and the mold set. 
On the basis of the above information, the assessment of the toy train was 

carried out for the different scenarios shown in Table 23.1, and the results are 
shown in Table 23.2. 

Table 23.1. Assessment of the toy train for 12 different scenarios (from Choi et al. 1997; 
reprinted with permission from Elsevier) 
__________________________________________________________________________
Scenario               Description of assessment 
__________________________________________________________________________
1 The original toy train model 
2 Based on ‘1’, but the production method of the wheel was changed from 

machining to die casting 
3 Based on ‘1’, but the production method of the wheel was changed from 

machining to injection molding 
4 Based on ‘1’, all bushes and screws were removed and three shafts were 

added
5 Based on ‘4’. but the production method of the wheel was changed from 

machining to die casting 
6 Based on ‘4’, but the production method of the wheel was changed from 

machining to injection molding 
7 Based on ‘1’, the concept of recycling was introduced. This meant if any 

material can be reused or recycled, then no solid waste was involved 
8 Based on ‘7’, but the production method of the wheel was changed from 

machining to die casting 
9 Based on 7, but the production method of the wheel was changed from 

machining to injection molding 
10 Based on ‘4’, the concept of recycling was introduced. This meant if any 

material can be reused or recycled, then no solid waste was involved.
11 Based on ‘10’, but the production method of the wheel was changed from 

machining to die casting 
12 Based on ‘10’, but the production method of the wheel was changed from 

machining to injection molding 
__________________________________________________________________________
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Table 23.2. Assessment results for the toy train for 12 different scenarios (from 
Choi et al., 1997; reprinted with permission from Elsevier) 
__________________________________________________________________
Scenario Solid waste (mm3) Energy consumption (kWh) Waste water (m3)
__________________________________________________________________
1  476743  1.252   0.879 
2  458449  0.892   0.524 
3  473311  0.892   0.524 
4  457146  0.815   0.526 
5  438852  0.455   0.172 
6  453714  0.455   0.172 
7  51023  1.252   0.879 
8  30593  0.892   0.525 
9  30617  0.892   0.525 
10  31426  0.815   0.526 
11  10996  0.455   0.172 
12  11020  0.455   0.172 
__________________________________________________________________

23.2.1 Graph Theory and Matrix Approach (GTMA) 

Various steps of the methodology are carried out as described below: 
In the present work, the attributes considered are the same as those of Choi et 

al. (1997), and these are: solid waste (SR), energy consumption (EC), waste water 
(WW), and noise (N). However, the values of the noise attribute are equal for all 
the alternative scenarios. Hence this attribute is not considered in the present 
method. The quantitative values of the attributes, which are given in Table 23.2, 
are to be normalized. All three attributes considered are non-beneficial, and lower 
values are desirable. Values of these attributes are normalized, and are given in 
Table 23.3 in the respective columns.  

Table 23.3. Normalized assessment results for the toy train for 12 different 
scenarios 
_________________________________________________________________
Scenario Solid waste (mm3) Energy consumption (kWh) Waste water (m3)
_________________________________________________________________
1  0.02306  0.3634   0.1957 
2  0.024  0.51   0.3282 
3  0.0232  0.51   0.3282 
4  0.02405  0.5583   0.3270 
5  0.02505  1   1 
6  0.02423  1   1 
7  0.2155  0.3634   0.1957 
8  0.3594  0.51   0.3276 
9  0.3591  0.51   0.3276 
10  0.3499  0.5583   0.3270 
11  1  1   1 
12  0.9978  1   1 
_________________________________________________________________
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Let the decision maker make the following relative importance assignments: 

SW EC WW 
SW - 0.59 0.665 
EC 0.41 - 0.59 
WW 0.335 0.41 - 

In this example, SW is given higher importance, and EC is given high 
importance.     

The environmental impact assessment attributes digraph, environmental 
impact assessment attributes matrix of the digraph, and environmental impact 
assessment function for the matrix can be prepared. The value of the environmental 
impact assessment index (EIAI) is calculated using the values of Ai and aij for each 
scenario. The environmental impact assessment index values of different scenarios 
are given below in descending order: 

Scenario 11 : 1.9350 
Scenario 12 : 1.9322 
Scenario 5 : 0.7242 
Scenario 6 : 0.7232 
Scenario 10 : 0.5804 
Scenario 8 : 0.5682 
Scenario 9 : 0.5681 
Scenario 4 : 0.4421 
Scenario 2 : 0.4312 
Scenario 3 : 0.4309 
Scenario 7 : 0.4241 
Scenario 1 : 0.3639 

Thus, GTMA suggests scenario 11 as the most environmentally friendly, 
followed by scenario 12; scenario 1 is least environmentally friendly. Choi et al.
(1997) also suggested scenario 11 as the first, scenario 12 as the second, and 
scenario 1 as the last choice from an environmental impact point of view.    

23.2.2 AHP Method 

Let the decision maker prepare the following relative importance matrix:  

SW EC WW 
SW 1 2 3 
EC 1/2 1 2 
WW 1/3 1/2 1 

In this example, SW is given higher importance, and EC is given high 
importance. The normalized weights of each attribute are calculated, and these are: 
WSW = 0.5396, WEC = 0.2969, and WWW = 0.1635. The value of max is 3.0092 and 
CR = 0.00793 which is much less than the allowed CR value of 0.1. Thus, there is 
good consistency in the judgements made. 
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The value of EIAI is now calculated using the above weights, and the 
normalized data of the attributes given in Table 23.3. This leads to the ranking 
given by the revised AHP or ideal mode of AHP. The alternative scenarios are 
arranged in descending order of the EIAI: 

Scenario 11 : 1.0000 
Scenario 12 : 0.9988 
Scenario 5 : 0.4735 
Scenario 6 : 0.4731 
Scenario 10 : 0.4088 
Scenario 8 : 0.3995 
Scenario 9 : 0.3993 
Scenario 7 : 0.2567 
Scenario 4 : 0.2328 
Scenario 2 : 0.2185 
Scenario 3 : 0.2180 
Scenario 1 : 0.1582 

Thus, the AHP method also suggests scenario 11 as the most environmentally 
friendly, followed by scenario 12; scenario 1 is least environmentally friendly. It 
may be noted that the ranking depends upon the judgements of relative importance 
of attributes made by the decision maker.   

23.2.3 TOPSIS Method  

Various steps of the TOPSIS methodology using the AHP method for assigning the 
relative importance of attributes are described below:   

Step 1:  The objective is to evaluate the environmental friendliness of different 
manufacturing scenarios. The attributes considered are the same as those of Choi et
al. (1997), and these are: solid waste (SR), energy consumption (EC), and waste 
water (WW).   

Step 2: The next step is to represent all the information available on attributes 
in the form of a decision matrix. The data are shown in Table 23.2.   

Step 3: The quantitative values of the environmental impact assessment 
attributes, which are given in Table 23.2, are to be normalized. All three attributes 
are of non-beneficial type. The values of these attributes for different vendors are 
normalized but not shown here. 

Step 4: Let the decision maker select the following assignments regarding the 
relative importance of attributes (aij), using AHP method:  

SW EC WW 
SW 1 2 3 
EC 1/2 1 2 
WW 1/3 1/2 1 

The normalized weights of each attribute are calculated, and these are: WSW = 
0.5396, WEC = 0.2969, and WWW = 0.1635. The value of max is 3.0092 and CR = 
0.00793, which is much less than the allowed CR value of 0.1.  
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Step 5: The weighted normalized matrix is calculated, and is shown below: 

   0.2279     0.1277     0.0789 
   0.2191     0.0909     0.0470 
   0.2262     0.0909     0.0470 
   0.2185     0.0831     0.0472 
   0.2098     0.0464     0.0154 
   0.2168     0.0464     0.0154 
   0.0244     0.1277     0.0789 
   0.0146     0.0909     0.0471 
   0.0146     0.0909     0.0471 
   0.0150     0.0831     0.0472 
   0.0053     0.0464     0.0154 
   0.0053     0.0464     0.0154 

Step 6: The next step is to obtain the ideal (best) and negative ideal (worst) 
solutions. These are given as: 
V1

+ = 0.00526  V1
- = 0.2279 

V2
+ = 0.0464  V2

- = 0.1277 
V3

+ = 0.0154  V3
- = 0.0789 

Step 7: The next step is to obtain the separation measures, and these are: 
S1

+ = 0.2453  S1
- = 0 

S2
+ = 0.2207  S2

- = 0.0494 
S3

+ = 0.2276  S3
- = 0.0486 

S4
+ = 0.2187  S4

- = 0.0555 
S5

+ = 0.2045  S5
- = 0.1047 

S6
+ = 0.2116  S6

- = 0.1037 
S7

+ = 0.1049  S7
- = 0.2035 

S8
+ = 0.0555  S8

- = 0.2187 
S9

+ = 0.0555  S9
- = 0.2187 

S10
+ = 0.0495  S10

- = 0.2198 
S11

+ = 0   S11
- = 0.2453 

S12
+ = 0.000011  S12

- = 0.2453 
Step 8: The relative closeness of a particular alternative to the ideal solution is 

calculated, and these are:  
P1 = 0  P2 = 0.18285 P3 = 0.1761 P4 = 0.20235  
P5 = 0.33862 P6 = 0.32891 P7 = 0.65987 P8 = 0.79764 
P9 = 0.79763 P10 = 0.8161 P11 = 1.0000 P12 = 0.9999 

This relative closeness to ideal solution is named the ‘environmental impact 
assessment index (EIAI)’ in the present example. 

Step 9: The scenarios are arranged in descending order of their EIAI. This can 
be arranged as 11-12-10-8-9-7-5-6-4-2-3-1. 

From the above values of EIAI, it is understood that scenarios 11, 12, and 10 
are more environmentally friendly, and scenario 1 is the least environmentally 
friendly.  
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23.2.4 Modified TOPSIS Method 

Using the same weights of attributes as those of the AHP and TOPSIS methods, 
the modified TOPSIS method leads to the following ranking order: 

Scenario 11 : 1.0000 
Scenario 12 : 0.9999 
Scenario 10 : 0.7488 
 Scenario 8 :  0.7299 
Scenario 9 : 0.7299 
Scenario 7 : 0.5595 
Scenario 5 : 0.4391 
Scenario 6 : 0.4297 
Scenario 4 : 0.2700 
Scenario 2 : 0.2505 
Scenario 3 : 0.2439 
Scenario 1 : 0.0000 

Thus, the modified TOPSIS method suggests the same ranking as that 
proposed by the simple TOPSIS method. 

Once the product has been identified, all of the related manufacturing 
processes can be determined. The consequences of each process, including the 
amount of solid waste, energy consumption, waste water generated, etc., can be 
obtained, and the environmental impact of each manufacturing process can be 
assessed using the decision-making methods described in this chapter.    
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24
__________________________________________________________________ 

Evaluation of Aggregate Risk in Green Manufacturing 

24.1 Introduction 

There is a growing interest in green manufacturing (also called environmentally 
conscious manufacturing). The current focus on green manufacturing is different 
from the traditional focus on pollution control. Here, the emphasis is on life-cycle 
assessment. Products or processes are seen as interacting with the environment, and 
could have chain reaction effects on environmental pollution. Thus, rather than 
looking at any product or process in isolation, the manufacturer needs to adopt a 
cradle-to-grave approach for the product or process. For example, how much 
energy is expended in unit product manufacturing, how much resources are used, 
how much waste is created, and what are the product requirements for 
transportation and distribution? These are not issues that product designers are 
accustomed to considering. Their traditional role has been to look at the product on 
its own, and design products that meet specific guidelines and that may become 
environmental pollution laws. Today’s focus is different. Manufacturers must take 
a product stewardship approach, and this will predict their survival in today’s 
competitive environment (Madu et al., 2002).  

Industrial economies have generated a tremendous amount of waste that is 
often not reused or properly disposed of. Industrial societies are increasingly faced 
with the problems of hazardous waste management, locating new landfills, and the 
depletion of raw materials. Rather than continuing with this cycle of waste and 
extravagance, industrial economies should find better ways to convert wastes from 
one industry into input in another industry. This implies interdependence between 
industries, where one industry’s output could become another’s input. This cycle of 
dependence or reuse of material is generally referred to as recycling, and its goal is 
to eliminate or reduce waste.  

The manufacturing industries must seek to minimize environmental impact 
and resource consumption during the entire product cycle. Industrial risk and the 
diversification of risk types have both increased with industrial development. At 
the same time, the risk acceptability threshold of the population has decreased. In 
response, industry has developed methodologies for risk prevention and protection 
(Tixer et al., 2002). Green manufacturing was first proposed about 10 years ago, so 
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there are only few examples that can be used to evaluate risks, and many uncertain 
factors. Because of this incomplete and uncertain knowledge, decision-making 
methods based on probabilities to represent risk, which need many examples, 
cannot be used for green manufacturing projects (Hua et al., 2005). In addition, 
green manufacturing involves a very wide range of topics, such as environmental 
consciousness, life-cycle thinking, and sustainable development, which all increase 
the risk. Therefore, risk decision-making in green manufacturing projects must 
consider multiple indicators. Hua et al. (2005) reported that industries are 
implementing green manufacturing projects for sustainable production for four 
types of risk categories: technological, organizational, financial and circumstantial. 
Each category is related to certain risk factors. These risks are described below:

Technological risk - Since the concept of green manufacturing is relatively 
new, its theories and technologies are still being developed. Only experience 
will show whether, or not, each technology can be used in green 
manufacturing projects to create extended benefits for industry, society, and in 
ecology. Therefore, there are many technological risk factors, including 
reliability, maintenance, and applicability. 
Organizational risk -  Green manufacturing is a new manufacturing mode with 
the product cycle extending to the entire product life (raw materials, 
production, use, recycling, and disposal), so traditional management methods 
are not suitable. Therefore, the management system must be reformed to 
successfully implement green manufacturing, which will lead to unpredictable 
risks. The main organizational risk factors are the integration of the 
management approach, the knowledge level of the lead group, and the 
knowledge level of the personnel. 
Financial risk - Green manufacturing projects require a very long investment 
period due to the length of the entire product cycle, which increases the risk. 
Corporate income is gained by saving energy and materials, protecting the 
environment and workers, improving productivity and product quality, 
reducing costs, and by accurate market timing. 
Circumstantial risk - Green manufacturing projects are constrained not only 
by internal resources, but also by external resources. Many uncertain 
circumstantial factors can cause critical risks. Such external factors include 
laws, regulations, macro-economic changes, and industrial development. 

Hua et al. (2005) applied a fuzzy multiple attribute decision-making 
(FMADM) method for evaluating aggregate risk in green manufacturing. The 
authors presented a case study of a refrigerator company that made a strategic plan 
to implement ISO14000 series standards to achieve sustainable green 
manufacturing production. The standards were divided into three phases: 
ISO14001 certification, life-cycle assessment, and environmental labeling. For the 
ISO14001 certification phase, decision makers analyzed three scenarios for 
implementing ISO14001 certification. The first project obtains ISO9001 
certification and then ISO14001 certification. The second project obtains ISO9001 
certification, and ISO14001 certification at the same time. The third project obtains 
ISO14001 certification and then ISO9001 certification. Different risk grades were 
assigned by Hua et al. (2005) to various risk items described above. The FMADM 
method was then used to evaluate the aggregate risk in implementing each of these 
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three scenarios. It was concluded by the authors that the third scenario was 
associated with the highest risk, and the first scenario had the lowest risk. 
However, even though the method used by the authors is efficient, it is complicated 
and requires more computation. To simplify the procedure, different risk grades 
assigned by Hua et al. (2005) to various risk items are rewritten “using” Table 4.3, 
and are given in Table 24.1. Table 24.2 shows the corresponding objective data 
obtained by using Table 4.3. 

Table 24.1. Subjective risk grades of the three scenarios (from Hua et al., 2005; with 
permission from Elsevier)
_________________________________________________________________________
Attributes (risk factor)  Scenario 1 Scenario 2 Scenario 3 
_________________________________________________________________________
Technological risk: 

Reliability   AA  H  L 
Development   VL  A  H 
Maintenance   H  A  AA 
Applicability   L  AA  H 

Organizational risk: 
Integration   L  L  L 
Knowledge level of lead group A  AA  A 
Knowledge level of personnel BA  VH            EH 

Financial risk: 
Investment period  AA  A  H 
Investment capital  L  VL  AA 
Corporate income  A  EL  VL 

Circumstantial risk: 
Government   EL  XL  XL 
Market   H  A  XL 

_________________________________________________________________________
XL: exceptionally low, EL: extremely low, VL: very low, L: low, BA: below average, A: 
average, AA: above average, H: high, VH: very high, EH: extremely high   

Table 24.2. Objective risk grades of the three scenarios 
_________________________________________________________________________
Attributes (risk factor)  Scenario 1 Scenario 2 Scenario 3 
_________________________________________________________________________
Reliability   0.59  0.665  0.335  
Development   0.255  0.5  0.665 
Maintenance   0.665  0.5  0.59 
Applicability   0.335  0.59  0.665 
Integration   0.335  0.335  0.335 
Knowledge level of lead group 0.5  0.59  0.5  
Knowledge level of personnel 0.41  0.745  0.865 
Investment period   0.59  0.5  0.665 
Investment capital   0.335  0.255  0.59 
Corporate income   0.5  0.135  0.255 
Government   0.135  0.045  0.045 
Market    0.665  0.5  0.135 
_________________________________________________________________________
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24.2 Example 

Now, to demonstrate and validate the application of the proposed decision-making 
methods, the case study presented by Hua et al. (2005) is considered here. For a 
start, GTMA is applied, and subsequently a few MADM methods are applied to 
evaluate the aggregate risk in green manufacturing. 

24.2.1 Graph Theory and Matrix Approach (GTMA) 

In the present work, the attributes considered are the same as those of Hua et al.
(2005), and these are: reliability (R), development (D), maintenance (M), 
applicability (A), integration (I), knowledge level of lead group (K), knowledge 
level of personnel (P), investment period (V), investment capital (C), corporate 
income (E), government (G) and market (T). As all these attributes represent 
different risks, lower values are preferred. The objective values of these attributes 
are normalized, as given in Table 24.3. 

Table 24.3. Normalized data of the three scenarios 
_________________________________________________________________________
Attributes (risk factor)  Scenario 1 Scenario 2 Scenario 3 
_________________________________________________________________________
Reliability   0.5678  0.5037  1  
Development   1  0.51  0.3834 
Maintenance   0.7519  1  0.8474 
Applicability   1  0.5678  0.5038 
Integration   1  1  1 
Knowledge level of lead group 1  0.8474  1  
Knowledge level of personnel 1  0.5503  0.4739 
Investment period   0.8474  1  0.7519 
Investment capital   0.7612  1  0.4322 
Corporate income   0.27  1  0.5294 
Government   0.3333  1  1 
Market    0.2030  0.27  1 
_________________________________________________________________________

Let the decision maker make the following assignments of relative importance:  
R    D         M        A          I          K         P            V       C          E         G          T   

R   -     0.255    0.410   0.335   0.745   0.500   0.410   0.745   0.665   0.500   0.500    0.665  
D   0.745 -        0.665   0.590   0.955   0.745   0.665   0.955   0.865   0.745   0.745    0.865 
M   0.590 0.335    -       0.410   0.865   0.590   0.500   0.665   0.665   0.590  0.590    0.665 
A   0.665 0.410  0.590     -       0.865   0.665   0.590    0.745  0.745   0.665   0.665    0.745 
I    0.255 0.045  0.135  0.135     -        0.255   0.135   0.500   0.500   0.255    0.255    0.500 
K   0.500 0.255  0.410  0.335   0.745     -        0.335   0.665   0.665   0.500   0.500    0.665 
P   0.590 0.335  0.500  0.410   0.865   0.665     -         0.865   0.865   0.665   0.665    0.865 
V   0.255 0.045  0.335   0.255   0.500  0.335    0.135    -        0.410    0.255  0.255    0.410 
C   0.335 0.135  0.335  0.255   0.500   0.335    0.135   0.590   -          0.255  0.255    0.410 
E   0.500 0.255  0.410  0.335   0.745   0.500    0.335   0.745  0.745     -         0.500    0.665 
G   0.500 0.255  0.410  0.335   0.745   0.500    0.335   0.745  0.745    0.500   -          0.500 
T   0.335 0.135  0.335  0.255   0.500   0.335    0.135   0.590  0.590    0.335   0.335    - 
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The aggregate risk attributes digraph, aggregate risk attributes matrix of the 
digraph, and aggregate risk function for the matrix can be prepared. The value of 
the aggregate risk(less) index is calculated using the values of Ai and aij for each 
scenario. The aggregate risk(less) index values of different scenarios are given 
below in descending order: 

Scenario 2 : 64713.2933 
Scenario 1 : 61279.2662 
Scenario 3 : 60057.4801 

From the above values of the aggregate risk(less) index, scenario 3 is 
understood to have the highest aggregate risk (i.e., lowest aggregate risk(less) 
index). Scenario 2 is considered to have the lowest aggregate risk for the values of 
relative importance among the attributes considered here.  

 24.2.2 AHP Method 

Let the decision maker prepare the following pair-wise comparison matrix:  

  R     D       M      A      I      K       P       V       C       E     G     T  
R   1       1/5   1/3    1/4    3       1       1/3     3       2       1      1     2 
D   5       1       3       2       7       5       3       7       6       5      5     6 
M   3       1/3    1      1/2     5       3       1       5       4       3      3     4 
A   4       1/2    2      1        6       4       2       6       5       4      4     5 
I 1/3    1/7    1/5    1/6   1       1/3    1/5    1       1/2    1/3  1/3  1/2 
K  1       1/5    1/3    1/4   3       1       1/3    3       2        1     1     2 
P    3       1/3    1       1/2   5       3       1       5       4        3     3     4  
V  1/3    1/7    1/5    1/6   1       1/3    1/5    1       1/2    1/3  1/3  1/2 
C   1/2    1/6    1/4    1/5   2       1/2    1/4    2       1       1/2  1/2  1 
E   1       1/5    1/3    1/4   3       1       1/3    3       2       1     1      2 
G   1       1/5    1/3    1/4   3       1       1/3    3       2       1     1      2 
T 1/2    1/6    1/4    1/5   2       1/2    1/4    2       1       1/2  1/2  1 

The normalized weights of each attribute are calculated following the 
procedure presented in Section 3.2.3, and these are: WR = 0.0534, WD = 0.2478, 
WM = 0.1250, WA = 0.1811, WI = 0.0211, WK = 0.0534, WP = 0.1250, WV = 
0.0211, WC = 0.0325, WE = 0.0534, WG = 0.0534, and WT = 0.0325. The value of 

max is 12.2678 and CR = 0.01645 which is much less than the allowed CR value of 
0.1. Thus, there is good consistency in the judgements made. 

The value of the aggregate risk(less) index is now calculated using the above 
weights and the normalized data of the attributes given in Table 24.3. The 
alternative scenarios are arranged in the descending order of the aggregate riskless 
index: 

Scenario 1: 0.8379 
Scenario 2: 0.6819 
Scenario 3: 0.6228 

From the above values of aggregate risk(less) index, scenario 3 is understood 
to have the highest aggregate risk (i.e., lowest aggregate risk(less) index). Scenario 
1 is considered to have lowest aggregate risk for the values of relative importance 
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among the attributes considered here. These results match well with those obtained 
by Hua et al. (2005) using the FMADM method. 

24.2.3 TOPSIS Method 

The weights selected for the AHP method are used in this method. The ideal (best) 
and negative ideal (worst) solutions are obtained, and these are given as:  
VR

+ = 0.0188  VR
- = 0.0374 

VD
+ = 0.0726  VD

- = 0.1894 
VM

+ = 0.0613  VM
- = 0.0815 

VA
+ = 0.0639  VA

- = 0.1268 
VI

+ = 0.0122  VI
- = 0.0122 

VK
+ = 0.0290  VK

- = 0.0342 
VP

+ = 0.0423  VP
- = 0.0892 

VV
+ = 0.0104  VV

- = 0.0138 
VC

+ = 0.0114  VC
- = 0.0265 

VE
+ = 0.0125  VE

- = 0.0463 
VG

+ = 0.0161  VG
- = 0.0483 

VT
+ = 0.0052  VT

- = 0.0257 
The separation measures are: 

S1
+ = 0.0568  S1

- = 0.1413 
S2

+ = 0.0948  S2
- = 0.0737 

S3
+ = 0.1424  S3

- = 0.0493 
The relative closeness of a particular alternative to the ideal solution is 

calculated (which can be named as ‘aggregate risk(less) index (ARI)’ in the present 
work) and these are arranged in descending order as:  

Scenario 1: 0.7132 
Scenario 2: 0.4373 
Scenario 3: 0.2570 

As in the case of the AHP method, TOPSIS method also suggests scenario 3 as 
having the highest aggregate risk, and scenario 1 as having the lowest aggregate 
risk.

24.2.4 Modified TOPSIS Method 

For the same weights as those used in the AHP method, the modified TOPSIS 
method gives the following ranking order: 

Scenario 1: 0.5604 
Scenario 2: 0.5177 
Scenario 3: 0.4069 

The modified TOPSIS method also suggests scenario 3 as having the highest 
aggregate risk, and scenario 1 as having the lowest aggregate risk. 

In this particular example of evaluating aggregate risk in green manufacturing, 
proposing scenario 1 as the least risk scenario, and scenario 3 as the highest risk 
scenario seems to be more logical and genuine. However, it may be noted that the 
weights of importance assigned to the attributes play an important role in the 
selection process.  
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25
__________________________________________________________________ 

Selection of Best Product End-of-Life Scenario 

25.1 Introduction 

Since the last two decades, dramatic changes are taking place in our vision of the 
factory of the future. This vision was created as a way of satisfying the market 
demands for shorter lead times, shorter and precise delivery times, just-in-time 
production, flexibility in product variants, etc., ensuring a better global 
competitiveness. A new vision of the manufacturing enterprise is characterized by 
the following (Sohlenius, 1989; Alting and Zhang, 1991; Alting 1993): 

A factory with human beings as decision makers, supported by computer 
integration. 
Concurrent engineering approaches, that is, the major functional tasks are 
carried out simultaneously. 
Company organizations are loosened up to become more dynamic and 
supporting concurrently. 
Product design is performed as a life-cycle design; that is, all life-cycle phases 
(design, production, distribution, usage, and disposal/recycling) are considered 
from the beginning at the conceptual stage to ensure fulfillment of the 
environmental requirements. 
Azapagic (1999) reviewed some of the emerging applications of life-cycle 

assessment (LCA). A number of case studies indicated that the process selection 
must be based on considerations of the environment as a whole, including indirect 
releases, consumption of raw materials, and waste disposal. This approach goes 
beyond the practice of choosing the best practicable environmental option (BPEO), 
by which it is possible to reduce the environmental impacts directly from the plant, 
but also to increase them elsewhere in the life-cycle. These issues were discussed 
and demonstrated by examples of end-of-pipe abatement techniques for SO2, NOx,
and VOCs, and processes for the production of liquid CO2 and O2. The integration 
of LCA into the early stages of process design, and optimization were also 
reviewed and discussed. The approach was outlined and illustrated with real case 
studies related to the mineral and chemical industries. It was shown that the life-
cycle process design (LCPD) tool offers a potential for technological innovation in 
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process concept and structure through the selection of best material and process 
alternatives over the whole life-cycle.  

Zussman et al. (1994) applied multiple objective utility theory to support 
product design for EOL. Marttunen and Hamalainen (1997) described LCA 
methodology and application and discussed how the integration of decision 
analysis and LCA could improve LCA as a tool for decision-making. Sarkis and 
Weinrach (2001) used the data envelopment analysis method to evaluate 
environmentally conscious waste treatment technologies. Nagel et al. (1999) 
argued that in the near future, the original equipment manufacturers in many 
countries will be financially and organizationally responsible for the take-back of 
their products when these products reach the end of their life-cycle. This follows 
the principle of extended producer responsibility, according to which producers 
should be responsible for the entire life-cycle of their products, and especially for 
take-back, the recycling and the final disposal of their products. Hence, choice of 
the most appropriate scenario for treating products at their end of life should not 
only be based on economic considerations but should also take into account 
environmental and social aspects in order to ensure compliance with legislation, 
and the satisfaction of customers. 

Adda et al. (2002) pointed out that the problem of selecting a good scenario 
for treating products at their end of life concerns different types of users, such as  
authorities, recycling companies, re-manufacturers, and original equipment 
manufacturers. Each user has his or her own objectives and priorities, and a good 
scenario for one user is not necessarily good for another. Even for the same set of 
EOL scenarios and the same family of criteria, the weight of a criterion may differ 
from one user to another and within a criterion, a given score of an EOL scenario 
has not necessarily the same importance for all users. Hence, the type of user will 
play a key role in this respect (Bufardi et al., 2003). 

Khan et al. (2002) proposed an integrated methodology, ‘GreenPro-I, for 
process/product design by combining the traditional LCA approach with multiple 
criteria decision-making methods. The methodology was applicable at the early 
design stage and was robust against uncertainty in the data.  

Keoleian and Kar (2003) demonstrated the life-cycle design (LCD) framework 
for enhancing design analysis and decision-making through a collaborative effort 
between the University of Michigan, a cross functional team at Ford and the US 
Environmental Protection Agency. The LCD framework was used to evaluate three 
air intake manifold designs: a sand cast aluminum, brazed aluminum tubular, and 
nylon composite. Life-cycle inventory, life-cycle cost and product/process 
performance analyses highlighted significant tradeoffs among alternative 
manifolds, with respect to system design requirements. The life-cycle cost analysis 
estimated Ford manufacturing costs, customer gasoline costs, and end-of-life 
management costs. A total of 20 performance requirements were used to evaluate 
each design alternative.  

Desai and Mittal (2003) presented a comprehensive methodology to enhance 
disassemblability of products. Disassemblability of a product was expressed as a 
function of several parameters, such as exertion of manual force for disassembly, 
degree of precision required for effective tool placement, weight, size, material and 
shape of components being disassembled, use of hand tools, etc. A systematic 
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methodology to incorporate disassembly considerations into product design, and 
enable quantitative evaluation of the design was presented. 

Arena et al. (2003) used life-cycle assessment to investigate the environmental 
performance of alternative solid waste management options that could be used in 
an area in the south of Italy suffering from a situation of weighty solid waste 
emergency. The extreme delicacy of the decision-making process to which the 
results had to contribute suggested increasing the reliability of the assessment 
conclusions by using high-quality data, and a deepened analysis of technical 
processes. An analytical comparison between three selected scenarios was reported 
with reference to some crucial environmental impact categories. The results 
quantified the relative advantages and disadvantages of different management 
schemes, and suggested some possible improvements in design and operating 
criteria.

The treatment of the end-of-life phase of the life-cycle of a product is raising 
ever interest from producers, consumers and authorities. The amount of worn-out 
products generated each year is increasing, and landfills are becoming saturated, 
while their expansion is not always possible. In addition to the problem of finding 
landfills to dispose of the huge volume of these products, the problem arises of 
addressing the hazardous nature of some of their components. Hence, alternative 
options to landfilling should be taken into account (Bufardi et al., 2003, 2004).  

Bufardi et al. (2004) argued that the economic, environmental and social 
impacts of a product during its life-cycle also depend on the way the product is 
treated. To achieve this goal, the most important EOL alternatives should be 
considered and compared on the basis of their performances with respect to 
relevant criteria and the preferences of the user, in order to select the best 
compromise EOL alternative. Byggeth and Hochschorner (2006) analyzed 15 
different ecodesign tools to ascertain whether a valuation was included in the tools, 
in what way the tools give support in different types of tradeoff situations and 
whether the tools provide support from a sustainability perspective. Nine of the 15 
tools analyzed included a valuation, and were able to provide support in a tradeoff 
situation, but the support was not sufficient. 

Very few studies are available in the literature dealing specifically with 
selecting the best product end-of-life scenarios. There is a need for a simple, 
systematic, and logical scientific method, or mathematical tool, to guide user 
organizations in taking a proper EOL scenario selection decision. The objective of 
an EOL scenario selection procedure is to identify the EOL scenario selection 
attributes, and obtain the most appropriate combination of EOL scenario selection 
attributes in conjunction with the real requirement. Thus, efforts need to be 
extended to determine attributes that influence EOL scenario selection, using a 
simple logical approach to eliminate unsuitable EOL scenarios, and for selection of 
a proper EOL scenario to strengthen the existing EOL scenario selection 
procedure.   

Now, an example problem presented by Bufardi et al. (2003) is considered to 
demonstrate the applicability of GTMA and fuzzy MADM methods to the selection 
of best product end-of-life scenarios. 
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25.1 Example

Bufardi et al. (2003) presented an illustrative example of selecting a best product 
end-of-life scenario using ELECTRE-III method. The product considered by the 
authors was a telephone with various elements including components, functional 
components and subassemblies (handset and its components, base and its 
components, mainboard, buzzer speaker, buzzer case, keys, silicon contacts, screws 
and cables). Possible EOL options associated with these elements were: functional 
reclamation (FNC), remanufacturing/reuse (REM), recycling (REC), incineration 
with energy recovery (INC1), incineration without energy recovery (INC2), and 
disposal to landfill (LND). Different elements had different EOL options. The 
authors defined five EOL scenarios by combining elements of the telephone and 
EOL options. The first EOL scenario suggested that the whole product should be 
disposed to landfill. However, due to legislation restrictions, that scenario was not 
possible and, hence, was eliminated. The second scenario suggested REC for 
certain elements, and LND for the remaining elements of the telephone. The third 
scenario suggested INC1 for most of the elements and LND for a few elements of 
the telephone. The fourth scenario suggested REC for most of the elements, and 
INC1 for the remaining elements of the telephone. The fifth scenario suggested 
REM, REC, LND, and FNC for different elements of the telephone. 

The attributes considered for the evaluation of EOL scenarios were 
categorized into economic, social and environmental categories. The attributes 
considered under the economic category were: logistics cost, disassembly cost, 
product value and product cost. The attributes considered under the social category 
were: number of employees, and exposure to hazardous materials. The attributes 
considered under the environmental category were: CO2 emissions, SO2 emissions, 
and energy consumption. Table 25.1 presents the EOL scenarios and the attributes 
data. 

Table 25.1. Data of the EOL scenarios on considered attributes (from Bufardi 
et al., 2003; with permission from Taylor & Francis Ltd., 
http:www.tandf.co.uk/journals) 
_______________________________________________________________
Attributes    S2 S3 S4 S5  
_______________________________________________________________
CO2 emissions (kg)   0.12 0.15 0.13 0.10  
SO2 emissions (kg)   0.23 0.45 0.32 0.22 
Energy consumption (kWh)  0.65 0.96 0.87 0.98 
Logistics cost (Euro)   0.34 0.25 0.28 0.30 
Disassembly cost (Euro)  0.42 0.44 0.43 0.45 
Product value (Euro)   0.21 0.12 0.16 0.26 
Product cost (Euro)   0.25 0.19 0.23 0.22 
No. of employees to perform the scenario 3 2 3 4 
Exposure to hazardous materials  3 2 3 3 
(on 1–5 scale; 1 for very high, 5 for very low) 
_______________________________________________________________
S2: Scenario 2 S3: Scenario 3 S4: Scenario 4 S5: Scenario 5  
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25.2.1 Graph Theory and Matrix Approach 

Various steps of the GTMA are carried out as described below: 
Step 1: The EOL scenario selection attributes considered are the same as those 

of Bufardi et al. (2003), and these are: CO2 emissions (CE), SO2 emissions (SE), 
energy consumption (EC), logistics cost (LC), disassembly cost (DC), product 
value (PV), product cost (PC), number of employees to perform the scenario (NE), 
and exposure to hazardous materials (EH).   

Step 2: The quantitative values of the EOL scenario selection attributes, which 
are given in Table 25.1, are to be normalized. PV and NE are beneficial attributes 
and higher values are desirable. Values of these attributes are normalized, and 
given in Table 25.2 in the respective columns. The remaining attributes are non-
beneficial, and lower values are desirable except for the attribute EH. The attribute 
EH is non-beneficial, but based on the nature of the scale adapted for assigning the 
values, its higher values are desired. The values of these remaining attributes for 
different EOL scenarios are normalized, and are given in Table 25.2.  

Table 25.2. Normalized data of the EOL scenario selection attributes 
___________________________________________________________________
Attributes    S2 S3 S4 S5  
___________________________________________________________________
CO2 emissions (kg)   0.8333 0.6667 0.7692 1  
SO2 emissions (kg)   0.9565 0.4889 0.6875 1 
Energy consumption (kWh)  1 0.6771 0.7471 0.6633  
Logistics cost (Euro)   0.7353 1 0.8929 0.8333  
Disassembly cost (Euro)   1 0.9545 0.9767 0.9333 
Product value (Euro)   0.8077 0.4615 0.6154 1 
Product cost (Euro)   0.76 1 0.8261 0.8636 
No. of employees to perform the scenario 0.75 0.5 0.75 1 
Exposure to hazardous materials  1 0.6667 1 1 
___________________________________________________________________
S2: Scenario 2  S3: Scenario 3 S4: Scenario 4 S5: Scenario 5 
   
Relative importance of attributes (aij) is also assigned values, as explained in 

Chapter 4. However, Bufardi et al. (2003) assigned equal weights of importance to 
the attributes. To make a comparison between the results of application of GTMA 
and the results of the ELECTRE-III method used by Bufardi et al. (2003), let the 
decision maker (i.e., user organization) make the following assignments: 

CE SE EC LC DC PV PC NE       EH 
CE - 0.5 0.5 0.5 0.5 0.5 0.5 0.5        0.5 
SE 0.5 - 0.5 0.5 0.5 0.5 0.5 0.5        0.5 
EC 0.5 0.5 - 0.5 0.5 0.5 0.5 0.5        0.5 
LC 0.5 0.5 0.5 - 0.5 0.5 0.5 0.5        0.5 
DC 0.5 0.5 0.5 0.5 - 0.5 0.5 0.5        0.5 
PV 0.5 0.5 0.5 0.5 0.5 - 0.5 0.5        0.5 
PC 0.5 0.5 0.5 0.5 0.5 0.5 - 0.5        0.5 
NE 0.5 0.5 0.5 0.5 0.5 0.5 0.5 -           0.5 
EH 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5        - 
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EOL scenario selection attributes digraph, EOL scenario selection attributes 
matrix of the digraph and EOL scenario selection function for the matrix can be 
prepared. The value of EOL scenario selection index is calculated using the values 
of Ai and aij for each EOL scenario. The EOL scenario selection index values of 
different EOL scenarios are given below in descending order: 

Scenario 5: 1641.5718 
Scenario 2: 1485.2711 
Scenario 4: 1305.3771 
Scenario 3: 1121.5834 

      From the above values of the EOL scenario selection index, scenario 5 is 
understood as the best choice among the EOL scenario alternatives considered for 
the given product. The ranking of EOL scenarios based on the proposed 
methodology is: scenario 5 - scenario 2 - scenario 4 - scenario 3; by contrast, the 
ranking presented by Bufardi et al. (2003) was: scenario 5/scenario 2 - scenario 3 - 
scenario 4. Bufardi et al. (2003) suggested both the scenarios 5 and 2 were equally 
best. However, a closer look at the corresponding values of the attributes of 
scenarios 5 and 2 clearly indicate the superiority of scenario 5 over scenario 2 for 
equal weights of relative importance of the attributes. Similarly, proposing scenario 
4 as the last choice by Bufardi et al. (2003) is not genuine. Again, a close look at 
the corresponding values of the attributes of scenarios 4 and 3 clearly indicate the 
superiority of scenario 4 over scenario 3 for equal weights of relative importance of 
the attributes. Thus, the results obtained by using GTMA seem to be more logical 
and genuine than those results presented by Bufardi et al. (2003) using ELECTRE-
III method.  

Further, it may be mentioned that the ranking presented may change if the 
decision maker assigns different relative importance values to the attributes. The 
same is true with the approach proposed by Bufardi et al. (2003).  

25.2.2 SAW Method 

For equal weights of importance of the attributes, the SAW method leads to the 
following ranking: 

Scenario 5: 0.9215 
Scenario 2: 0.8714 
Scenario 4: 0.8072 
Scenario 3:     0.7128 

The SAW method also suggests scenario 5 as the right choice for the given 
EOL scenario selection problem. 

For the same weights of relative importance of attributes, the AHP method 
also leads to the same ranking. 

25.2.3 WPM 

For equal weights of importance of the attributes, the EOL scenario selection index 
for each EOL scenario is calculated and the values are arranged as given below: 

Scenario 5: 0.9141 
Scenario 2: 0.8645 
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Scenario 4: 0.7981 
Scenario 3:     0.6831 

The WPM method also suggests scenario 5 as the right choice for the given 
EOL scenario selection problem. 

25.2.4 TOPSIS Method 

The quantitative values of the EOL scenario selection attributes, which are given in 
Table 25.1, are normalized as explained in Section 3.2.6. Equal weights of relative 
importance of the attributes are considered, i.e., the weight of each attribute is 
0.1111.                                                      
       The ideal (best) and negative ideal (worst) solutions are obtained, and these are 
given as:  
VCE

+ = 0.0440  VCE
- = 0.0660 

VSE
+ = 0.0384  VSE

- = 0.0784 
VEC

+ = 0.0413  VEC
- = 0.0622 

VLC
+ = 0.0472  VLC

- = 0.0642 
VDC

+ = 0.0536  VDC
- = 0.0575 

VPV
+ = 0.0742  VPV

- = 0.0342 
VPC

+ = 0.0472  VPC
- = 0.0621 

VNE
+ = 0.0721  VNE

- = 0.0360 
VEH

+ = 0.0599  VEH
- = 0.0399 

The separation measures are: 
S1

+ = 0.0335  S1
- = 0.0590 

S2
+ = 0.0760  S2

- = 0.0227 
S3

+ = 0.0441  S3
- = 0.0407 

S4
+ = 0.0225  S4

- = 0.0741 
The relative closeness of a particular alternative to the ideal solution is 

calculated (which can be named the ‘EOL scenario selection index (EOLS-SI)’ in 
the present work), and these are arranged in descending order as:  

Scenario 5: 0.7519 
Scenario 2: 0.6381 
Scenario 4: 0.4797 
Scenario 3:     0.2297 

The TOPSIS method also suggests scenario 5 as the right choice for the given 
EOL scenario selection problem. 

25.2.5 Modified TOPSIS Method 

Following the procedure of the modified TOPSIS method, and using the same 
weights as those selected for the TOPSIS method, the values of EOLS-SI are 
obtained and arranged as: 

Scenario 5: 0.7477 
Scenario 2: 0.6390 
Scenario 4: 0.4791 
Scenario 3:     0.2429 
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It may be observed, from the application of the TOPSIS and modified TOPSIS 
methods, that both methods suggest alternative scenario 5 as the first choice, and 
scenario 3 as the last choice.  

Further, it may be observed that in the present example, all the proposed 
decision-making methods, i.e., GTMA, SAW, WPM, AHP, TOPSIS, and modified 
TOPSIS, give the same ranking of the alternative EOL scenarios.  

25.2.6 Compromise Ranking Method (VIKOR)  

Step 1: The objective is to evaluate the four scenarios and the attributes are: CO2
emissions (CE), SO2 emissions (SE), energy consumption (EC), logistics cost 
(LC), disassembly cost (DC), product value (PV), product cost (PC), number of 
employees to perform the scenario (NE) and exposure to hazardous materials (EH). 
The best, i.e., (mij)max, and the worst, i.e., (mij)min, values of all attributes are also 
determined.  

Step 2: The values of Ei and Fi are calculated using Equations 3.26 and 3.27. 
As was done by Bufardi et al. (2003), equal weights of importance were assigned 
to the attributes.   
E2 = 0.0444+0.00483+0+0.1111+0+0.0397+0.1111+0.0556+0 = 0.3667 
E3 = 0.1111+0.1111+0.1044+0+0.0741+0.1111+0+0.1111+0.1111 = 0.734 
E4 = 0.0667+0.0483+0.0741+0.037+0.037+0.0794+0.0741+0.0556+0= 0.4721 
E5 = 0+0+0.1111+0.0617+0.1111+0+0.0556+0+0 = 0.3395 
Ei-min = 0.3395 Ei-max = 0.734 
R2 = 0.1111 R3 = 0.1111 R4 = 0.0794 R5 = 0.1111 
Fi-min = 0.0794 Fi-max = 0.1111 
      Step 3: The values of Pi are calculated using Equation 3.28 and for v = 0.5. 
P2 = 0.5345 P3 = 1 P4 = 0.1681 P5 = 0.5 

Step 4: The alternatives are arranged in ascending order, according to the 
values of Pi. Similarly, the alternatives are arranged according to the values of Ei
and Fi separately. Thus, three ranking lists are obtained. The best alternative, 
ranked by Pi, is the one with the minimum value of Pi.
P4 = 0.1681 E5 = 0.3395 F4 = 0.0794 
P5 = 0.5  E2 = 0.3667 F2 = F3 = F5 = 0.1111 
P2 = 0.5345 E4 = 0.472   
P3 = 1  E3 = 0.734   

Step 5: Scenario 4, which is best ranked by the measure P is suggested as it 
satisfies both conditions given in Section 3.2.7.However, the ranking given by the 
VIKOR method in this example seems not to be genuine.   
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Integrated Project Evaluation and Selection 

26.1 Introduction 

The evaluation and selection of industrial projects before investment decision is 
customarily done using marketing, technical, and financial information. 
Subsequently, environmental impact assessment and social impact assessment are 
carried out mainly to satisfy the statutory agencies. Because of stricter 
environmental regulations in developed and developing countries, quite often 
impact assessment suggests alternate sites, technologies, designs, and 
implementation methods as mitigating measures. This causes considerable delay to 
complete project feasibility analysis and selection, as complete analysis requires to 
be addressed repeatedly till the statutory regulatory authority approves the project. 
Moreover, project analysis through the above process often results in sub-optimal 
projects as financial analysis may eliminate better options. Indeed, more 
environment friendly alternative will always be cost intensive (Dey, 2006).  

There is a large literature dedicated to the project selection problem. It 
includes several approaches that take into account various aspects of the problem. 
Mehrez and Sinuany-Stern (1983) described an interactive method for presenting a 
sequence of feasible sets of indivisible projects to a decision-maker. For each set as 
a whole, the decision-maker evaluated its utilities with respect to each of several 
attributes; the utilities were then combined to give a single utility for the set. A 
sequence of zero-one program was used to ensure that the only sets presented were 
those that were feasible, and that were not contained in larger feasible sets.  

Lockett and Stratford (1987) presented the details of ranking of research 
projects. Khorramshahgole and Steiner (1988) applied a goal programming method 
for resource analysis in project evaluation. Danila (1989) reviewed the most 
important families of R&D project evaluation and selection methodologies and 
associated techniques. For each family, generally one or two methods were chosen 
to be analyzed from the point of view of integration with the strategy. The strong 
and weak points of the most prevalent methods were described as they were 
considered by the users. 

Islei et al. (1991) developed a computerized decision support system for R&D 
project ranking, monitoring, and control in the pharmaceutical industry. Using a 
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series of techniques based on a judgmental modeling approach, an overall system 
was developed that covers several different aspects of the whole decision making 
process. Illustrative examples were given to show how the components of the 
model were used in practice, indicating their place in the overall management 
process. Dey et al. (1994) used the AHP method to analyze and assess project risks 
which are objective or subjective in nature. Regan and Holtzman (1995) described 
the architecture of R&D decision advisor, a commercial intelligent decision system 
for evaluating corporate research, and development projects and portfolios. The 
system guides the user to choose among general project features, but offers 
flexibility to capture unique project details.  

Coffin and Taylor (1996) used fuzzy logic for R&D project selection and 
scheduling. Chu et al. (1996) developed a decision support system (DSS) to help 
managers select the most appropriate sequences of plans for product research and 
development projects that have strict constraints on budget, time, and resources. 
The primary objective of the DSS was to provide an optimal combination of R&D 
projects. The DSS consisted of several subsystems, each of which had a specific 
function. At the core of the DSS were a cost model, which covers time–cost 
tradeoff analysis, and a strategic selection algorithm, which provides an optimal 
development plan based on dynamic programming for managing R&D projects. 

Korpela and Tuominen (1996) demonstrated how AHP method can be used for 
supporting a generic logistics benchmarking process. First, the customers of a 
company were interviewed in order to define the logistic critical success factors, 
and to determine their importance. The performance levels of the companies to be 
benchmarked were then evaluated with regard to each success factor. Second, the 
factors enabling the companies to achieve superior logistics performance were 
determined and prioritized with respect to each success factor. Third, the strengths, 
weaknesses, and problems of the company conducting the benchmarking process 
were analyzed and prioritized with respect to each enabler. Then, the potential 
developmental actions for achieving superior logistics performance were defined 
and prioritized.  

Dey et al. (1996a) used a goal programming (GP) method for a project 
planning problem. The methodology was applied to plan a petroleum pipeline 
construction project, and its effectiveness was demonstrated. Dey et al. (1996b) 
proposed a methodology for project control through risk analysis, contingency 
allocation and hierarchical planning models. Risk analysis was carried out through 
the AHP method, due to the subjective nature of risks in construction projects. The 
results of risk analysis were used to determine the logical contingency for project 
control with the application of probability theory. Ultimate project control was 
carried out by means of the hierarchical planning model, which enabled decision 
makers to take vital decisions during the changing environment of the construction 
period. Goal programming was proposed for model formulation because of its 
flexibility and priority-based structure.  

Ramanathan and Geetha (1998) conducted a socio-economic impact 
assessment in advance to determine the socio-economic consequences of industrial 
projects. The focus was on the project-affected people. All possible data were 
collected from census information and academic institutions. Personal interviews 
were also conducted with the local people and their administrative heads. The main 
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phases of the project addressed were preconstruction, construction and operation. 
A decision on the acceptability of the project was taken after assessing the positive 
and negative socio-economic impacts. 

Dey and Gupta (1999) presented a decision support system (DSS) for pipeline 
route selection with the application of the analytical hierarchy process (AHP). This 
system was demonstrated through a case study of pipeline route selection, from an 
Indian perspective. A cost-benefit comparison of the shortest route (conventionally 
selected) and the optimal route established the effectiveness of the model. Mian 
and Christine (1999) used the AHP method to resolve decision-making issues in 
project selection.  Ghasemzadeh et al. (1999) proposed a zero-one integer linear 
programming model for selecting and scheduling an optimal project portfolio, 
based on the organization’s objectives, and constraints such as resource limitations 
and interdependence among projects. The proposed model could not only suggest 
projects that should be incorporated in the optimal portfolio, but it could also 
determine the starting period for each project.  

Meredith and Mantle (2000) thoroughly discussed the strategic intent of the 
project, factors for project selection, and various qualitative and quantitative 
project selection models. Ghasemzadeh and Archer (2000) investigated the 
implementation of an organized framework for project portfolio selection through a 
decision support system (DSS), which was called Project Analysis and Selection 
System (PASS). The authors described the results of laboratory tests undertaken to 
measure its usability and quality, compared to manual selection processes, in 
typical portfolio selection problems. Dey and Gupta (2001) used the AHP method 
for feasibility analysis of cross-country pipeline projects.  

Loch and Kavadias (2002) developed a dynamic model of resource allocation, 
taking into account multiple interacting factors, such as ‘independent’ or 
‘correlated’ status, uncertain market payoffs that change over time, increasing or 
decreasing returns from the new product development investment, carry-over of the 
investment benefit over multiple periods, and interactions across market segments. 
The optimal policies in closed form were characterized, and qualitative decision 
rules for managers were derived. Dey (2002) demonstrated how the analytic 
hierarchy process (AHP) can be used for benchmarking project management 
practices. The entire methodology was applied to benchmark project management 
practice of Caribbean public sector organizations, with organizations in the Indian 
petroleum sector, and organizations in the infrastructure sector of Thailand and the 
UK. This study demonstrated the effectiveness of the benchmarking model using 
AHP, and suggested improvement measures for effective project management. 

Dey (2004) presented a risk-based decision support system (DSS) that reduces 
the amount of time spent on inspection of an entire pipeline project. The risk-based 
DSS used the analytic hierarchy process (AHP) to identify the factors that 
influence failure on specific segments, and analyzed their effects by determining 
probability of occurrence of these risk factors. The severity of failure was 
determined through consequence analysis. Walls (2004) used preference analysis 
as an approach for measuring and applying a corporate risk-taking policy. Mahdi 
and Alreshaid (2005) developed a decision support system for selecting the proper 
project delivery method, using the analytical hierarchy process (AHP). Dey (2006) 
proposed a decision support system that analyzes projects with respect to market, 
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technicalities, and social and environmental impacts in an integrated framework, 
using the analytic hierarchy process (AHP). 

Labuschagne and Brent (2006) introduced a framework to assess the 
sustainability performances of projects and technology developments in the process 
industry. The research verified the completeness of the social dimension of that 
framework to evaluate operational initiatives. Furthermore, the relevance of the 
social dimension to the process industry was validated. It was found that, to a 
limited extent, a smaller set of social assessment criteria might be defined for 
project and technology Life Cycle Management purposes. Also, it was concluded 
that quantitative social indicators are not practical in the current process industry. 
Puthamont and Charoenngam (2006) explored and gained an in-depth 
understanding of the factors influencing three stages of the project selection 
process, namely, conceptual stage, design stage, and final approval stage. In order 
to achieve this, data related to factors influencing construction project selection in
the Thailand’s Ministry of Defence were collected and analyzed.  

Huang (2006) proposed a practical tool of incorporating random fuzzy 
uncertainty into project selection. Investment outlays and annual net cash flows of 
available projects were regarded as random fuzzy variables. The net present value 
method was employed, and two types of zero-one integer chance-constrained 
models with random fuzzy parameters were provided. A hybrid intelligent 
algorithm integrating genetic algorithm and random fuzzy simulation was designed 
and numerical examples were presented to illustrate the modeling concept and to 
show the effectiveness of the algorithm. Carlsson et al. (2006) developed a 
methodology for valuing options on R&D projects when future cash flows are 
estimated by trapezoidal fuzzy numbers. The authors presented a fuzzy mixed 
integer programming model for the R&D optimal portfolio selection problem, and 
discussed how the methodology could be used to build decision support tools for 
optimal R&D project selection in a corporate environment. 

Rescia et al. (2006) proposed a methodology for environmental analysis in the 
selection of alternative corridors in a long-distance linear project – a pipeline. 
Chapman et al. (2006) presented a framework to select public sector projects.  
Doerner et al. (2006) proposed Pareto ant colony optimization with integer linear 
programming preprocessing in multiobjective project portfolio selection. Talias 
(2007) examined issues related to various decision-based analytic approaches to 
sequential choice of projects, with special motivation from and application in the 
pharmaceutical industry. In particular, the Pearson index and Gittins index were 
considered as key strategic decision making tools for the selection of R&D 
projects. This presented a proof of optimality of the Pearson index based on the 
Neyman-Pearson lemma. Emphasis was also given to how a project manager may 
differentiate between the two indices, based on concepts from statistical decision 
theory.  

Medaglia et al. (2005) proposed an evolutionary method for project selection 
problems with partially funded projects, multiple (stochastic) objectives, project 
interdependencies (in the objectives), and a linear structure for resource 
constraints. The method was compared with the stochastic parameter space 
investigation method (PSI) and was illustrated by means of an R&D portfolio 
problem under uncertainty based on Monte Carlo simulation.  
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The initial approach in project selection can be the identification of pertinent 
attributes and potential alternative projects by a team of executives at different 
levels. The values of the attributes (Ai) with the system specifications and 
requirements can be obtained, and their relative importance (aij) can be decided. An 
objective or subjective value, or its range, may be assigned to each identified 
attribute as a limiting value, or threshold value, for its acceptance for the 
considered project selection problem. Alternative project with each of its selection 
attribute meeting the acceptance value of the attribute for the project, may be short-
listed. After short-listing the alternative projects, the main task in choosing the 
alternative project is to see how it serves the considered attributes. 

Now, an example is considered to demonstrate the application of GTMA and 
other decision making methods for project evaluation and selection. 

26.2 Example 

Dey (2006) proposed a decision support system that analyzes projects with respect 
to market, technicalities, and social and environmental impacts in an integrated 
framework using the analytic hierarchy process (AHP). The entire methodology 
was applied to a cross-country oil pipeline project in India, and its effectiveness 
was demonstrated. Cross-country petroleum pipelines are the most energy-
efficient, safe, environmentally friendly, and economical means for transporting 
hydrocarbons (gas, crude oil, and finished product) over long distances within a 
country and between countries. The economy of a country can be heavily 
dependent on smooth and uninterrupted operation of these pipelines. While 
pipelines are one of the safest means for transporting bulk energy, failures do occur 
and sometimes have catastrophic consequences. To avoid failures, pipeline 
operators choose optimal pipeline routes (Dey and Gupta, 1999).  The project 
studied by Dey (2006) was a cross-country petroleum pipeline project in western 
India. Its length was 1,300 km plus a 123-km branch line. The pipeline was 
designed to carry 5 million metric tons per annum (MMTPA) of throughput. The 
project included three pump stations, one pumping/delivery station, two scraper 
stations, four delivery stations, and two terminal stations. The project cost was 
estimated as US $600 million. Dey (2006) considered the following project 
selection attributes: 

Technical attributes (e.g., length of the pipeline; operability, which is affected 
by route characteristics, augmentation possibility, and expansion capability; 
maintainability, which is affected by corrosion, pilferage, and third-party activities; 
approachability, constructability), environmental impact assessment attributes (e.g.,
during failure of pipelines; during failure of stations; during normal pipeline 
operation; during pipeline construction), and socio-economic assessment attributes 
(e.g., effect during planning, which involves compensation, employment, and 
rehabilitation; effect during construction, which involves employment; effect 
during operations, which involves employment, and burden on existing 
infrastructure).    

 Thus, it can be said that the total number of attributes is 20 (technical 
attributes, environmental impact assessment attributes, and socio-economic 
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assessment attributes). Four alternative pipeline routes were considered. Table 26.1 
presents the data of the attributes for the four alternative routes presented in 
appropriate form by Dey (2006). The values given in parentheses indicate the 
normalized weights of the attributes. Dey (2006) used the AHP method, and ranked 
the alternative pipeline routes in the following order: 

Route 4 : 0.309 
Route 2 : 0.241 
Route 3 : 0.232 
Route 1 : 0.218 

Now, the different MADM methods described in this book are applied to the 
same problem, to compare the results. The SAW method gives the same ranking as 
that of the given by using AHP method (for the same weights of the attributes). 

Table 26.1. Project selection data (from Dey 2006; reprinted with permission from Elsevier) 
__________________________________________________________________________
Attributes    Route 1 Route 2 Route 3 Route 4 
__________________________________________________________________________
(i) Technical:

Route length (0.14)   0.27 0.10 0.37 0.26 
Operability: 
Route characteristics (0.019)  0.20 0.22 0.30 0.28 
Augmentation possibility (0.04)  0.25 0.36 0.12 0.27 
Expansion capability (0.031)  0.26 0.37 0.08 0.29 
Maintainability: 
Corrosion (0.065)   0.23 0.30 0.15 0.32 
Pilferage (0.027)   0.21 0.24 0.25 0.30 
Third-party activities (0.016)  0.21 0.28 0.25 0.26 
Approachability (0.045)   0.23 0.33 0.13 0.31 
Constructability (0.068)   0.21 0.28 0.17 0.34 

(ii) Environmental impact assessment: 
During failure of pipelines (0.102)  0.23 0.30 0.15 0.32 
During failure of stations (0.082)  0.21 0.28 0.25 0.26 
During normal pipelines operations (0.018) 0.22 0.32 0.18 0.28 
During normal station operations (0.02) 0.18 0.32 0.15 0.35 
During pipeline construction (0.027) 0.20 0.28 0.22 0.30 

(iii) Socio-economic impact assessment: 
Effect during planning: 
Compensation  (0.09)   0.21 0.16 0.33 0.30 
Employment & rehabilitation (0.039) 0.14 0.24 0.28 0.34 
Effect during construction: 
Employment (0.054)   0.25 0.25 0.15 0.35 
Effect of construction activities (0.054) 0.12 0.18 0.27 0.43 
Effect during operations: 
Employment (0.013)   0.25 0.25 0.25 0.25 
Burden on existing infrastructure (0.05) 0.17 0.18 0.30 0.35  

_______________________________________________________________________
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26.2.1 Weighted Product Method (WPM) 

Using the same weights of the attributes as those of Dey (2006), the weighted 
product method (WPM) leads to the following ranking of pipeline routes: 

Route 4: 0.3067 
Route 2: 0.2252 
Route 3: 0.2154 
Route 1: 0.2145 

Thus, WPM also suggests Route 4 as the right choice. 

26.2.2 TOPSIS Method 

Using the same weights of the attributes as those of Dey (2006), the ideal (best) 
and negative ideal (worst) solutions are obtained, and these are given as:  
V1

+ = 0.0966  V1
- = 0.0261 

V2
+ = 0.0112  V2

- = 0.0075 
V3

+ = 0.0272  V3
- = 0.0091 

V4
+ = 0.0211  V4

- = 0.0046 
V5

+ = 0.0402  V5
- = 0.0188 

V6
+ = 0.0161  V6

- = 0.0112 
V7

+ = 0.0089  V7
- = 0.0067 

V8
+ = 0.0283  V8

- = 0.0112 
V9

+ = 0.0447  V9
- = 0.0224 

V10
+ = 0.0631  V10

- = 0.0296 
V11

+ = 0.0457  V11
- = 0.0343 

V12
+ = 0.0113  V12

- = 0.0063 
V13

+ = 0.0132  V13
- = 0.0057 

V14
+ = 0.0160  V14

- = 0.0107 
V15

+ = 0.0573  V15
- = 0.0278 

V16
+ = 0.0255  V16

- = 0.0105 
V17

+ = 0.0364  V17
- = 0.0156 

V18
+ = 0.0421  V18

- = 0.0117 
V19

+ = 0.0065  V19
- = 0.0065 

V20
+ = 0.0334  V20

- = 0.0162 
The separation measures are: 

SRoute 1
+ = 0.0619  S Route 1

- = 0.0530 
S Route 2

+ = 0.0835  S Route 2
- = 0.0525 

S Route 3
+ = 0.0619  S Route 3

- = 0.0799 
S Route 4

+ = 0.0306  S Route 4
- = 0.0837 

The relative closeness of a particular alternative route to the ideal solution is 
calculated (which can be named the ‘project selection index’ in the present work), 
and these are P Route 1 = 0.4612, P Route 2 = 0.3861, P Route 3 = 0.5636, P Route 4 = 0.7322  

The alternative pipeline routes are arranged in descending order of their PSI. 
This can be arranged as: route 4 - route 3 - route 1 - route 2. 

This method also suggests route 4 as the first right choice. 
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26.2.3 Modified TOPSIS Method 

Following the procedure of the modified TOPSIS method, and using the same 
weights as those of Dey (2006), the ideal (best) and negative ideal (worst) solutions 
are obtained, and these are given as:  
R1

+ = 0.6902  R1
- = 0.1865 

R2
+ = 0.5920  R2

- = 0.3947 
R3

+ = 0.6811  R3
- = 0.2270 

R4
+ = 0.6812  R4

- = 0.1473 
R5

+ = 0.6184  R5
- = 0.2899 

R6
+ = 0.5950  R6

- = 0.4165 
R7

+ = 0.5571  R7
- = 0.4178 

R8
+ = 0.6295  R8

- = 0.2480 
R9

+ = 0.6580  R9
- = 0.3289 

R10
+ = 0.6184  R10

- = 0.2899 
R11

+ = 0.5571  R11
- = 0.4178 

R12
+ = 0.6257  R12

- = 0.3519 
R13

+ = 0.6617  R13
- = 0.2836 

R14
+ = 0.5920  R14

- = 0.3947 
R15

+ = 0.6367  R15
- = 0.3087 

R16
+ = 0.6529  R16

- = 0.2688 
R17

+ = 0.6736  R17
- = 0.2887 

R18
+ = 0.7791  R18

- = 0.2174 
R19

+ = 0.5000  R19
- = 0.5000 

R20
+ = 0.6689  R20

- = 0.3249 
The weighted Euclidean distances are: 

DRoute 1
+ = 0.2484  D Route 1

- = 0.1701 
D Route 2

+ = 0.2591  D Route 2
- = 0.2257 

D Route 3
+ = 0.2608  D Route 3

- = 0.2380 
D Route 4

+ = 0.0916  D Route 4
- = 0.3181 

The following PSI values are obtained: 
P Route 1 = 0.4065, P Route 2 = 0.4656, P Route 3 = 0.4772, P Route 4 = 0.7764  

The alternative pipeline routes are arranged in descending order of their PSI. 
This can be arranged as route 4 - route 3 - route 2 - route 1. Thus, the modified 
TOPSIS method also suggests route 4 as the first right choice and the ranking is 
consistent with that obtained by Dey (2006) using the AHP method. 

Application of graph theory and the matrix approach also gives the ranking as 
route 4 - route 3 - route 2 - route 1. However, the steps are not shown here. 

Thus, all decision making methods described above propose pipeline route 4 
as the first right choice. It may be mentioned here that the integrated project 
evaluation and selection procedure emphasizes technical attributes, as well as 
environmental and social attributes while selecting the best alternative project. 
Attributes such as capital costs and operating costs can also be considered 
simultaneously in the evaluation and selection procedure.    
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27
__________________________________________________________________ 

Facility Location Selection 

27.1 Introduction 

Facility location selection is an integral part of organizational strategies. Facility 
location decision involves organizations seeking to locate, relocate or expand their 
operations. The facility location decision process encompasses the identification, 
analysis, and evaluation of, and selection among alternatives. Factories, 
warehouses, retail outlets, terminals, and storage yards are the typical facilities to 
be located. Facility location selection commonly starts with the recognition of a 
need for additional capacity. A decision is then made to start the search for the 
correct location. Facility location problems have attracted researchers with diverse 
backgrounds such as economics, industrial engineering, and geography (Ghosh and 
Harche, 1993). It has been well recognized that facility location selection has 
important strategic implications for the operations to be located, because a location 
decision normally involves long-term commitment of resources and is irreversible 
in nature. Specifically, the location choice for a manufacturing facility may have a 
significant impact on the firm’s strategic competitive position in terms of operating 
cost, delivery speed performance, and the firm’s flexibility to compete in the 
market. For example, selecting a production facility location that will allow the 
company to achieve proximity to suppliers has today become a critical strategic 
advantage, since proximity to suppliers is important to Just-in-Time (JIT)) 
production systems, and flexible distribution systems for reduced inventories and 
improved delivery performance. 

The suitability of a specific location for proposed facility operations depends 
largely on what location factors are selected and evaluated, as well as their 
potential impact on corporate objectives and operations. There are a large number 
of location factors that have an influence on location decisions. Facility location 
attribute is defined as a factor that influences the selection of facility location for a 
given industry. In the case of plant location selection, these attributes include: cost 
of land, cost of energy, availability of transportation, cost of transportation, 
proximity to raw material sources, cost of raw materials, availability of local labor 
and worker attitude, cost of labor, availability of managerial and technical 
personnel, nearness to the market, government policies and incentives, tax rates, 
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nearby industries, community environment, availability of water, electricity, 
environmental conditions, etc. Few published studies are available on the actual 
identification of facility location evaluating attributes and their relative importance 
(Verter and Dincer, 1992; Chen, 2001; Drezner and Weselowsky, 2001; Verter and 
Dasci, 2002; Thomas et al., 2002; Bhatnagar and Sohal, 2005; Bhattacharya et al.,
2003; Ghosh, 2003; Klose and Drexl, 2005; ReVelle and Eiselt, 2005; Yong, 2005; 
Averbakh et al., 2006; Rao, 2006; Farahani and Asgari, 2007; Boffey et al., 2007).  

Some researchers have concentrated on solving capacitated facility selection 
problems in which the capacity of the facility is taken into consideration when the 
firm decides to open new facilities and wishes to determine which facilities to open 
for production within the facility’s capacities. Some of the related research works 
are those of Ertogral and Wu (2000), Hinojosa et al. (2000), Diaz and Fernandez 
(2002), Ghiani et al. (2002), Jaramillo et al. (2002), Cao and Chen (2006), 
Arostegui et al. (2006), and Barreto et al. (2006). 

Facility location selection is a typical multiple criteria decision-making 
problem in which managerial preference among performance attributes plays a key 
role in the final decision. Now, two examples are considered to demonstrate and 
validate the proposed GTMA and fuzzy MADM methods for facility location 
selection. 

27.2 Examples 

Two facility location selection problems are considered. 

27.2.1 Example 1 

The example problem formulated by Bhattacharya et al. (2003), involving five 
attributes and six alternative facility locations, is shown in Table 27.1. 

27.2.1.1 Graph Theory and Matrix Approach (GTMA) 
In the present work, the attributes considered are: cost of land (CL), cost of energy 
(CE), cost of raw material (CRM), cost of transportation (CT) and cost of labor 
(CLR). The quantitative values of the facility location selection attribute, given in 
Table 27.1, are to be normalized. In this example, all five attributes considered are 
non-beneficial, and hence lower values are desirable. The quantitative values of 
these attributes are normalized, and are given in Table 27.2 in the respective 
columns.  
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Table 27.1. Quantitative data of the facility location attributes of example 
27.2.1
________________________________________________________________
Facility location CL  CE CRM CT CLR 
________________________________________________________________
P1   3,300,000 2.5 142 6 214 
P2   2,500,000 3.1 179 5.8 175 
P3   5,200,000 3.6 138 7.8 325 
P4   2,500,000 2.8 195 8.4 252 
P5   2,000,000 3.2 167 6.3 155 
P6   5,700,000 3.7 181 5.5 160 
________________________________________________________________
CL: Cost of land (Rs) CE: Cost of energy (Rs/B.O.T. unit) 
CRM: Cost of raw material (Rs/kg) 
CT: Cost of transportation (Rs/item) CLR: Cost of labor (Rs/worker) 

Table 27.2. Normalized data of the facility location selection attributes of example 
27.2.1
__________________________________________________________________
Facility location CL  CE CRM CT CLR 
__________________________________________________________________
P1   0.6061  1 0.972 0.9167 0.7243 
P2   0.8  0.8065 0.7710 0.9483 0.886 
P3   0.3846  0.6944 1 0.705 0.477 
P4   0.8  0.893 0.7077 0.655 0.615 
P5   1  0.7813 0.8263 0.873 1 
P6   0.351  0.6757 0.7624 1 0.97 
__________________________________________________________________

Let the decision maker select the following assignments of relative 
importance: 

  CL  CE CRM CT CLR  
CL - 0.745 0.5 0.665 0.665 
CE 0.255 - 0.255 0.335 0.335 
CRM 0.5 0.745 - 0.665 0.665 
CT 0.335 0.665 0.335 - 0.5 
CLR   0.335 0.665 0.335 0.5 - 

Facility location selection attributes digraph, facility location selection 
attributes matrix of the digraph, and facility location selection function for the 
matrix can be prepared. The value of the facility location selection index is 
calculated using the values of Ai and aij for each facility location. The facility 
location selection index values of different facility locations are given below in 
descending order: 

P5: 6.7966 
P2: 6.0824 
P1: 6.0695 
P4: 4.8592 
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P6: 4.8429 
P3: 3.9897 

From the values of the facility location selection index, it is understood that 
facility location, designated as 5 is the best choice among the six facility locations 
considered for the given industrial application. The next choice is 2, and the last 
choice is 3. However, the ranking obtained using GTMA differs from that of 
Bhattacharya et al. (2003), according to who the first choice was P3. It is observed 
that Bhattacharya et al. (2003) simply mentioned the use of ‘scale of relative 
importance’ suggested by Saaty (1980), but not really used this in making their 
judgements. These were incorrectly made, and there was no consistency check in 
the example given by these authors. Further, even a cursory look at the values of 
CL, CE, CT, and CLR for P3 clearly indicates that these values are comparatively 
high. Thus, except for the value of CRM, in no case is P3 better than the other 
alternative facility locations. Thus, the interpretation P3 as best choice by 
Bhattacharya et al. (2003) is incorrect and the GTMA results presented here are 
more logical. Further, GTMA makes provision for dealing with fuzziness involved 
in decision-making.  

27.2.1.2 SAW Method 
The procedure suggested by Edwards and Newman (1982) to assess weights for 
each attribute to reflect its relative importance to the facility location selection 
decision is followed. For a start, the attributes are ranked in order of importance 
and 10 points are assigned to the least important attribute, CE. The attributes CT 
and CLR are considered as equally important in the present example, and given 20 
points each to reflect their relative importance. CL and CRM are considered as 
equally important, and given 40 points each. The final weights are obtained by 
normalizing the sum of the points to one. Thus, the weights of CL, CRM, CT, 
CLR, and CE are calculated as 0.3076, 0.3076, 0.1538, 0.1538, and 0.0769, 
respectively. Using these weights, and the normalized data of the attributes for 
different facility locations, the facility location selection index values are 
calculated, and are arranged in descending order of the index. 

P5: 0.9099 
P2: 0.8274 
P1: 0.8147 
P4: 0.7278 
P6: 0.6974 
P3: 0.6611 

Thus, the SAW method also suggests P5 as the right choice among the facility 
locations considered here.  

27.2.1.3 WPM 
Using the same weights of the attributes as those selected for the SAW method, the 
following ranking of facility locations is obtained: 

P5: 0.9061 
P2: 0.8253 
P1: 0.7979 
P4: 0.7236 
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P6: 0.6438 
P3: 0.6129 

 The ranking is the same as that obtained by using the SAW method in this 
example. 

27.2.1.4 AHP and its Versions 
If the same weights as those selected for SAW method are used in this method, 
then the ranking of facility locations obtained by using the relative as well as ideal 
mode AHP method will be the same.  The multiplicative AHP method yields the 
same ranking as that given by WPM. 

However, let the decision maker prepare the following matrix:  

 CL  CE CRM CT CLR  
CL 1 5 1 3 3 
CE 1/5 1 1/5 1/3 1/3 
CRM 1 5 1 3 3 
CT 1/3 3 1/3 1 1 
CLR   1/3 3 1/3 1 1 

CL and CRM are considered to have equal importance in the above matrix. 
Similarly, CT and CLR are considered to have equal importance. The normalized 
weights for each attribute are: WCL = 0.3439, WCE = 0.0544, WCRM = 0.3439, WCT

= 0.1289, and WCLR = 0.1289. The value of max is 5.0555 and CR = 0.0124, which 
is much less than the allowed CR value of 0.1. Thus, there is good consistency in 
the judgements made. 

The value of the facility location selection index is now calculated using the 
above weights and the normalized data of the attributes given in Table 27.2. This 
leads to the ranking given by the revised AHP or ideal mode of AHP method. The 
alternative facility locations are arranged in the descending order of the facility 
location selection index. 

P5: 0.9120 
P2: 0.8206 
P1: 0.8086 
P4: 0.6964 
P6: 0.6736 
P3: 0.6663 

From the above values of the facility location selection index, it is clear that 
the facility location designated as 5 is the best choice among the facility locations 
considered here. 

For the above weights of importance of attributes, the multiplicative AHP 
method also leads to the same ranking order. 

27.2.1.5 TOPSIS Method 
Following the steps of the methodology given in Section 3.2.6, the TOPSIS 
method gives a ranking of P5-P2-P1-P4-P3-P6. This method also suggests P5 as 
the right choice. However, P6 is proposed as the last choice, and P3 as the fifth 
choice.
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27.2.1.6 Modified TOPSIS Method 
This method leads to the following ranking, which is the same as that proposed by 
the other methods, excepting the TOPSIS method: 

P5: 0.8432 
P2: 0.7686 
P1: 0.6804 
P4: 0.6245 
P6: 0.3440 
P3: 0.2698 

It can be observed that all the above decision-making methods propose 
facility location designated as P5 as the first right choice. The decision makers can 
choose a method for evaluation of facility locations. 

27.2.2 Example 2 

Now, another example is considered to further demonstrate the application of the 
GTMA and fuzzy MADM methods. This example problem considers eight facility 
location selection attributes, and three alternative facility locations. The objective 
and subjective information of the attributes is given in Table 27.3. All the attributes 
are expressed subjectively in linguistic terms, except for cost of labor, and these 
attributes are assigned objective values with the help of Table 4.3. The objective 
data of the attributes are given in Table 27.4. It may be mentioned here that the 
fuzzy judgements (average, above average, high and very high) made in Table 27.3 
can be understood in appropriate equivalent terms such as good, very good, etc.
with respect to the attributes. Except for CLR, all seven attributes are beneficial, 
and higher values are desirable.  

Table 27.3.  Data of the facility location attributes of example 27.2.2 
________________________________________________________________
L* CM CR LT AT CLR AL E BC  
________________________________________________________________
P1 H VH H AA 250 H AA VH 
P2 VH H H VH 265 AA H VH 
P3 A H VH AA 255 AA VH H 
________________________________________________________________
L*: Location CM: Closeness to market CR: Closeness to raw material  
LT: Land transportation  AT: Air transportation 
CLR: Cost of labor (Rs/worker) AL: Availability of labor 
E: Community education  BC: Business climate 
A: Average AA: Above average  H: High  VH: Very high 
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Table 27.4. Objective data of the facility location attributes of example 27.2.2 
_________________________________________________________________
L*  CM CR LT AT CLR AL E BC  
_________________________________________________________________
P1 0.665 0.745 0.665 0.59 250 0.665 0.59 0.745 
P2 0.745 0.665 0.665 0.745 265 0.59 0.665 0.745 
P3 0.5 0.665 0.745 0.59 255 0.59 0.745 0.665 
_________________________________________________________________
L*: Location 

27.2.2.1 Graph Theory and Matrix Approach 
The quantitative values of the eight attributes are normalized, and are given in 
Table 27.5 in the respective columns.  

Table 27.5. Normalized data of the facility location selection attributes of example 
27.2.2
___________________________________________________________________
L*  CM CR LT AT CLR AL E BC  
___________________________________________________________________
P1 0.8926 1 0.8926 0.7919 1 1 0.7919 1 
P2 1 0.8926 0.8926 1 0.9434 0.8872 0.8926 1 
P3 0.6711 0.8926 1 0.7919 0.9804 0.8872 1 0.8926 
___________________________________________________________________
L*: Location 

Let the decision maker select the following assignments of relative 
importance:  

CM CR LT AT CLR AL E  BC 
CM   - 0.5 0.59 0.665 0.59 0.665 0.335 0.255 
CR 0.5 - 0.59 0.665 0.59 0.665 0.335 0.255 
LT 0.41 0.41 - 0.59 0.5 0.59 0.41 0.335 
AT 0.335 0.335 0.41 - 0.41 0.5 0.335 0.255 
CLR 0.41 0.41 0.5 0.59 - 0.5 0.5 0.41 
AL 0.335 0.335 0.41 0.5 0.5 - 0.5 0.41 
E 0.665 0.665 0.59 0.665 0.5 0.5 - 0.41 
BC 0.745 0.745 0.665 0.745 0.59 0.59 0.59 - 

The value of the facility location selection index is calculated using the values 
of Ai and aij for each facility location. The facility location selection index values 
of different facility locations are given below in descending order: 

P2: 324.8389 
P1: 311.9973 
P3: 291.2581 

From the values of the facility location selection index, it is understood that 
the facility location, designated as 2 is the best choice among the six facility 
locations considered for the given industrial application. The next choice is 1, and 
the last choice is 3.  
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27.2.2.2 AHP and its Versions 
Let the decision maker prepare the following relative importance matrix:  

CM CR LT AT CLR AL E  BC 
CM 1 1 2 3 2 3 1/3 1/4 
CR 1 1 2 3 2 3 1/3 1/4 
LT 1/2 1/2 1 2 1 2 1/2 1/3 
AT 1/3 1/3 1/2 1 1/2 1 1/3 1/4 
CLR 1/2 1/2 1 2 1 1 1 1/2 
AL 1/3 1/3 1/2 1 1 1 1 1/2 
E 3 3 2 3 1 1 1 1/2 
BC 4 4 3 4 2 2 2 1 

The normalized weights of each attribute are: WCM = 0.1267, WCR = 0.1267, 
WLT = 0.0883, WAT = 0.0517, WCLR = 0.0929, WAL = 0.0706, WE = 0.1668, and 
WBC = 0.2764. The value of max is 8.7086 and CR = 0.0723, which is much less 
than the allowed CR value of 0.1.. Thus, there is good consistency in the 
judgements made. 

The value of the facility location selection index is calculated, and the 
alternative facility locations are arranged in descending order of the facility 
location selection index. 

P2: 0.9458 
P1: 0.9315 
P3: 0.8946 

Thus, AHP method also suggests P2 as the right choice among the facility 
locations considered here. 

For the above weights of importance of attributes, the multiplicative AHP 
method also leads to the same ranking order. 

It may be observed that the above ranking is for the given preferences of the 
decision maker. The ranking depends upon the judgements of relative importance 
of the attributes made by the decision maker.   

References 

Arostegui MA, Kadipasaoglu SN, Khumawala BM (2006) An empirical 
comparison of Tabu search, simulated annealing, and genetic algorithms for 
facilities location problems. International Journal of Production Economics 
103:742–754 

Averbakh I, Berman O, Drezner Z, Wesolowsky GO (2006) The uncapacitated 
facility location problem with demand-dependent setup and service costs and 
customer-choice allocation. European Journal of Operational Research 
doi:10.1016/j.ejor.2005.11.041 

Barreto S, Ferreira C, Paixão J, Santos BS (2006) Using clustering analysis in a 
capacitated location-routing problem. European Journal of Operational 
Research doi:10.1016/j.ejor.2005.06.074 



Facility Location Selection        313 

Bhatnagar R, Sohal AS (2005) Supply chain competitiveness: measuring the 
impact of location factors, uncertainty and manufacturing practices. 
Technovation 25:443–456 

Bhattacharya A, Sarkar B, Mukherjee SK (2003) Selection of plant location 
through an MCDM methodology. Industrial Engineering Journal (India) 
32:15–20 

Boffey B, Galvão R, Espejo L (2007) A review of congestion models in the 
location of facilities with immobile servers. European Journal of Operational 
Research 178:643–662  

Cao D, Chen M (2006) Capacitated plant selection in a decentralized 
manufacturing environment: a bilevel optimization approach. European 
Journal of Operational Research 169:97–110 

Chen CT (2001) A fuzzy approach to select the location of the distribution center. 
Fuzzy Sets and Systems 118:65–73 

Diaz J, Fernandez E (2002) A branch-and-price algorithm for single source 
capacitated plant location problem. Journal of the Operational Research 
Society 53:728–739 

Drezner Z, Weselowsky GO (2001) On the collection depots location problem. 
European Journal of Operational Research 130:510–518  

Edwards W, Newman JR, Snapper K, Seaver D (1982) Multiattribute Evaluation. 
SAGE Publications, Newbury Park, California 

Ertogral K, Wu S (2000) Auction-theoretic coordination of production planning in 
the supply chain. IIE Transactions 32:931–940 

Farahani RZ, Asgari N (2007) Combination of MCDM and covering techniques in 
a hierarchical model forfacility location: a case study. European Journal of 
Operational Research 176:1839–1858  

Ghiani G, Guerriero F, Musmanno R (2002) The capacitated plant location 
problem with multiple facilities in the same site. Computers & Operations 
Research 29:1903–1912 

Ghosh D (2003) Neighborhood search heuristics for the uncapacitated facility 
location. European Journal of Operational Research 150:150–162  

Hinojosa Y, Puerto J, Fernández FR (2000) A multiperiod two-echelon 
multicommodity capacitated plant location problem. European Journal of 
Operational Research 123:271–291  

Jaramillo J, Bhadury J, Batta R (2002) On the use of genetic algorithms to solve 
location problems. Computers & Operations Research 29:761–769 

Klose A, Drexl A (2005) Facility location models for distribution system design. 
European Journal of Operational Research 162:4–29 

Rao RV (2006) Plant location selection using fuzzy digraph and matrix methods. 
International Journal of Industrial Engineering 13:166–176 

Revelle CS, Eiselt HA (2005) Location analysis: a synthesis and survey. European 
Journal of Operational Research 165:1–19 

Saaty TL (1980) The analytic hierarchy process. McGraw Hill, New York 
Thomas P, Chan Y, Lehmkuhl L, Nixon W (2002) Obnoxious-facility location and 

data-envelopment analysis: a combined distance-based formulation. European 
Journal of Operational Research 141:495–514  



314        Decision Making in the Manufacturing Environment 

Verter V, Dasci A (2002) The plant location and flexible technology acquisition 
problem. European Journal of Operational Research 136:366–382 

Verter V, Dincer MC (1992) An integrated evaluation of facility location, capacity 
acquisition and technology selection for designing global manufacturing 
strategies. European Journal of Operational Research 60:1–18 

Yong D (2005) Plant location selection based on fuzzy TOPSIS. International 
Journal of Advanced Manufacturing Technology 28:839–844  



28
__________________________________________________________________ 

Operational Performance Evaluation of Competing 
Companies

28.1 Introduction 

The performance of a company during a stated period of time is usually reflected 
by various financial ratios summarized from its financial statements, such as the 
balance sheet, the income statement and the trading account. These ratios provide 
useful information to the stakeholders of the company, and reflect the company's 
performance from various perspectives (Barnes, 1987). For a specific company, 
these ratios do not always evolve in the same direction, and very often an 
improvement in one ratio can be achieved only at the expense of deterioration in 
another. The overall performance of competing companies cannot be meaningfully 
evaluated or ranked without simultaneous consideration of all these conflicting 
ratios (van der Wijst, 1990; Davis and Kay, 1990). 

Van der Wijst (1990) described a method of inter-firm comparison in small 
business that was not based on ratio analysis, but rather on the use of less restricted 
models. The method was aimed at removing a number of disadvantages of the 
common, ratio-based methods of inter-firm comparison. Models were specified for 
all major items of the income statement and balance sheet. The specification was 
partly based on financial and other theory, but also on practical experience in small 
business. Together, these models enabled a fairly detailed and complete assessment 
of small-business performance. The use of the models for inter-firm comparisons 
was illustrated with an example, and their applicability and relation with 
bankruptcy prediction models were discussed. 

Multivariate techniques have been widely used for the explanation and 
prediction of a firm's behavior. However, in practice, the comparative evaluation 
and ranking of companies is usually based on the consideration of a single measure 
of corporate success. Nevertheless, the definition of the most appropriate measure 
has given rise to considerable debate. Diakoulaki et al. (1992) utilized the results of 
a multicriteria analysis, applied to a large sample of Greek pharmaceutical 
industries, in order to indicate how suitable some common financial ratios were as 
indices of the firm's overall performance. The results showed that profitability 
constitutes the most representative measure for the differentiation and ranking of 
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companies. Labor productivity and market share were the best indicators of the 
business' success, while business' failure was more closely related to ratios 
indicating long- and short-term solvency. This means that a sound capital structure 
is necessary but insufficient to ensure the profitable and effective operation of the 
firm. 

Smith (1990) extended the traditional ratio analysis to permit the incorporation 
of any number of dimensions of performance, using data envelopment analysis. 
The method produced measures of corporate efficiency, together with a wealth of 
supporting information. The strengths and weaknesses of the method applied to 
financial statements were appraised. 

Deng et al. (2000) reported that simultaneous consideration of multiple 
financial ratios is required to adequately evaluate and rank the relative performance 
of competing companies. The authors formulated the inter-company comparison 
process as a multicriteria analysis model, and presented an effective approach by 
modifying TOPSIS for solving the problem. An empirical study of a real case in 
China was conducted to illustrate how the approach can be used for the inter-
company comparison problem. To ensure that the evaluation result is not affected 
by the interdependence of financial ratios, objective weights were used. As a result, 
the comparison process was conducted on a commonly accepted basis, and was 
independent of subjective preferences of various stakeholders.  

28.2 Example 

Now, to demonstrate and validate the application of the proposed decision-making 
methods, the case study presented by Deng et al. (2000) is considered here. Seven 
companies in the textile industry in Wuhan, China were compared. Four financial 
ratios, profitability, productivity, market position, and debt ratio, were identified as 
the pertinent attributes. The first three attributes are beneficial, and higher values 
are desirable. The performance ratings are given in Table 28.1. The ratings of debt 
ratio were adjusted by taking the reversal of the original values, so that this 
attribute could be treated as being beneficial. 

Table 28.1. Performance ratings of companies (from Deng et al., 2000; reprinted with 
permission from Elsevier)
______________________________________________________________________
Company Profitability Productivity Market position Debt ratio 
______________________________________________________________________
A1  0.12  49469  0.15  1.21 
A2  0.08  34251  0.14  1.23 
A3  0.04  32739  0.09  1.12 
A4  0.16  44631  0.11  1.56 
A5  0.09  33151  0.13  1.09 
A6  0.15  31408  0.07  1.39 
A7  0.13  30654  0.17  1.16 
______________________________________________________________________
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28.2.1 Application of Graph Theory and Matrix Approach (GTMA) 

Various steps of the methodology proposed in Section 2.6 are carried out as 
described below. 

Step 1: In the present work, the attributes considered are the same as those of 
Deng et al. (2000) and these are: profitability (PR), productivity (PD), market 
position (MP), and debt ratio (DR). The quantitative values of the attributes, which 
are given in Table 28.1, are to be normalized. All four attributes are considered as 
beneficial, and higher values are desirable. Values of these attributes are 
normalized, and are given in Table 28.2 in the respective columns.  

Table 28.2. Normalized performance ratings of companies 
_____________________________________________________________________
Company Profitability Productivity Market position Debt ratio 
_____________________________________________________________________
A1  0.75  1.00  0.8823  0.7756 
A2  0.50  0.6924  0.8235  0.7885 
A3  0.25  0.6618  0.5294  0.7179 
A4  1.00  0.9022  0.6470  1.00 
A5  0.5625  0.6701  0.7647  0.6987 
A6  0.9375  0.6349  0.4118  0.8910 
A7  0.8125  0.6197  1.00  0.7436 
_____________________________________________________________________

Let the evaluator select the following relative importance assignments: 

PR PD MP DR  
   PR     -  0.745 0.665 0.865 
   PD    0.255 - 0.335 0.665 
   MP   0.335 0.665 - 0.745 
   DR    0.135 0.335 0.255 - 

In this case, PR is considered more important than the other three attributes.     
Step 2: 

The inter-company comparison attributes digraph, inter-company comparison 
attributes matrix of the digraph, and inter-company comparison attributes function 
for the matrix can be prepared. The value of the inter-company comparison index 
is calculated, using the values of Ai and aij for each company. The inter-company 
comparison index values are given below in descending order: 

A4  2.4560 
A1  2.2342 
A7  1.9666 
A6  1.6673 
A2  1.5792 
A5  1.5028 
A3  1.0716 

Thus, GTMA suggests a ranking order of A4 - A1 - A7 - A6 - A2 - A5 - A3.
However, this ranking doesn’t fully correspond to that presented by Deng et al.
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(2000) using entropy measure to determine the objective weights (i.e., A4 - A7 - A1
- A6 - A5 - A2 - A3). This difference in ranking is due to the different relative 
importance weights used for these methods.   

28.2.2 SAW Method 

Deng et al. (2000) used the entropy measure method to determine the objective 
weights of the attributes. The weights obtained were: WPR = 0.54, WPD = 0.13, 
WMP = 0.28, and WDR = 0.06. Using the same objective weights as used by Deng et 
al. (2000), the SAW method leads to the following values of the inter-company 
comparison index: 

A4  0.8984 
A7  0.8439 
A1  0.8286 
A6  0.7575 
A5  0.6469 
A2  0.6379 
A3  0.4123 

The SAW method suggests a ranking order of A4 - A7 - A1 - A6 - A5 - A2 - A3,
which matches exactly with that presented by Deng et al. (2000) using entropy 
measure to determine the objective weights. 

28.2.3 WPM 

Using the same weights of the attributes as those selected for the SAW method, the 
inter-company comparison index value for each company is calculated, and the 
values are arranged as given below: 

A4  0.8734 
A7  0.8252 
A1  0.8141 
A6  0.7052 
A5  0.6317 
A2  0.6087 
A3  0.3678 

The WPM method also suggests a ranking order of A4 - A7 - A1 - A6 - A5 - A2
- A3, which matches exactly with that presented above for the AHP method, and 
Deng et al. (2000) using the entropy measure to determine the objective weights. 

28.2.4 AHP and its Versions  

The AHP method may use the same weights as those of the SAW method. In that 
case, the ranking of the companies will be the same. 

For the above weights of importance of attributes, multiplicative AHP leads to 
the same ranking order.   
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28.2.5 TOPSIS Method  

Following the steps of the methodology given in Section 3.2.6, the TOPSIS 
method gives the following ranking order: 

A4  0.8143 
A7  0.7513 
A6  0.6919 
A1  0.6840 
A5  0.4371 
A2  0.3853 
A3  0.0688 

The TOPSIS method suggests a ranking order of A4 - A7 - A6 - A1 - A5 - A2 - 
A3. The positions of companies 1 and 6 are mutually exchanged in this ranking, as 
compared to those given by the other methods. 

28.2.6 Modified TOPSIS Method 

This methods leads to the following ranking order: 
A4  0.7596 
A7  0.7186 
A1  0.6968 
A6  0.6066 
A5  0.4423 
A2  0.4143 
A3  0.0911 

The modified TOPSIS method also suggests a ranking order of A4 - A7 - A1 - 
A6 - A5 - A2 - A3, which matches exactly with that presented by the other methods, 
except for the simple TOPSIS method.  

It may be noted here that the modified TOPSIS method proposed in this book 
is different from the ‘modified’ TOPSIS method used by Deng et al. (2000). The 
normalization procedure used by Deng et al. (2000) was different. 

Thus, the methods proposed in this chapter enable simultaneous consideration 
of multiple financial ratios to adequately evaluate and rank the relative 
performance of competing companies.    
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__________________________________________________________________ 

Vendor Selection in a Supply Chain Environment 

29.1 Introduction 

In today’s highly competitive and interrelated manufacturing environment, the 
performance of the vendor becomes a key element in a company’s success, or 
failure. Vendor selection decisions are an important component of production and 
logistics management for many companies. These decisions are typically 
complicated, for several reasons. First, potential options may need to be evaluated 
on more than one criterion. A second complication is the fact that individual 
vendors may have different performance characteristics for different criteria. A 
third complication arises from internal policy constraints, and externally imposed 
system constraints placed on the buying process. The nature of vendor selection 
decision usually is complex, unstructured, and inherently a multiple criteria 
problem.  

Weber and Ellram (1993) explored the use of a multi-objective programming 
approach as a method for supplier selection in a just-in-time (JIT) setting. Weber 
(1996) used the data envelopment analysis (DEA) approach for measuring vendor 
performance. Roodhooft and Konings (1996) used an activity-based costing 
approach for vendor evaluation. Weber et al. (1998, 2000) described however, in 
certain situations, two multicriteria analysis tools, i.e., multi-objective 
programming and DEA, could be used together for the supplier selection and 
negotiation process. Verma and Pullman (1998) examined the difference between 
managers’ rating of the perceived importance of different supplier attributes, and 
their actual choice of suppliers in an experimental setting.  

Ghodsypour and O’Brien (1998) proposed an integration of the analytic 
hierarchy process (AHP) method and linear programming to consider both tangible 
and intangible factors in choosing the best suppliers, and placing the optimum 
order quantities among these such that the total value of purchasing is maximized. 
In another work, Ghodsypour and O’Brien (2001) presented a mixed integer 
nonlinear programming model to solve a multiple sourcing problem, which took 
into account the total cost of logistics, including net price, and storage, 
transportation and ordering costs. Buyer limitations on budget, quality, service, etc.
could also be considered in the model. 



322        Decision Making in the Manufacturing Environment 

Boer et al. (1998) studied the application of outranking methods in support of 
vendor selection. Motwani et al. (1999) attempted to fill a void in supplier 
selection research by developing a model for sourcing and purchasing in an 
international setting, particularly in developing countries. Yahya and Kingsman 
(1999) presented vendor rating for an entrepreneur development program using the 
AHP method. Liu et al. (2000) compared suppliers using data envelopment 
analysis (DEA). Bragilia and Petroni (2000) described a multi-attribute utility 
theory based on the use of DEA, aiming at helping purchasing managers to 
formulate viable sourcing strategies in a changing market. Boer et al. (2001) 
presented a review of decision methods reported in the academic literature for 
supporting the vendor selection process. 

Akarte et al. (2001) developed an approach to evaluate casting suppliers, using 
the analytical hierarchy process (AHP) method. The approach was implemented in 
a prototype web-based system. Handfield et al. (2002) illustrated the use of AHP as 
a decision support model to help managers understand the tradeoffs between 
environmental dimensions. Gunasekaran et al. (2001) established a framework 
consisting of three-level indices: strategic performance, tactical performance, and 
operational performance. Feng et al. (2001) presented a stochastic integer 
programming approach for simultaneous selection of tolerances and suppliers 
based on the quality loss function and process capability indices. Oliveria and 
Lourenco (2002) developed a multicriteria model for assigning new orders to 
service vendors. Kwang et al. (2002) combined a scoring method and fuzzy expert 
systems for vendor assessment, and presented a case study. Cebi and Bayraktar 
(2003) structured vendor selection problem in terms of an integrated lexicographic 
goal programming (LGP) and AHP model, including both quantitative and 
qualitative conflicting factors. 

Cengiz et al. (2003) applied the fuzzy AHP method for solving the vendor 
selection problem. Ibrahim and Ugur (2003) used activity-based costing and fuzzy 
present-worth techniques for vendor selection.  Kumar et al. (2004) presented a 
fuzzy goal programming approach for the vendor selection problem in a supply 
chain. Ge et al. (2004) developed an integrated AHP and preemptive goal 
programming (PGP)-based multicriteria decision-making methodology to account 
both qualitative and quantitative factors in supplier selection. Pi and Low (2005) 
presented a supplier evaluation and selection approach using Taguchi’s loss 
function and AHP.  

Degraeve et al. (2005) used total cost of ownership information for 
evaluatinga firm's strategic procurement options. The approach was used to 
develop a decision support system at a European multinational steel company. 
Shyur and Shih (2006) proposed a hybrid MCDM model using ANP and TOPSIS 
methods for strategic vendor selection. Sucky (2006) proposed a dynamic decision-
making approach based on the principle of hierarchical planning for strategic 
vendor selection. Cao and Wang (2006) discussed the aspects of optimizing vendor 
selection in a two-stage outsourcing process. Wadhwa and Ravindran (2006) 
presented multi-objective optimization methods including goal programming and 
compromise programming. Amid et al. (2006) proposed a multi-objective linear 
model for supplier selection in a supply chain. Rao (2007) proposed a combined 
AHP and genetic algorithm (GA) method for the vendor selection problem.    
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As described above, many precision-based methods have been proposed in the 
past for vendor selection. However, there is need for a systematic, simple and 
convenient procedure acceptable to companies for efficient and effective 
evaluation of vendors. The aim of the vendor selection procedure is to identify the 
vendor selection attributes, and obtain the most appropriate combination of these in 
conjunction with the real requirements of the company. Efforts need to be extended 
to determine those attributes that influence vendor selection for supplying a given 
product, using a systematic approach, to eliminate unsuitable vendors and for 
selection of an appropriate vendor to strengthen the existing vendor selection 
procedure. This is considered in this chapter using GTMA and other fuzzy MADM 
methods.  

A vendor selection attribute is defined as a factor that influences the selection 
of a vendor for supplying a given product in a supply chain environment. The 
attributes include the vendor’s technical capability, financial position, procedural 
compliance, reputation and position in industry, attitude, flexibility, packaging 
ability, labor relation record, communication systems, management and 
organization, geographical location, production facilities and capacity, warranties 
and claim policies, repair service, environmentally friendly features of the product, 
etc. The vendor selection attributes can be identified and the vendors can be short-
listed on the basis of the attributes identified satisfying the requirements. A 
quantitative or qualitative value, or its range, can be assigned to each identified 
attribute as a limiting value, or threshold value, for its acceptance. A vendor, 
meeting each of these limiting or threshold values of the attributes identified, can 
be short-listed. 

29.2 Example 

Now, an example is considered to demonstrate and validate the proposed decision-
making methods for solving the vendor selection problem in a supply chain 
environment.  

Liu et al. (2000) presented a case study to demonstrate the vendor 
performance evaluation using the data envelopment analysis (DEA) method for a 
firm that manufactures agricultural and construction equipment. The company 
purchases a significant number of parts used on the assembly line from domestic 
and foreign vendors, in addition to materials purchased for manufacturing major 
frame components in-house. The company had divided all purchased parts into 18 
commodity groups, including hydraulic valves, fasteners, electrical, weldments, 
stampings, machined parts, and fabrication groups. Within each commodity group, 
the vendors were viewed as similar vendors, and interchangeable. The 
interchangeability was expressed by a capability matrix for various vendors to 
supply various parts in each commodity group.  

To collect data in each commodity group, the company first listed all parts 
supplied by each vendor to obtain the supply variety. If a vendor supplies more 
than one commodity group, then the supply variety of this vendor in each group is 
the sum of the number of parts in all the groups, as this represents the 
comprehensive supplying ability of this vendor. Table 29.1 presents the details of 

1
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alternative vendors, and the information on the vendor selection attributes for a 
hydraulic valve group. 

The aggregate quality of a vendor was represented by the weighted percentage 
of non-defective parts supplied by the vendor with regard to the commodity group, 
where the weights of various parts were based on their annual quantities. For the 
price comparison, the company had given each part in a commodity group a price 
evaluation relative to the average market price. To prevent massive data collection 
effort, one of three estimated levels of prices, 120, 100, and 80, relative to market 
average prices were assigned to each part by the materials department of the 
company. The delivery performance was represented by the percentage of purchase 
orders delivered within the delivery window according to the purchase orders.  

Table 29.1. Quantitative data of vendor selection attributes (from Liu et 
al. 2000; with permission from Emerald Insight)
___________________________________________________________
Vendor   P Q DP      D SV 
___________________________________________________________
1   100 100 90 249 2 
2   100 99.79 80 643 13 
3   100 100 90 714 3 
4   100 100 90 1809 3 
5   100 99.83 90 238 24 
6   100 96.59 90 241 28 
7   100 100 85 1404 1 
8   100 100 97 984 24 
9   100 99.91 90 641 11 
10   100 97.54 100 588 53 
11   100 99.95 95 241 10 
12   100 99.85 98 567 7 
13   100 99.97 90 567 19 
14   100 91.89 90 967 12 
15   80 99.99 95 635 33 
16   100 100 95 795 2 
17   80 99.99 95 689 34 
18   100 99.36 85 913 9 
___________________________________________________________
P: Price ($)  Q: Quality (%)  D: Delivery performance (%) 
D: Distance (miles)   SV: Supply variety 

29.2.1 Graph Theory and Matrix Approach 

In the present work, the attributes considered are the same as those of Liu et al. 
(2000), and these are: price (P), quality (Q), delivery performance (DP), distance 
(D), and supply variety (SV).  

The quantitative values of the vendor selection attributes, which are given in 
Table 29.1, are to be normalized. Q, DP, and SV are beneficial attributes, and 
higher values are desirable. P and D are non-beneficial attributes, and lower values 
are desirable. The values of these attributes for different vendors are normalized, 
and shown in Table 29.2. 
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Table 29.2. Normalized data of the vendors 
________________________________________________________ 
Vendor   P Q DP D SV
______________________________________________________________
1   0.8 1 0.9 0.9558 0.0377 
2   0.8 0.9979 0.8 0.37 0.2453 
3   0.8 1 0.9 0.3333 0.0566 
4   0.8 1 0.9 0.1316 0.0566 
5   0.8 0.9983 0.9 1 0.4528 
6   0.8 0.9659 0.9 0.9876 0.5283 
7   0.8 1 0.85 0.1695 0.0188 
8   0.8 1 0.97 0.2419 0.4528 
9   0.8 0.9991 0.9 0.3713 0.2075 
10   0.8 0.9754 1 0.4048 1  
11   0.8 0.9995 0.95 0.9876 0.1887 
12   0.8 0.9985 0.98 0.4198 0.1321 
13   0.8 0.9997 0.9 0.4198 0.3585 
14   0.8 0.9189 0.9 0.2461 0.2264 
15   1 0.9999 0.95 0.3748 0.6226 
16   0.8 1 0.95 0.2994 0.0377 
17   1 0.9999 0.95 0.3454 0.6415 
18   0.8 0.9936 0.85 0.2607 0.1698 
______________________________________________________________

Let the decision maker make the following assignments of relative importance:  
 P  Q DP D SV  
P - 0.255 0.335 0.745 0.745 
Q 0.745 - 0.665 0.745 0.745 
DP 0.665 0.335 - 0.745 0.745 
D 0.255 0.255 0.255 - 0.335 
SV   0.335 0.255 0.255 0.665 - 

The vendor selection attributes digraph, vendor selection attributes matrix of 
the digraph, and vendor selection function for the matrix can be prepared. The 
value of the vendor selection index is calculated using the values of Ai and aij for 
each vendor. The vendor selection index values of different vendors are given 
below in descending order: 

6 5.3569 
5 5.2403 
10 5.2356 
15 4.7139 
17 4.6759 
11 4.5581 
1 3.9978 
13 3.8509 
8 3.7665 
12 3.5024 
9 3.4677 
2 3.4020 
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14 3.1906 
18 3.1467 
3 3.1239 
16 3.0950 
4 2.8238 
7 2.7684 

From the values of the vendor selection index, it is understood that the vendor, 
designated as 6 is the best choice among the vendors considered for the given 
industrial application. The next choice is 5, and the last choice is 7.  

29.2.2 TOPSIS Method 

Various steps of the TOPSIS methodology using the AHP method for assigning the 
relative importance of attributes are described below:   

Step 1:  The objective is to evaluate the vendor performance and to select a 
vendor. The attributes considered are the same as those of Liu et al. (2000), and 
these are: price (P), quality (Q), delivery performance (DP), distance (D), and 
supply variety (SV).  

Step 2: The next step is to represent all the information available of attributes 
in the form of a decision matrix. These data are shown in Table 29.1.   

Step 3: The quantitative values of the vendor selection attributes, which are 
given in Table 29.1, are to be normalized. Q, DP, and SV are beneficial attributes 
and P and D are non-beneficial attributes. The values of these attributes for 
different vendors are normalized as shown below: 

0.2405 0.2377 0.2318 0.0718 0.0224  
0.2405 0.2372 0.2060 0.1854 0.1453 
0.2405 0.2377 0.2318 0.2059 0.0335 
0.2405 0.2377 0.2318 0.5217 0.0335 
0.2405 0.2373 0.2318 0.0686 0.2682 
0.2405 0.2296 0.2318 0.0695 0.3129 
0.2405 0.2377 0.2189 0.4049 0.0112 
0.2405 0.2377 0.2498 0.2838 0.2682 
0.2405 0.2375 0.2318 0.1849 0.1229 
0.2405 0.2318 0.2575 0.1696 0.5922 
0.2405 0.2375 0.2446 0.0695 0.1117 
0.2405 0.2373 0.2523 0.1635 0.0782 
0.2405 0.2377 0.2317 0.1635 0.2123 
0.2405 0.2184 0.2317 0.2789 0.1341 
0.1924 0.2376 0.2446 0.1831 0.3687 
0.2405 0.2377 0.2446 0.2293 0.0224 
0.1924 0.2376 0.2446 0.1987 0.3799 
0.2405 0.2361 0.2189 0.2633 0.1006 

Step 4: Let the decision maker select the following assignments regarding the 
relative importance of attributes (aij), using the AHP method:  
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   P Q DP D SV 
P 1 1/5 1/3 4 3 
Q 5 1 3 6 5 
DP      3 1/3 1 5 4 
D 1/4 1/6 1/5 1 1/3 
SV 1/3 1/5 1/4 3 1   

The assigned values in this chapter are for demonstration purposes only. The 
normalized weights for each attribute are: WP = 0.1361, WQ = 0.4829, WDP = 
0.2591, WD = 0.0438, and WSV = 0.0782. The value of max is 5.3388 and CR = 
0.0756, which is much less than the allowed CR value of 0.1. Thus, there is good 
consistency in the judgements made. 

Step 5: The weighted normalized matrix V1ij is calculated. 
Step 6: The next step is to obtain the ideal (best) and negative ideal (worst) 

solutions. These are given as: 
V1

+ = 0.0262  V1
- = 0.0327 

V2
+ = 0.1148  V2

- = 0.1055 
V3

+ = 0.0667  V3
- = 0.0534 

V4
+ = 0.0030  V4

- = 0.0228 
V5

+ = 0.0462  V5
- = 0.0009 

Step 7: The next step is to obtain the separation measures using Equations 3.12 
and 3.13, and these are: 
S1

+ = 0.0454  S1
- = 0.0228 

S2
+ = 0.0382  S2

- = 0.0202 
S3

+ = 0.0449  S3
- = 0.0180 

S4
+ = 0.0488  S4

- = 0.0116 
S5

+ = 0.0269  S5
- = 0.0304 

S6
+ = 0.0240  S6

- = 0.0319 
S7

+ = 0.0491  S7
- = 0.0111 

S8
+ = 0.0278  S8

- = 0.0269 
S9

+ = 0.0381  S9
- = 0.0206 

S10
+ = 0.0084  S10

- = 0.0502 
S11

+ = 0.0382  S11
- = 0.0253 

S12
+ = 0.0409  S12

- = 0.0224 
S13

+ = 0.0313  S13
- = 0.0249 

S14
+ = 0.0392  S14

- = 0.0158 
S15

+ = 0.0184  S15
- = 0.0350 

S16
+ = 0.0456  S16

- = 0.0188 
S17

+ = 0.0178  S17
- = 0.0354 

S18
+ = 0.0411    S18

- = 0.0162 
Step 8: The relative closeness of a particular alternative to the ideal solution is 

calculated, and these are:  
P1 = 0.3343 P2 = 0.3458 P3 = 0.2863 P4 = 0.1919  
P5 = 0.5299 P6 = 0.5706 P7 = 0.1847 P8 = 0.4919 
P9 = 0.3504 P10 = 0.8566 P11 = 0.3984 P12 = 0.3539 
P13 = 0.4432 P14 = 0.2873 P15 = 0.6551 P16 = 0.2914 
P17 = 0.6654 P18 = 0.2824 
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This relative closeness to ideal solution is named the ‘vendor selection index 
(VSI)’ in the present example. 

Step 9: The vendors are arranged in the descending order of their VSI. This 
can be arranged as 10-17-15-6-5-8-13-11-12-9-2-1-16-14-3-18-4-7. 

From the above values of VSI, it is understood that vendor 10 is the first 
choice for the supply of items in the hydraulic valve group considered under the 
given conditions. The second choice is vendor 17, and the third choice is vendor 15 
and these results match with those of Liu et al. (2000). Transferring of parts can be 
made from the vendors with low ranking to the peer vendors with higher ranking, 
keeping in mind the capacities and limitations of the high-ranking vendors.  
However, Liu et al. (2000) had suggested that only five vendors, i.e., 1, 10, 12, 15, 
and 17 were efficient, the remaining vendors were inefficient, and vendors 2 and 
14 were most inefficient. In the present work, vendor 7 is proposed as the last 
choice. A closer look at the values of the attributes for vendors 7 and 14 reveals 
that vendor 7 is inferior to 14 with respect to three attributes, DP, D, and SV; better 
than 14 with respect to Q; and equal to 14 with respect to P. Thus, proposing 
vendor 7 as the last choice seems to be justified. However, as mentioned above, 
this all depends on the values of relative importance judiciously decided by the 
decision maker. If different values of relative importance are assigned to the 
attributes, then the ranking will change. The same is true in the case of the DEA 
approach used by Liu et al. (2000). In their work, Liu et al. (2000) assigned 
different weights of relative importance to the attributes considered and these 
weights were different from those of the present work and hence the ranking 
obtained was somewhat different from those presented in this chapter. Further, the 
authors had not indicated the values of weights of relative importance assigned to 
the attributes, and the basic concept that summation of all relative importance 
weights should be equal to 1.0 was not followed. Also, DEA requires more 
computation, can not handle the qualitative attributes adequately, and does not 
offer any provision for checking the consistency in judgements of relative 
importance.          

One need not confused about the differences in rankings of vendors presented 
by the GTMA and TOPSIS methods. Indeed, the differences are due to assignment 
of different values of relative importance to the attributes in these methods.  

As mentioned in Section 29.1, in a supply chain environment, the decision-
making is related with the selection of vendors and the quantities to be purchased 
from those vendors. A number of vendor selection attributes are to be considered 
and the objectives are to be formulated in this regard. The attributes identified may 
be classified into two categories. The first category of attributes include those 
factors that the company will formulate as its objectives, such as net purchasing 
costs, net rejections, net late deliveries, etc. The second category of attributes 
includes those factors that will help the company in short-listing the vendors, such 
as the vendor’s technical capability, financial position, procedural compliance, 
reputation and position in industry, attitude, flexibility, packaging ability, labor 
relation record, communication systems, management and organization, 
geographical location, production facilities and capacity, warranties and claim 
policies, repair service, environmentally friendly features of the product, etc. These 
attributes have already mentioned in Section 29.1. The vendor selection attributes 
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can be identified, and the objectives can be formulated based on the attributes 
identified of first category. The vendors can be short-listed based on the identified 
attributes of second category. A quantitative or qualitative value, or its range, can 
be assigned to each identified attribute of second category as a limiting value, or 
threshold value, for its acceptance. A vendor, meeting each of these limiting or 
threshold values of the identified attributes in the second category, can be short-
listed.  

The objectives of a company in a supply chain environment correspond to the 
vendor selection attributes of the first category. The objective may be minimization 
of net purchasing cost or minimization of net late deliveries, or minimization of net 
rejections, or any such criterion of interest. A combined objective function can be 
formulated considering all the objectives of interest, and the decision maker may 
assign equal, or different, weights to the objectives depending on the policies of the 
company regarding relative importance of the objectives. This is to be done 
preferably using a logical and systematic approach and AHP is one such method. 
However, AHP method is not suitable to solve constrained multi-objective 
problems. Hence, Rao (2007) used AHP only to assign the weights of importance 
to the objectives and the genetic algorithm (GA) method to constrained multi-
objective vendor selection problem. The next section briefly describes the basics of 
the GA method.  

29.3 Genetic Algorithms 

Over the last decade, genetic algorithms (GAs) have been extensively used as 
search and optimization tools in various problem domains, including the sciences, 
commerce, and engineering. The primary reasons for their success are their broad 
applicability, ease of use, robustness and global perspective (Goldberg 1989; 
Mitchell, 1996; Gen and Cheng, 1997; Vose, 1999; Deb, 2002). The genetic 
algorithms are inspired by Darwin’s theory evolution. The algorithm is started with 
a set of solution (represented by chromosomes) called a population. Solutions from 
one population are used to form a new population. This is motivated by that the 
new population will be better than the old one. Solutions to forming new solutions 
(offsprings) are selected according to their fitness. The more suitable they are, the 
more chances they have of reproducing. The iteration is stopped after the 
completion of maximal number of iterations (generations) or on the attainment of 
the best result.  

The decision variables of multiple objective, multiple variable, constrained or 
unconstrained optimization problems solved by GAs may be represented by either 
binary coding or real coding. GAs employ three important genetic operators for 
solving optimization problems, and these operators are briefly described below. 

Reproduction or selection operator: GA begins with a set of solutions called 
population (represented by chromosomes or strings). The primary objective of the 
reproduction operator is to make duplicates of good solutions, and eliminate bad 
solutions in a population, while keeping the population size constant. This is 
achieved by identifying good solutions in a population, making multiple copies of 
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good solutions, and eliminating bad solutions from the population so that multiple 
copies of good solutions can be placed in the population. 

Crossover operator: This operator is applied to the strings of the mating pool 
after the reproduction operator has been applied. The latter cannot create any new 
solutions in the population, and it only makes more copies of good solutions at the 
expense of not-so-good solutions. The creation of new solutions is performed by 
the crossover operator. In crossover operation, two strings are randomly selected 
from the mating pool, and some portions of the strings are exchanged between 
strings to create new strings. 

Mutation operator: The crossover operator is mainly responsible for the search 
aspect of genetic algorithms, even though the mutation operator is also used for 
this purpose. Mutation is intended to prevent all solutions in the population being 
concentrated into a local optimum of the solved problem. The bitwise mutation 
operator changes a 1 into 0, and vice versa, with a small mutation probability. The 
need for mutation is to maintain diversity in the population.  

The three GA operators reproduction or selection, crossover, and mutation, are 
simple and straight-forward. The reproduction operator selects good strings, while 
the crossover operator recombines good substrings from two good strings to 
hopefully form a better spring. The mutation operator alters a string locally to 
hopefully create a better string. The basic genetic algorithm is outlined below: 
1. [Start] Choose a coding to represent problem decision variables, a reproduction 
or selection operator, a crossover operator, and a mutation operator. Choose 
population size n, crossover probability pc, and mutation probability pm. Initialize a 
random population of strings of size ‘s’. Choose a maximum allowable generation 
(i.e., iteration) number tmax. Set t=0 
2. [Fitness] Evaluate the fitness function of each string in the population   
3. [New population] Create a new population by repeating the following steps until 
the new population is complete  
[Reproduction or selection] Select two parent strings from a population according 
to   their fitness (the better fitness, the bigger the chance of being selected)  
 [Crossover] Crossover the parents to form new offspring (children). If no 
crossover is performed, then the offspring are the exact copy of parents.  
[Mutation] Mutate the new offspring at each locus (position in string).  
[Accepting] Place the new offspring in the new population  
4. [Replace] Use the newly generated population for a further run of the algorithm  
5. [Test] If t > tmax, or other termination criteria, are satisfied, then terminate and 
return the best solution in current population  
6. [Loop] Go to step 2  

The above procedure is repeated until an optimum solution is reached. More 
details on the genetic algorithms, and their applications can be found in literature 
(Goldberg 1989, Mitchell 1996, Gen and Cheng 1997, Vose 1999, Deb 2002).   

29.4 Proposed Methodology 

A methodology using, AHP and GA methods together is proposed in this section,
for solving the vendor selection problem in a supply chain environment (from
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Rao, 2007; with permission from Inderscience Publishers). AHP is used for
logical assignment of weights of relative importance to the objectives, and GA is
used to solve the constrained multi-objective vendor selection problem by
performing a global search for the optimum values of the decision variables (i.e.,
vendor order quantities). The novelty of the proposed methodology is that it uses
GA, which has not been investigated by earlier researchers to solve the vendor
selection problem in a supply chain. Further, the use of AHP for assigning the
weights of relative importance to the objectives is relatively new. The main steps
of the methodology are given below: 

Step 1: Identify the vendor selection attributes of both categories, as explained 
in Section 29.2, for the given vendor selection problem. The choice of the 
attributes depends upon the company’s requirements.  

Step 2: Obtain the data of vendors. 
Step 3: Short-list the vendors, based on the attributes identified in the second 

category. A quantitative or qualitative value, or its range, can be assigned to each 
identified criterion of second category as a limiting value, or threshold value, for its 
acceptance. A vendor, meeting each of these limiting or threshold values of the 
attributes identified in the second category, can be short-listed. 

Step 4: Consider the vendor selection attributes of the first category as the 
objectives of the given vendor selection problem.   

Step 5: Formulate the objective functions and constraints set in terms of the 
decision variables. The decision variables may be the quantities to be purchased 
from vendors, i.e., vendor order quantities. 

Step 6: Apply GA method, and obtain the aspired level of each objective. The 
aspiration value of an objective indicates the best possible solution of that objective 
ignoring other objectives. This can be done using a simple heuristic: treat the 
individual function of that particular objective as the single objective function of 
the proposed GA method within the given constraint set. 

Step 7: Assign the values of relative importance (aij) to the objectives and find 
out the relative weights (wi) of the objectives using the AHP method. 

Step 8: Formulate a combined objective function considering the objective 
functions and their relative weights of importance. Now, treat this combined 
objective function as the single objective function of the genetic algorithm (GA) 
with the given constraint set. 

Step 9: Apply GA method and obtain the optimum values of the combined 
objective function and the decision variables.  

Step 10: Based on the GA results, decide the number of vendors to employ, 
and the quantities to be purchased from them. 

Step 11: Document the results for future reference. 
Now, to demonstrate and validate the proposed methodology for the selection 

of appropriate vendors and their quota allocations, an example is considered. 

29.5 Example 2 

Kumar et al. (2004) presented a fuzzy goal programming approach for the vendor 
selection problem in a supply chain. The vendor source data are given in Table 
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29.3 and data relate to a realistic situation of a manufacturing company dealing 
with automobile parts. The approach was developed from requirements stipulated 
during the initial stages of implementing a formal program for better management 
of supply chain, which subsequently undertook a vendor certification plan for its 
purchased items. Those vendors who successfully passed the screening processes 
were eligible for procurement. Four established vendors for a projected demand of 
the part had been screened for supplying this purchased item. Table 29.3 represents 
the dataset for the price quoted (pi), the percentage rejections (qi), the percentage 
late deliveries (di), vendor capacities (Ui), vendors’ quota flexibility (fi) on a scale 
of 0–1, vendor rating (ri) on a scale of 0–1, and budget allocations for the vendors 
(Bi). The lowest value of flexibility in vendor quota and the least total purchase 
value of supplied items were policy decisions and dictated by the demand. The 
lowest value of flexibility in vendor quota was given as F = fD and the least total 
purchase value of supplied items was given as P = rD. Overall flexibility (f) and 
the overall vendor rating (r) were considered as 0.03 and 0.92, respectively on a 
scale of 0–1, aggregate demand (D) as 20,000, and the least value of flexibility in 
vendor quota (F) as well as the lowest total purchase value of supplied items (P) 
were considered as 600 and 18,400, respectively. 

Table 29.3. Vendor source data (from Kumar et al., 2004; reprinted with permission 
from Elsevier)
______________________________________________________________________
V pi ($) qi (%) di (%) Ui (units)  fi ri Bi($)
______________________________________________________________________
1 5 0.05 0.04   5,000  0.02 0.88 25,000 
2 7 0.03 0.02 15,000  0.01 0.91 10,000 
3     6 0.00 0.08   6,000  0.06 0.97 35,000 
4 2 0.02 0.01   3,000  0.04 0.85   5,500 
______________________________________________________________________
V: Vendor 

The mixed integer programming vendor selection problem (MIP_VSP) 
formulation for the three objectives, and the set of system and policy constraints 
formulated by Kumar et al. (2004) are given below: 
                                     n 
Minimize Z1=  pixi              (29.1) 
                  i=1
                   n
Minimize Z2=  qixi              (29.2) 
                  i=1
                   n
Minimize Z3=  dixi                   (29.3) 
                        i=1 
Subject to: 
 n 

 xi     = D                                                                  (29.4)  
i=1
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xi    Ui  for all i =1,2,…, n              (29.5) 
 n 

 fixi        F                               (29.6)             
i=1

 n 
 rixi        P                               (29.7) 

i=1
pixi      Bi  for all i =1,2,…., n              (29.8)            
xi    0 and integer                            (29.9)          
xi = quantity purchased from vendor i 
D  = aggregate demand for the item during a fixed planning period 
n  = number of vendors competing for selection 
pi  = price of a unit item of the ordered quantity xi from the vendor i 
qi  = percentage of rejected units delivered by vendor i 
di  = percentage of the units delivered late by the vendor i 
Ui  = upper limit of the quantity available from vendor i 
fi  = vendor quota flexibility for vendor i 
F  = lower limit of flexibility in supply quota that a vendor should have 
ri  = vendor rating value for vendor i 
P  = lower limit to total purchasing value that a vendor should have 
Bi  = budget allocated to each vendor 
Objective function 29.1 minimizes the net cost for all the items. 
Objective function 29.2 minimizes the net number of rejected items for the 
vendors. 
Objective function 29.3 minimizes the net number of items delivered late from the 
vendors. 
Constraint 29.4 represents restrictions due to the overall demand of items. 
Constraint 29.5 represents restrictions due to the maximum capacity of the vendors. 
Constraint 29.6 incorporates the flexibility needed with the vendors’ quota. 
Constraint 29.7 incorporates the total purchase value constraint for all the ordered 
quantities. 
Constraint 29.8 represents restrictions on the budget amount allocated to the 
vendors for supplying the items. 

The above example is considered to demonstrate and validate the proposed 
methodology using a combined AHP and GA method for the selection of 
appropriate vendors and their quota allocations. Different steps of the proposed 
procedure are carried out as described below. 

Steps 1 to 5:  These steps had already been carried out by Kumar et al. (2004) 
and hence the objectives and constraints considered to evaluate the vendor 
performance, and to allocate the quotas are the same as those of Kumar et al.
(2004). The objectives are: minimization of net purchasing cost (Z1), minimization 
of net rejects (Z2) and minimization of late deliveries (Z3).   

Step 6: The aspired level of an objective is obtained by using a simple 
heuristic. The individual function of that particular objective is first treated as the 
single objective function of the proposed genetic algorithm having a constraint set 
same as that defined by Kumar et al. (2004). The decision variables in GA are 
nothing but the quantities to be purchased from vendors i.e., vendor order 
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quantities. Binary coding is used to represent the decision variables x1, x2, x3 and
x4, and the details of GA employed are given in Table 29.4. The rank selection 
method is used as a reproduction method and the probabilities of crossover and 
mutation, 0.9 and 0.01, respectively, are selected based on the various trial runs to 
obtain better solution. The aspired levels of the three objectives, viz. the 
minimization of net purchasing cost, minimization of net rejects and minimization 
of net late deliveries, have thereby been obtained as $100,225, 450 units, and 775 
units respectively. Each of these values indicates the best possible solution (Zmin)
of that objective, ignoring other objectives.  

Table 29.4. Details of GA used 
_______________________________________________
Variable   Description/value 
_______________________________________________
Reproduction method : Rank selection method 
Crossover type  : Binary GA (single point) 
Strategy   : 1 cross site with swapping 
Population size  : 100 
Total no. of generations : 100 
Crossover probability : 0.9000 
Mutation probability : 0.0100 
String length  : 40 
Number of variables, binary : 4 
Sigma-share value  : 0.281 
Sharing Strategy  : sharing on Parameter Space 
Lower and Upper limits : 

0   <=   x1   <= 5000 
0   <=   x2   <= 15000 
0   <=   x3   <= 6000 
0   <=   x4   <= 3000 

_______________________________________________

Step 7: Relative importance of objectives (aij) is assigned values, using the 
AHP method. Let the decision maker select the following assignments: 
  Z1 Z2 Z3
Z1 1 2 3 
Z2 1/2 1 2 
Z3 1/3 1/2 1 

The normalized weights of each objective are: WZ1 = 0.54, WZ2 = 0.3, and WZ3

= 0.16. The value of max is 3.009203 and CR = 0.00885, which is very much less 
than the allowed CR value of 0.1. Thus, there is good consistency in the 
judgements made. 

Step 8: A combined objective function, Z, is formulated. The three objectives 
Z1, Z2, and Z3 are combined, with separate weight factors, WZ s, for each.  
Z=WZ1(Z1/Z1min) + WZ2(Z2/Z2min) + WZ3(Z3/Z3min)                                           (29.10) 

Steps 9 & 10: The combined objective function shown above, having the same 
constraint set as that defined by Kumar et al. (2004), is treated as the single 



Vendor Selection in a Supply Chain Environment        335 

objective function of the genetic algorithm. The GA program is run and the GA 
results are given in Table 29.5, which also shows the GA results for different 
values of WZ s assigned to the three objectives considering four vendors. It can be 
seen that the values of Z1, Z2, and Z3 depend on the AHP weights assigned. It is 
evident from Table 3 that in order to decide the weights, the decision maker needs 
to have a clear idea of the relative importance of objectives. Table 29.5 also shows 
the results of considering only three vendors (i.e., any of xi = 0). 

Table 29.5. Results of application of GA 
_____________________________________________________________________
S. No. Objective  AHP        Value of  Vendor order quantity (units) 
                                  weights    objective   x1 x2 x3 x4
_____________________________________________________________________
1 Z1 ($)         0.3333 115,107 2,869 8,636 5,830 2,665 
 Z2 (units)   0.3333            456                                
 Z3 (units)   0.3333            781 
1.1 Z1 ($)   0.3333 120,437 0 11,437 5,813 2,750 
 Z2 (units)   0.3333           398                               
 Z3 (units)   0.3333            721 
1.2 Z1 ($)   0.3333 117,100 4,585 12,669 0 2,746 
 Z2 (units)   0.3333            664           
 Z3 (units)   0.3333            464 
1.3 Z1 ($)   0.3333 124,717 4,726 9,443 5,831 0 
 Z2 (units)   0.3333            520           
 Z3 (units)   0.3333            844 
2 Z1 ($)   0.54 115,122 2,849 8,651 5,830 2,670 
 Z2 (units)   0.30               456           
 Z3 (units)   0.16               780 
3 Z1 ($)   0.4 115,171 2,752 8,719 5,830 2699 
 Z2 (units)   0.3               453           
 Z3 (units)   0.3               778 
_____________________________________________________________________

The values of the combined objective function, Z, are calculated using 
Expression 29.10, considering the levels of aspiration of the three objectives, viz.,
the minimization of net purchasing cost, minimization of net rejects, and 
minimization of net late deliveries ($100,225, 450 units, and 775 units, 
respectively), and the actual values of the objectives obtained by assigning equal or 
different AHP weights and running the GA program. It is observed that the value 
of Z is minimum in the case 1.1 of Table 29.5 with a value of 1.00547, and this 
case offers the optimum solution for the present vendor selection problem in a 
supply chain environment. It can be seen that for x1 = 0, Z1 = 120433, Z2 = 398, 
and Z3=721 and these values are much better than the final results obtained by 
Kumar et al. (2004), in whose case Z1 = 124914, Z2 = 420, and Z3=700. For this 
optimal solution in the present work, vendor 2 is allocated 11437 units (76.25% of 
capacity consuming 80% of his allocated budget), vendor 3 is allocated 5813 units 
(97% of capacity consuming 99.65% of his allocated budget) and vendor 4 is 
allocated 2750 units (91.7% of capacity consuming 100% of his allocated budget). 
In the corresponding solution given by Kumar et al. (2004), vendor 2 is allocated 
12714 units (85% of capacity consuming 89% of his allocated budget), vendor 3 is 
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allocated 5336 units (89% of capacity consuming 91% of his allocated budget) and 
vendor 4 is allocated 2750 units (65% of capacity consuming 71% of his allocated 
budget). Thus the results obtained by the application of GA in the present work are 
better and more genuine than those by Kumar et al. (2004). It may be added here 
that the percentages of capacity and budget consumption in the case of vendors 2 
and 3 were erroneously calculated by Kumar et al. (2004). 

Further, even though fuzziness was proposed in the work of Kumar et al.
(2004) for the three objectives, the final values obtained were essentially the same 
as those for crisp objectives. The values were exactly the same in the case of the 
second and third objectives, and only a small difference of $86 was present (i.e.,
$125000 – $124914) in the case of the first objective (Kumar et al. 2004). In fact, 
the fuzzy approach need not be used separately for this problem. A range may be 
decided for each objective and the problem can be solved using any crisp 
optimization method. If the final results obtained fall within this range, then this 
may be considered as a solution to that problem, and there is no need to convert the 
problem into a fuzzy one. In the present work, AHP can determine the relative 
importance of objectives, and GA can be used for finding the value of each 
objective, either ignoring the other objectives or considering all the objectives 
simultaneously with same, or different, weights of relative importance.         

It may be noted from Table 29.5 that the solution is not possible for x2 = 0. 
This is because that the summation of the remaining xi s will not be equal to the 
demand of 20000 units. In general, after deciding the weights of relative 
importance of the objectives, the management may consider different cases, such 
as all xj, any of xj=0, any two of xj=0, any three of xj=0, etc. Thus the number of 
vendors to employ can also be decided. The solution can be easily obtained using 
the proposed procedure of GA in conjunction with AHP, and the quota allocations 
can be decided. The management may then evaluate the practical business 
significance of the values obtained.  

29.6 General Remarks 

The objective of vendor selection is to identify vendors with the highest potential 
for meeting a company’s needs consistently and at an acceptable cost. Selection is 
a broad comparison of vendors based on a common set of criteria and measures. 
However, the level of details used for examining potential vendors may vary 
depending on a company’s needs. The overall goal of selection is to identify high-
potential vendors and their quota allocations. An effective and appropriate vendor 
assessment method is therefore crucial to the competitiveness of companies. Two 
approaches are suggested in this chapter for solving the vendor selection problem. 
The first approach is that of a multiple attribute decision-making problem, and 
GTMA and/or other MADM methods are applied. The second approach is that of a 
multiple objective decision-making problem. A model using AHP and GA methods 
together is proposed in this chapter for solving the vendor selection problem in a 
supply chain environment (treating the problem as a multiple objective decision-
making problem). AHP is used for logical assignment of weights of relative 
importance to the objectives, and GA is used to perform a global search for the 



Vendor Selection in a Supply Chain Environment        337 

optimum values of the decision variables (i.e., vendor order quantities). Thus the 
solution obtained by GA offers a global optimum, rather than a local optimum. 
Integration of the proposed approach with the supply chain will lead to reduced 
costs, improved product quality, improved flexibility to meet the needs of 
customers, and reduced lead time at different stages of the supply chain. Using the 
proposed methodology, the number of vendors to be employed can also be decided. 
The method proposed is a general one, and offers a systematic, more objective, and 
simple optimization approach that can be used for optimization of any system or 
process.   
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30
__________________________________________________________________ 

Group Decision Making in the Manufacturing 
Environment

30.1 Introduction 

Group decision making (GDM) is the process of making a judgment based upon 
the opinion of different individuals. Such decision making is a key component to 
the functioning of an organization, because organizational performance involves 
more than only one individual’s action. Moving from a single decision maker to a 
multiple decision-maker setting introduces a great deal of complexity into the 
analysis. Various methods of group decision making are used for a wide set of 
attributes ranging from the strictly technical, to the psychophysical and social, and 
finally to the logical and scientifically valid. The group decision making concept 
can be applied to the graph theory and matrix approach as well as to MADM 
techniques. There are different ways in which GDM can be carried out (Yu, 1973; 
Chen and Hwang, 1992; Dyer and Forman, 1992; Csáki et al., 1995; Forman and 
Penewati, 1998; Chen, 2000; Lai et al., 2002; Jaganathan et al., 2006). In this 
chapter, the group decision support system presented by Csáki et al. (1995) is 
considered. The method has been described in Section 3.3. However, the same is 
reproduced below for convenience. In this system, the method of calculating the 
group utility (group composite performance score) of alternative Ai (for i = 1, 2, 
….., N) is as follows: 

For each attribute Bj (for j = 1, 2, ….., M), the individual weights of 
importance of the attributes are aggregated into the group weights wj (for j = 1, 2, 
….., M): 
           n                        n                                                                                
wj = [  lg(k) wj  /  lg(k) j = 1, 2, ….. , M                                                       (30.1)                     
           k=1                     k=1 

The group qualification Qij of the alternative Ai against the attribute Bj is:  
            n                           n                                                                                
Qij  = [  lg(k) mij  /  lg(k)    j = 1, 2, ….. , M; i = 1, 2, ….. , N                           (30.2)                      
             k=1                     k=1 

lg(k) need not be equal to 1 in Equations 30.1 and 30.2. 
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The group utility Pi of alternative Ai is determined as the weighted algebraic 
mean of the aggregated qualification values with the aggregated weights. 
           M                    M                                                                                
Pi  = [  wj Qij  /  wj    i = 1, 2, ….. , N                                                       (30.3)                      
             j=1                 j=1 

In addition to the weighted algebraic means used in the above aggregations, 
weighted geometric means can also be used. The best alternative of group decision 
is the one associated with the highest value of Pi.

Now, an example of the robot selection problem described in Section 11.2.2 is 
considered to demonstrate the group decision making approach in the 
manufacturing environment.    

30.2 Example 

This example problem considers five robot selection attributes, and three 
alternative robots. A group consisting of three decision makers is considered. The 
first decision maker is given an importance weight of 0.5, the second decision 
maker an importance weight of 0.3, and the third decision maker an importance 
weight of 0.2. The objective and subjective information of the attributes is given in 
Table 30.1. The man–machine interface (MI) and programming flexibility (PF) are 
expressed subjectively in linguistic terms by the group of decision makers, and 
these attributes are assigned objective values with the help of Table 4.3. The data 
of the attributes are given in Table 30.2. The objective values of PC, LC, and RE 
remain intact, as these values are already crisp, and there is no need to have these 
converted by the decision-making group. 

Table 30.1. Robot selection attributes information 
__________________________________________________________________
Robot PC ($1,000)   LC (kg)        RE (mm)      MI         PF            
__________________________________________________________________
Robot 1 73        48            0.15 A, A, AA         H, VH, H           
Robot 2 71        46            0.18    AA, AA, BA   VH, H, AA           
Robot 3 75        51            0.14 BA, A, AA      H, VH, H              
__________________________________________________________________
PC: Purchasing cost; LC: Load carrying capacity; R: Repeatability error; MI: 
Man–machine interface; PF: Programming flexibility 
A: Average; AA: Above average; BA: Below average; H: High; VH: Very high   

Table 30.2. Data of the robot selection attributes as decided by the group 
____________________________________________________________________
Robot        PC ($1,000) LC (kg)   RE (mm)         MI             PF          
____________________________________________________________________
Robot 1 73  48  0.15     0.5, 0.5, 0.59        0.665, 0.665, 0.745         
Robot 2 71  46  0.18     0.59, 0.59, 0.41    0.745, 0.665, 0.59        
Robot 3 75  51  0.14     0.41, 0.5, 0.59      0.665, 0.745, 0.665        
____________________________________________________________________
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Using Equation 30.2, the values of MI and PF are aggregated, and the 
aggregated values are shown in Table 30.3. For example, the value of MI for robot 
1 is obtained as 0.5*0.5 + 0.3*0.5 + 0.2*0.59 = 0.518.     

Table 30.3. Objective data of the robot selection attributes
________________________________________________________________
Robot PC ($1,000) LC (kg)      RE (mm)            MI     PF          
________________________________________________________________
Robot 1 73   48        0.15  0.518 0.681              
Robot 2 71   46        0.18  0.554 0.69        
Robot 3 75    51        0.14  0.473 0.689        
________________________________________________________________

30.2.1 Application of Graph Theory and Matrix Approach 

In the present work, the attributes considered are PC, LC, R, MI, and PF. The 
values of the robot selection attributes, which are given in Table 30.3, are to be 
normalized. LC, MI, and PF are beneficial attributes, and higher values are 
desirable. Values of these attributes are normalized, as explained in Section 2.4, 
and are given in Table 30.4 in the respective columns. PC and R are non-beneficial 
attributes, and lower values are desirable. The values of these attributes for 
different robots are normalized, and are given in Table 30.4.  

Table 30.4. Normalized data of the robot selection attributes 
_____________________________________________________
Robot  PC LC RE MI PF         
_____________________________________________________
Robot 1  0.9726 0.9412 0.9333 0.9350 0.9869      
Robot 2  1.00 0.9020 0.7777 1.00 1.00               
Robot 3  0.9467 1.00 1.00 0.8538 0.9985      
_____________________________________________________

Let the three decision makers select the following relative importance 
assignments: 

            PC  LC             RE         MI  PF  
PC            -                       0.745,0.665,0.745  0.500,0.590,0.410  0.865,0.665,0.745  0.745,0.745,0.665 
LC      0.255,0.335,0.255         -                      0.255,0.255,0.335  0.590,0.410,0.500  0.500,0.590,0.590 
RE      0.500,0.410,0.590  0.745,0.745,0.665          -                     0.865,0.745,0.745  0.745,0.665,0.665 
MI      0.135,0.335,0.255  0.410,0.590,0.500  0.135,0.255,0.255       -                        0.410,0.410,0.500 
PF      0.255,0.255,0.335  0.500,0.410,0.410  0.255,0.335,0.335  0.590,0.590,0.500       -                             

The values of relative importance are aggregated using Equation 30.1, and the 
relative importance matrix thus obtained is given as: 

  PC LC RE MI PF 
 PC - 0.721 0.509 0.781 0.729 
 LC 0.279 - 0.271 0.518 0.545 
 RE 0.491 0.729 - 0.805 0.705 
 MI 0.219 0.482 0.195 - 0.428 
 PF 0.271 0.455 0.295 0.572 - 
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For example, the relative importance value of 0.721 for PC over LC is 
obtained from 0.5*0.745 + 0.3*0.665 + 0.2*0.745. 

The robot attributes digraph, robot attributes matrix of the digraph, and robot 
function for the matrix can be prepared. The value of the robot selection index is 
calculated, using the values of Ai and aij for each robot. 

The robot selection index values of different robots are given below in 
descending order: 

Robot 3  7.3135 
Robot 1  7.2413 
Robot 2  6.9304 

From the above values of the robot selection index, robot 3 is considered the 
best choice among the robots considered for the given industrial application under 
a group decision-making situation. The second choice is robot 1, and the third 
choice is robot 2.  

It may be noted that in example 2 described in Section 11.2.2.1, the ranking 
given by GTMA was robot 2 - robot 1 - robot 3. However, that was the case when 
a single decision maker was involved in assigning the values to the qualitative 
attributes MI and PF, and thereafter assigning the values of relative importance 
among the attributes.  

In the present example, three decision makers are involved in assigning the 
values to the subjective attributes MI and PF, and thereafter assigning the values of 
relative importance among the attributes. Thus, the ranking results obtained by 
group decision making are different in this example. 

30.2.2 SAW Method 

Let the three decision makers assign the following weights of importance to the 
attributes: 
WPC = 0.40, 0.35, 0.25 WLC = 0.08, 0.10, 0.12 WR = 0.40, 0.35, 0.40  
WMI = 0.05, 0.10, 0.10 WPF = 0.08, 0.10, 0.13  

Using Equation 30.1, these weights are aggregated and the aggregated group 
weights are given below: 
WPC = 0.35, WLC = 0.094, WR = 0.385, WMI = 0.075, and WPF = 0.096.  

Using these weights and the normalized data of the attributes for different 
robots given in Table 30.4, the robot selection index values are calculated, and are 
arranged in descending order of the index.

Robot 3  0.9702 
Robot 1  0.9531 
Robot 2  0.9052 

The ranking given by the SAW method is the same as that given by GTMA in 
Section 30.2.1.   

30.2.3 WPM 

Using the same weights as those selected for the SAW method, the application of 
WPM leads to the following ranking: 
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Robot 3  0.9693 
Robot 1  0.9529 
Robot 2  0.8990 

This method also suggests robot 3 as the first choice. 

30.2.4 TOPSIS Method 

The quantitative values of the robot selection attributes, which are given in Table 
30.4, are normalized. Relative importance of attributes (aij) is assigned using the 
SAW method as explained in Section 30.2.2 and these are: WPC = 0.35, WLC = 
0.094, WR = 0.385, WMI = 0.075, and WPF = 0.096.  

Ideal (best) and negative ideal (worst) solutions are calculated, and these are 
given as:  
VPC

+ = 0.1965  VPC
- = 0.2076 

VLC
+ = 0.0572  VLC

- = 0.0516 
VR

+ = 0.1903  VR
-  =  0.2447 

VMI
+ = 0.0465  VMI

- = 0.0397 
VPF

+ = 0.0557  VPF
- = 0.0550 

Separation measures are calculated and these are: 
S1

+ = 0.0387  S1
- = 0.0178 

S2
+ = 0.0124  S2

- = 0.0548 
S3

+ = 0.0548  S3
- = 0.0124 

The relative closeness of a particular alternative to the ideal solution is 
calculated (i.e., robot selection index) and these are:  
P1 = 0.3153, P2 = 0.8155, and P3 = 0.1847 

The alternative robots are arranged in descending order of their robot selection 
index. This can be arranged as 2-1-3. 

30.2.5 Modified TOPSIS Method 

The robot selection index values are calculated and these are given below in 
descending order:  

Robot 2  0.7770 
Robot 1  0.3337 
Robot 3  0.2236 

Thus, both the simple and modified TOPSIS methods suggest robot 2 as the 
first choice.  

30.3 General Remarks 

This chapter presents the concept of group decision-making in which a number of 
decision makers are involved. The example problem considered here is the robot 
selection for a given industrial application. However, in general, the concept can be 
applied to any group decision-making situation in the manufacturing environment. 
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Appendix
__________________________________________________________________ 

Computer Codes 

A.1 Computer Code for Calculation of Permanent Function of a 
Matrix

#include<stdio.h> 
#include<conio.h> 

/*************************************************************************
Variables Used

int totalColumn Number of columns and rows in the matrix 
double matrix[50][50] The matrix input by User 
int z[50]  Variable Array used for calculation of perof2 

Functions Used

double per(int)     Recursive function that calculates the value of permanent 
double perof2();     Calculates the permanent of last 2 elements 
*************************************************************************/
int totalColumn; 
double matrix[50][50]; 
int z[50]; 

double per(int); 
double perof2(); 
/*************************************************************************
Local Variables for main function

int i  Temporary integer variable 
int j  Temporary integer variable 
double k  Double variable that stores the value returned by per() 
**********************************************************************/
void main() 
{
 int i,j; 
 double k; 
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 clrscr(); 
 printf("Enter the size of the matrix:"); 
 scanf("%d",&totalColumn); 
/*Input from user the elements of Matrix that is n*n, i.e., totalColumn*totalColumn*/ 
 printf("\nEnter the elements of matrix:\n"); 
for (i = 0;i < totalColumn-1;i++) 
{
  for(j = 0;j < totalColumn-1;j++) 
{
  printf(" Element [%d][%d]: ", i+1,j+1);     

scanf("%lf",&matrix[i][j]); 
 } 
}

Printf("\n\n\n\n\nPress any key to continue…."); 
Getch();
Clscr();
 /*Show to user the matrix formed or inputted*/ 
 printf("The matrix is: \n\n"); 
 printf("\n\t"); 
 for(i=0;i<=totalColumn-1;i++) 
 { 
  for(j=0;j<=totalColumn-1;j++) 
  { 
   printf("%1f ",matrix[i][j]); 

  } 
  printf("\n\t"); 

 } 
 k=per(totalColumn); 
 printf("\n\nThe final Value is %lf",k); 
 getch(); 
}
/***********************************************************************
This algorithm works as follows... It calculates the values in a row number, i.e., firstly it will 
call the value of the permanent for first element in the first row, then adds the permanent of 
second element of the first row and the process continues... 
z keeps the check for per2, what is to be calculated for per2. per will make the values for all 
z elements '1' except those 2 elements whose per2 has to be calculated. 
Variables used in per 
int i Temporary integer variable 
double res Double variable for storing the value returned from per() 
double res2 Double variable for storing the value returned from perof2() 
double sum Variable for calculating the sum 
***********************************************************************/
double per(int n) 
{
 int i; 

double res, res2, sum=0;; 
 if((n-2)!=0) 
 { 
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  int c=0; 
  for(i=1;i<=totalColumn;i++) 
  { 
   if(z[i]==0) 
   { 
    z[i]=1; 
    z[c]=0; 
    c=i; 
    res=per(n-1); 
    res=(double)(res*matrix[totalColumn-n][i-1]); 
    sum=sum+res; 
   } 
  } 
  z[c]=0; 
 } 
 else 
 { 
  res2=perof2(); 
  return(res2); 
 } 
 return(sum); 
}
/***********************************************************************
This function calculates the value of the matrix 2*2. The 2*2 matrix is defined by the array 
z[]. 
Variables used in perof2 
int i,j Temporary integer variable 
int n,m Temporary integer variable 
int flag Contains value 0 or 1, acts as Boolean 
double res Double variable for storing the value calculated by multiplication 
***********************************************************************/
double perof2() 
{
 int i,j,flag=0,n,m; 
double res; 
 for(i=1;i<=totalColumn;i++) 
 { 
  if(z[i]==0) 
  { 
   if(flag==0) 
   { 
    n=i; 
    flag=1; 
   } 
   else 
   m=i; 
  } 
 } 
 res=(double)((matrix[totalColumn-2][n-1]*matrix[totalColumn-1][m-
1])+(matrix[totalColumn-2][m-1]*matrix[totalColumn-1][n-1])); 
 return res; 
}
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A.2 Computer Code for TOPSIS Method Which Uses AHP 
Method for Assigning the Values of Relative Importance to the 
Attributes

#include <iostream.h> 
#include <process.h> 
#include <math.h> 
#include <conio.h> 
#include <iomanip.h> 
#define ERR 7 
typedef struct Attribute 
{
 int type; 
}Attrib;
double **DiMatrix, **RiMatrix, *A2Matrix, *A3Matrix, **V1Matrix; 
float **RelMatrix; 
int NoAttrib, NoLayout; 
long double Lambda, CI, CR; 
double RI[] ={0.0, 0.0, 0.52, 0.89, 1.11, 1.25, 1.35, 1.40, 1.45, 1.49, 1.52, 1.54, 1.56, 1.58, 
1.59};
Attrib * InfoAttrib; 
double *MaxAttrib, *MinAttrib; 
double *SeprateMax, *SeprateMin, *Closeness; 
void GetAttribLayout() 
{
cout<<"Enter the number of attributes to be considered"<<endl; 
cin>>NoAttrib; 
if(NoAttrib > 15) 
{
cout<<"This program is hardcoded for 15 attributes for demonstration purpose and this can 
be easily extended to any number of attributes"<<endl; 
exit(0); 
}
cout<<endl<<"Enter the number of layouts to be considered"<<endl; 
cin>>NoLayout; 
InfoAttrib = new Attrib[NoAttrib]; 
char input = '0'; 
for(int Count =0; Count < NoAttrib; Count++) 
{
cout<<"If attribute "<<(Count+1)<<" is NON-BENEFICIAL then enter 1 otherwise press 
any key "<<endl; 
cin>>input;
if(input == '1') 
InfoAttrib[Count].type = 0; 
else 
InfoAttrib[Count].type = 1; 
cin.ignore();
}
}
void ValidateAttribLayout(char &KeyboardResponse) 
{
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cout<<endl<<"The entered number of attributes is "<<NoAttrib<<endl; 
cout<<"The entered number of layouts is "<<NoLayout<<endl<<endl; 
for(int Count =0; Count < NoAttrib; Count++) 
{
cout<<"The type of Attribute "<<(Count+1)<<" is "<<(InfoAttrib[Count].type? "Beneficial" 
: "Non-Beneficial")<<endl; 
}
cout<<"If the information is correct then enter 1 and inorder to correct press 0"<<endl; 
cin>>KeyboardResponse; 
if(KeyboardResponse == '1' ) 
;
else 
KeyboardResponse = '0'; 
}
void AllocateMemory() 
{
DiMatrix = new double*[NoLayout]; 
RiMatrix = new double*[NoLayout]; 
V1Matrix = new double*[NoLayout]; 
RelMatrix = new float*[NoAttrib]; 
for(int Count = 0; Count < NoLayout; Count++) 
{
DiMatrix[Count] = new double[NoAttrib]; 
RiMatrix[Count] = new double[NoAttrib]; 
V1Matrix[Count] = new double[NoAttrib]; 
}
for(Count = 0; Count < NoAttrib; Count++) 
RelMatrix[Count] = new float[NoAttrib]; 
// if(DiMatrix == NULL || RiMatrix == NULL || V1Matrix == NULL) 
//  throw ERR; 
}
void GetDiMatrixInput() 
{
//file://clrscr();
cout<<"Please enter the row wise values for the Di MATRIX "<<endl; 
cout<<"Like shown below for 3 attributes and 3 layouts"<<endl<<endl;
cout<<"6.667 7.778"<<endl; 
cout<<"7.89 6.78"<<endl; 
cout<<"98.768 78.78 \n"<<endl; 
cout<<"You have to enter "<<NoLayout<<" by "<<NoAttrib<<" Matrix"<<endl; 
for(int count = 0; count < NoLayout; count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
cin>>DiMatrix[count][InnerCount]; 
}
}
void ValidateDiMatrix(char &KeyboardResponse) 
{
cout<<endl<<"Please confirm the values entered "<<endl; 
for(int count = 0; count < NoLayout; count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
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cout<<DiMatrix[count][InnerCount]<<"  "; 
cout<<endl;
}
cout<<"If the information is correct then enter 1 and inorder to correct press 0"<<endl; 
cin.ignore();
cin>>KeyboardResponse; 
if(KeyboardResponse == '1' ) 
;
else 
KeyboardResponse = '0'; 
}
void CalculateRiMatrix() 
{
double *Summation =  new double[NoAttrib]; 
for(int Count = 0; Count < NoAttrib; Count++) 
Summation[Count] = 0.0; 
for(Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoLayout; InnerCount++) 
{
Summation[Count] += pow(DiMatrix[InnerCount][Count], 2); 
}
Summation[Count] = pow(Summation[Count], 0.5); 
}
for(Count = 0; Count < NoLayout; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
RiMatrix[Count][InnerCount] = DiMatrix[Count][InnerCount] / Summation[InnerCount]; 
}
delete [] Summation; 
}
void GetRelativeAttribMatrix() 
{
// file://clrscr(); 
float Temp; 
cout<<"Please enter the Relative Matrix "<<endl; 
cout<<"Like shown below for 3 attributes"<<endl<<endl; 
cout<<"6.667 7.778"<<endl; 
cout<<"7.89 6.78"<<endl; 
cout<<"98.768 78.78 \n"<<endl; 
cout<<"U have to enter "<<NoAttrib<<" By "<<NoAttrib<<" MATRIX... Enter fractions 
where applicable"<<endl; 
for(int Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
cin>>Temp;
if(Count == InnerCount) 
RelMatrix[Count][InnerCount] = 1; 
else if(Count > InnerCount) 
RelMatrix[Count][InnerCount] = 1 / RelMatrix[InnerCount][Count]; 
else 



Computer Codes        353 

RelMatrix[Count][InnerCount] = Temp; 
}
}
}
void ValidateRelativeMatrix(char &KeyboardResponse) 
{
cout<<endl<<"Please confirm the values entered "<<endl; 
for(int count = 0; count < NoAttrib 
; count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
cout<<RelMatrix[count][InnerCount]<<"  "; 
cout<<endl;
}
cout<<"If the information is correct then enter 1 and inorder to correct press 0"<<endl; 
cin.ignore();
cin>>KeyboardResponse; 
if(KeyboardResponse == '1' ) 
;
else 
KeyboardResponse = '0'; 
}
void CalculateWeightedMatrix() //file://The A2 Matrix 
{
A2Matrix = new double[NoAttrib]; 
double *GM = new double[NoAttrib]; 
for(int Count = 0; Count < NoAttrib; Count++) 
GM[Count] = 1.0; 
for(Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
GM[Count] *= RelMatrix[Count][InnerCount]; 
}
double Temp1 = 1.0 / NoAttrib, Temp2 = GM[Count]; 
GM[Count] = pow(Temp2, Temp1); 
}
double Sum = 0.0; 
for(Count = 0; Count < NoAttrib; Count++) 
Sum += GM[Count]; 
for(Count = 0; Count < NoAttrib; Count++) 
{
GM[Count] /= Sum; 
A2Matrix[Count] = GM[Count]; 
}
cout<<"\n\n";
cout<<"The normalised weights of each attribute are ....."<<endl; 
for(Count = 0; Count < NoAttrib; Count++) 
cout<<A2Matrix[Count]<<endl; 
delete [] GM; 

}
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void CalculateA3Matrix()  //file://Multiplication of A1 and A2 
{
A3Matrix = new double[NoAttrib]; 
for(int Count = 0; Count < NoAttrib; Count++) 
A3Matrix[Count] = 0.0; 
for(Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
A3Matrix[Count] += RelMatrix[Count][InnerCount] * A2Matrix[InnerCount]; 
}
}
cout<<"\n\n";
cout<<"The A3 Matrix is "<<endl; 
for(Count = 0; Count < NoAttrib; Count++) 
cout<<A3Matrix[Count]<<endl; 
}
void CalculateLambdaMax() 
{
Lambda = 0.0; 
for(int Count = 0; Count < NoAttrib; Count++) 
Lambda += (A3Matrix[Count] / A2Matrix[Count]); 
Lambda /= NoAttrib; 
cout<<"\n\n";
cout<<"The value of lamda is "<<Lambda; 
}
void CalculateConsistencyRatio() //file://CR 
{
CI = ((Lambda - NoAttrib) / (NoAttrib - 1.0)); 
CR = CI / RI[NoAttrib - 1]; 
if( CR > 0.1) 
{
cout<<"\n\n";
cout<<"There is/are inconsistencies made in the judgements so please try other values 
"<<endl; 
getch(); 
exit(0); 
}
else 
{
cout<<"\n\n"<<"There is good consistency in the judgements therefore the calculation \nwill 
proceed .... and the value of Consistency Ratio is "<<CR<<endl; 
}
}
void CalculateNormalisedMatrix() 
{
for(int Count = 0; Count < NoLayout; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
V1Matrix[Count][InnerCount] = RiMatrix[Count][InnerCount] * A2Matrix[InnerCount]; 
}
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}
cout<<"\n\n";
cout<<"The weighted Normalised Matrix is \n\n"; 
for(Count = 0; Count < NoLayout; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
cout<<V1Matrix[Count][InnerCount]<<"    "; 
}
cout<<endl;
}
}

void GetMaxMinAttrib() 
{
MaxAttrib = new double[NoAttrib]; 
MinAttrib = new double[NoAttrib]; 
for(int Count =0; Count < NoAttrib; Count++) 
{
MaxAttrib[Count] = V1Matrix[0][Count]; 
MinAttrib[Count] = V1Matrix[0][Count]; 
for(int InnerCount = 0; InnerCount < NoLayout; InnerCount++) 
{
if(InfoAttrib[Count].type == 1) 
{
if(V1Matrix[InnerCount][Count] > MaxAttrib[Count]) 
MaxAttrib[Count] = V1Matrix[InnerCount][Count]; 
if(V1Matrix[InnerCount][Count] < MinAttrib[Count]) 
MinAttrib[Count] = V1Matrix[InnerCount][Count]; 
}
else if(InfoAttrib[Count].type == 0) 
{
if(V1Matrix[InnerCount][Count] > MinAttrib[Count]) 
MinAttrib[Count] = V1Matrix[InnerCount][Count]; 
if(V1Matrix[InnerCount][Count] < MaxAttrib[Count]) 
MaxAttrib[Count] = V1Matrix[InnerCount][Count]; 
}
}
}
cout<<"\n\n";
cout<<"The ideal(BEST) and Negative-Ideal(WORST) solution are "<<endl; 
for(Count = 0; Count < NoAttrib; Count++) 
cout<<MaxAttrib[Count]<<"  "<<MinAttrib[Count]<<endl; 
}
void CalculateSeprateMeasures() 
{
SeprateMax = new double[NoLayout]; 
SeprateMin = new double[NoLayout]; 
for(int Count = 0; Count < NoLayout; Count++) 
{
SeprateMax[Count] = 0.0; 
SeprateMin[Count] = 0.0; 
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}
double Temp = 0.0; 
for(Count = 0; Count < NoLayout; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
Temp = V1Matrix[Count][InnerCount] - MaxAttrib[InnerCount]; 
SeprateMax[Count] += pow(Temp, 2); 
Temp = V1Matrix[Count][InnerCount] - MinAttrib[InnerCount]; 
SeprateMin[Count] += pow(Temp, 2); 
}
Temp = SeprateMax[Count]; 
SeprateMax[Count] = pow(Temp, .5); 
Temp = SeprateMin[Count]; 
SeprateMin[Count] = pow(Temp, .5); 
}
cout<<"\n\n";
cout<<"The Separation measures are "<<endl; 
for(Count = 0; Count < NoLayout; Count++) 
cout<<SeprateMax[Count]<<"  "<<SeprateMin[Count]<<endl; 
}
void CalculateRelativeCloseness() 
{
Closeness = new double[NoLayout]; 
double Sum = 0.0; 
for(int Count = 0; Count < NoLayout; Count++) 
{
Sum = SeprateMax[Count] + SeprateMin[Count]; 
Closeness[Count] = SeprateMin[Count] / Sum; 
}
}
void DisplayResults() 
{
double temp; 
int *Results = new int[NoLayout], itemp; 
for(int j = 0; j < NoLayout; j++) 
Results[j] = j + 1; 
int i; 
for(int Count = 1;  Count < NoLayout; Count++) 
{
itemp = Results[Count]; 
temp = Closeness[Count]; 
i = Count - 1; 
while((i >= 0) && (temp > Closeness[i])) 
{
Closeness[i + 1] = Closeness[i]; 
Results[i + 1] = Results[i]; 
i--;
}
Closeness[i + 1] = temp; 
Results[i + 1] = itemp; 
}
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cout<<"\n\n";
cout<<"The final results are "<<endl; 
cout<<"StripLayout Index"<<setw(20)<<"No of Layout"<<endl; 
for(Count = 0; Count < NoLayout; Count++) 
cout<<Closeness[Count]<<setw(20)<<Results[Count]<<endl; 
delete [] Results; 
}
void CleanUp() 
{
for(int Count = 0; Count < NoLayout; Count++) 
{
delete [] DiMatrix[Count]; 
delete [] RiMatrix[Count]; 
delete [] V1Matrix[Count]; 
}
for(Count = 0; Count < NoAttrib; Count++) 
delete [] RelMatrix[Count]; 
delete [] DiMatrix; 
delete [] RiMatrix; 
delete [] V1Matrix; 
delete [] RelMatrix; 
delete [] MaxAttrib; 
delete [] MinAttrib; 
delete [] SeprateMin; 
delete [] SeprateMax; 
delete [] Closeness; 
DiMatrix = NULL; 
RiMatrix = NULL; 
V1Matrix = NULL; 
MaxAttrib = NULL; 
MinAttrib = NULL; 
SeprateMin = NULL; 
SeprateMax = NULL; 
Closeness = NULL; 
}
void main() 
{
// file://clrscr(); 
char KeyboardResponse; 
GetAttribLayout(); 
ValidateAttribLayout(KeyboardResponse); 
cin.ignore();
while(KeyboardResponse != '1') 
{
//file://clrscr();
GetAttribLayout(); 
ValidateAttribLayout(KeyboardResponse); 
cin.ignore();
}
try 
{
AllocateMemory(); 
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}
catch(...) 
{
cout<<"Memory allocation failed"<<endl; 
exit(0); 
}
GetDiMatrixInput(); 
ValidateDiMatrix(KeyboardResponse); 
cin.ignore();
while(KeyboardResponse != '1') 
{
GetDiMatrixInput(); 
ValidateDiMatrix(KeyboardResponse); 
cin.ignore();
}
CalculateRiMatrix(); 
GetRelativeAttribMatrix(); 
ValidateRelativeMatrix(KeyboardResponse); 
cin.ignore();
while(KeyboardResponse != '1') 
{
GetRelativeAttribMatrix(); 
ValidateRelativeMatrix(KeyboardResponse); 
cin.ignore();
}
CalculateWeightedMatrix(); 
getch(); 
CalculateA3Matrix(); 
getch(); 
CalculateLambdaMax(); 
getch(); 
CalculateConsistencyRatio(); 
getch(); 
CalculateNormalisedMatrix(); 
getch(); 
GetMaxMinAttrib(); 
getch(); 
CalculateSeprateMeasures(); 
getch(); 
CalculateRelativeCloseness(); 
DisplayResults(); 
getch(); 
CleanUp();
}
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A.3 Computer Code for TOPSIS Method Which Uses the 
Weights of Relative Importance inputted by the User (Without 
Using AHP) 

#include <iostream.h> 
#include <process.h> 
#include <math.h> 
#include <conio.h> 
#include <iomanip.h> 
#define ERR 7 
typedef struct Attribute 
{
int type; 
}Attrib;
double **DiMatrix, **RiMatrix, *A2Matrix, *A3Matrix, **V1Matrix,**Wtdmatrix; 
double **RelMatrix,*weights; 
int NoAttrib, NoLayout; 
long double Lambda, CI, CR; 
long double RI[] ={0.0, 0.0, 0.52, 0.89, 1.11, 1.25, 1.35, 1.40, 1.45, 1.49, 1.52, 1.54, 1.56, 
1.58, 1.59}; 
Attrib * InfoAttrib; 
double *MaxAttrib, *MinAttrib; 
double *SeprateMax, *SeprateMin, *Closeness; 
void wtdnorm(); 
void AllocateMemory() 
{int s;  s=0; 
DiMatrix = new double*[NoLayout]; 
RiMatrix = new double*[NoLayout]; 
//V1Matrix = new double*[NoLayout]; 
// Wtdmatrix = new double*[NoLayout]; 
RelMatrix = new double*[NoAttrib]; 
weights = new double[NoAttrib]; 
for(int Count = 0; Count < NoLayout; Count++) 
{
DiMatrix[Count] = new double[NoAttrib]; 
RiMatrix[Count] = new double[NoAttrib]; 
// V1Matrix[Count] = new double[NoAttrib]; 
//  Wtdmatrix[Count] = new double[NoAttrib]; 
}
//for(Count = 0; Count < NoAttrib; Count++) 
//  RelMatrix[Count] = new double[NoAttrib]; 
// if(DiMatrix == NULL || RiMatrix == NULL || V1Matrix == NULL) 
//  throw ERR; 
}
void GetAttribLayout() 
{
cout<<"Enter the number of attributes to be considered"<<endl; 
cin>>NoAttrib; 
if(NoAttrib > 15) 
{
exit(0); 
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}
cout<<endl<<"Enter the number of layouts to be considered"<<endl; 
cin>>NoLayout; 
InfoAttrib = new Attrib[NoAttrib]; 
char input = '0'; 
AllocateMemory(); 
for(int Count =0; Count < NoAttrib; Count++) 
{
cout<<"If attribute "<<(Count+1)<<" is NON-BENEFICIAL then enter 1 otherwise press 
any key "<<endl; 
cin>>input;
if(input == '1') 
InfoAttrib[Count].type = 0; 
else 
InfoAttrib[Count].type = 1; 
cin.ignore();
}
}
void ValidateAttribLayout(char &KeyboardResponse) 
{
cout<<endl<<"The entered number of attributes is "<<NoAttrib<<endl; 
cout<<"The entered number of layouts is "<<NoLayout<<endl<<endl; 
for(int Count =0; Count < NoAttrib; Count++) 
{
cout<<"The type of Attribute "<<(Count+1)<<" is "<<(InfoAttrib[Count].type? "Beneficial" 
: "Non-Beneficial")<<endl; 
}
cout<<"If the information is correct then enter 1 and inorder to correct press 0"<<endl; 
cin>>KeyboardResponse; 
if(KeyboardResponse == '1' ) 
;
else 
KeyboardResponse = '0'; 
}
void GetDiMatrixInput() 
{
//file://clrscr();
cout<<"Please enter the row wise values for the Di MATRIX "<<endl; 
cout<<"Like shown below for 3 attributes and 3 layouts"<<endl<<endl;
cout<<"6.667 7.778"<<endl; 
cout<<"7.89 6.78"<<endl; 
cout<<"98.768 78.78 \n"<<endl; 
cout<<"You have to enter "<<NoLayout<<" by "<<NoAttrib<<" Matrix"<<endl; 
for(int count = 0; count < NoLayout; count++) 
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
cin>>DiMatrix[count][InnerCount]; 
}
void getweights() 
{
//file://clrscr();
int flag=0; 
while (!flag) 
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{
cout << "\n Enter  "<<NoAttrib<<" Weights :"; 
float s=0.0; 
for(int Count =0; Count < NoAttrib; Count++) 
{

cin>>A2Matrix[Count]; 
 s=s+A2Matrix[Count]; 
}
 if (s == 1.0) 
 { 
 for(int Count =0; Count < NoAttrib; Count++) 
 cout<< "Weight : "<<Count+1<< "="<<A2Matrix[Count]<<endl; 
 getch(); 
 //wtdnorm(); 
 flag=1; 
 } 
     } 
}
/*void wtdnorm() 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
for(int count = 0; count < NoLayout; count++) 
V1Matrix[count][InnerCount]=A2Matrix[InnerCount]*RiMatrix[count][InnerCount]; 
       for(int cnt = 0; cnt < NoLayout; cnt++) 
 { 
 for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
 cout <<  "   " << V1Matrix[cnt][InnerCount]; 
 cout << endl; 
 } 
  getch(); 
} */ 
void ValidateDiMatrix(char &KeyboardResponse) 
{
cout<<endl<<"Please confirm the values entered "<<endl<<endl; 
for(int count = 0; count < NoLayout; count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
}
void getweights() 
{
//file://clrscr();

int flag=0; 
      while (!flag) 
      { 
       cout << "\n Enter  "<<NoAttrib<<" Weights :"; 
     float s=0.0; 
     for(int Count =0; Count < NoAttrib; Count++) 
     { 

   cin>>A2Matrix[Count]; 
   s=s+A2Matrix[Count]; 
      } 
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 if (s == 1.0) 
 { 
 for(int Count =0; Count < NoAttrib; Count++) 
 cout<< "Weight : "<<Count+1<< "="<<A2Matrix[Count]<<endl; 
 getch(); 
 //wtdnorm(); 
 flag=1; 
 } 
     } 
}
/*void wtdnorm() 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
for(int count = 0; count < NoLayout; count++) 
V1Matrix[count][InnerCount]=A2Matrix[InnerCount]*RiMatrix[count][InnerCount]; 

for(int cnt = 0; cnt < NoLayout; cnt++) 
 { 
 for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
 cout <<  "   " << V1Matrix[cnt][InnerCount]; 
 cout << endl; 
 } 
  getch(); 

} */ 

void ValidateDiMatrix(char &KeyboardResponse) 
{
cout<<endl<<"Please confirm the values entered "<<endl<<endl; 
for(int count = 0; count < NoLayout; count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
cout<<DiMatrix[count][InnerCount]<<"  "; 
cout<<endl;
}
cout<<"If the information is correct then enter 1 and inorder to correct press 0"<<endl; 
cin.ignore();
cin>>KeyboardResponse; 
if(KeyboardResponse == '1' ) 
;
else 
KeyboardResponse = '0'; 
}
/*void CalculateRiMatrix() 
{
double *Summation =  new double[NoAttrib]; 
for(int Count = 0; Count < NoAttrib; Count++) 
Summation[Count] = 0.0; 
for(Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoLayout; InnerCount++) 
{
Summation[Count] += pow(DiMatrix[InnerCount][Count], 2); 
}
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Summation[Count] = pow(Summation[Count], 0.5); 
}
for(Count = 0; Count < NoLayout; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
RiMatrix[Count][InnerCount] = DiMatrix[Count][InnerCount] / Summation[InnerCount]; 
cout <<RiMatrix[Count][InnerCount] <<"   "; 
}
cout << endl; 
getch(); 
}
delete [] Summation; 
} */ 
void CalculateRiMatrix() 
{
double *Summation =  new double[NoAttrib]; 
for(int Count = 0; Count < NoAttrib; Count++) 
Summation[Count] = 0.0; 
for(Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoLayout; InnerCount++) 
{
Summation[Count] += pow(DiMatrix[InnerCount][Count], 2); 
}
Summation[Count] = pow(Summation[Count], 0.5); 
}
for(Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoLayout; InnerCount++) 
{
RiMatrix[InnerCount][Count] = DiMatrix[InnerCount][Count] / Summation[Count]; 
//    cout <<RiMatrix[Count][InnerCount] <<"   "; 
}
cout << endl; 
}
delete [] Summation; 
}
void printRiMatrix() 
{

for(int Count = 0; Count < NoLayout; Count++) 
  { 
    for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
  cout <<RiMatrix[Count][InnerCount]<< "  "; 
    cout << endl; 
   } 
 } 
/*void GetRelativeAttribMatrix() 
{
// file://clrscr(); 
float Temp; 
cout<<"Please enter the Relative Matrix "<<endl; 
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cout<<"Like shown below for 3 attributes"<<endl<<endl; 
cout<<"6.667 7.778"<<endl; 
cout<<"7.89 6.78"<<endl; 
cout<<"98.768 78.78 \n"<<endl; 
cout<<"U have to enter "<<NoAttrib<<" By "<<NoAttrib<<" MATRIX... Enter fractions 
where applicable"<<endl; 
for(int Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
cin>>Temp;
if(Count == InnerCount) 
RelMatrix[Count][InnerCount] = 1; 
else if(Count > InnerCount) 
RelMatrix[Count][InnerCount] = 1 / RelMatrix[InnerCount][Count]; 
else 
RelMatrix[Count][InnerCount] = Temp; 
}
}
}
*/
/*
void normalizedmatrix() 
{
// file://clrscr(); 
float Temp; 
for(int Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoLayout; InnerCount++) 
{
double denom =0.0; 
for(int Icnt = 0; Icnt < NoLayout; Icnt++) 
denom += DiMatrix[Count][Icnt] * DiMatrix[Count][Icnt] ; 
RelMatrix[Count][InnerCount] = DiMatrix[Count][InnerCount] / sqrt(denom); 
}
}
}   */ 
/*
void ValidateRelativeMatrix(char &KeyboardResponse) 
{
cout<<endl<<"Please confirm the values entered "<<endl; 
for(int count = 0; count < NoAttrib 
; count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
cout<<RelMatrix[count][InnerCount]<<"  "; 
cout<<endl;
}
cout<<"If the information is correct then enter 1 and inorder to correct press 0"<<endl; 
cin.ignore();
cin>>KeyboardResponse; 
if(KeyboardResponse == '1' ) 
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 ; 
else 
KeyboardResponse = '0'; 
}
void CalculateWeightedMatrix() //file://The A2 Matrix 
{
A2Matrix = new double[NoAttrib]; 
double *GM = new double[NoAttrib]; 
for(int Count = 0; Count < NoAttrib; Count++) 
GM[Count] = 1.0; 
for(Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
GM[Count] *= RelMatrix[Count][InnerCount]; 
}
double Temp1 = 1.0 / NoAttrib, Temp2 = GM[Count]; 
GM[Count] = pow(Temp2, Temp1); 
}
double Sum = 0.0; 
for(Count = 0; Count < NoAttrib; Count++) 
Sum += GM[Count]; 
for(Count = 0; Count < NoAttrib; Count++) 
{
GM[Count] /= Sum; 
A2Matrix[Count] = GM[Count]; 
}
cout<<"\n\n";
cout<<"The normalised weights of each attribute are ....."<<endl; 
for(Count = 0; Count < NoAttrib; Count++) 
cout<<A2Matrix[Count]<<endl; 
delete [] GM; 
}
void CalculateA3Matrix()  //file://Multiplication of A1 and A2 
{
A3Matrix = new double[NoAttrib]; 
for(int Count = 0; Count < NoAttrib; Count++) 
A3Matrix[Count] = 0.0; 
for(Count = 0; Count < NoAttrib; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
A3Matrix[Count] += RelMatrix[Count][InnerCount] * A2Matrix[InnerCount]; 
}
}
cout<<"\n\n";
cout<<"The A3 Matrix is "<<endl; 
for(Count = 0; Count < NoAttrib; Count++) 
cout<<A3Matrix[Count]<<endl; 
}
void CalculateLambdaMax() 
{
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Lambda = 0.0; 
for(int Count = 0; Count < NoAttrib; Count++) 
Lambda += (A3Matrix[Count] / A2Matrix[Count]); 
Lambda /= NoAttrib; 
cout<<"\n\n";
cout<<"The value of lamda is "<<Lambda; 
}
void CalculateConsistencyRatio() //file://CR 
{
CI = ((Lambda - NoAttrib) / (NoAttrib - 1.0)); 
cout << "CI :"<< CI; getch(); 
CR = CI / RI[NoAttrib - 1]; 
cout << "CR :"<<CR;          getch(); 
if( CR > 0.1) 
{
cout<<"\n\n";
cout<<"There is/are inconsistencies made in the judgements so please try other values 
"<<endl; 
getch(); 
exit(0); 
}
else 
{
cout<<"\n\n"<<"There is good consistency in the judgements therefore the calculation \nwill 
proceed .... and the value of Consistency Ratio is "<<CR<<endl; 
}
} */ 
void CalculateNormalisedMatrix() 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
for(int Count = 0; Count < NoLayout; Count++) 
V1Matrix[Count][InnerCount] = RiMatrix[Count][InnerCount] * A2Matrix[InnerCount]; 
//  cout << V1Matrix[Count][InnerCount]<< "  "; 
//  cout << endl; 
}
cout<<"\n\n";
cout<<"The weighted Normalised Matrix is \n\n"; 
for(int Count = 0; Count < NoLayout; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
cout<<V1Matrix[Count][InnerCount]<<"    "; 
}
cout<<endl;
}
}
void GetMaxMinAttrib() 
{
MaxAttrib = new double[NoAttrib]; 
MinAttrib = new double[NoAttrib]; 
for(int Count =0; Count < NoAttrib; Count++) 
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{
MaxAttrib[Count] = RiMatrix[0][Count]; 
MinAttrib[Count] = RiMatrix[0][Count]; 
for(int InnerCount = 0; InnerCount < NoLayout; InnerCount++) 
{
if(InfoAttrib[Count].type == 1) 
{
if(RiMatrix[InnerCount][Count] > MaxAttrib[Count]) 
MaxAttrib[Count] = RiMatrix[InnerCount][Count]; 
if(RiMatrix[InnerCount][Count] < MinAttrib[Count]) 
MinAttrib[Count] = RiMatrix[InnerCount][Count]; 
}
else if(InfoAttrib[Count].type == 0) 
{
if(RiMatrix[InnerCount][Count] > MinAttrib[Count]) 
MinAttrib[Count] = RiMatrix[InnerCount][Count]; 
if(RiMatrix[InnerCount][Count] < MaxAttrib[Count]) 
MaxAttrib[Count] = RiMatrix[InnerCount][Count]; 
}
}
}
cout<<"\n\n";
cout<<"The ideal(BEST) and Negative-Ideal(WORST) solution are "<<endl; 
for(Count = 0; Count < NoAttrib; Count++) 
cout<<MaxAttrib[Count]<<"  "<<MinAttrib[Count]<<endl; 
}
void CalculateSeprateMeasures() 
{
SeprateMax = new double[NoLayout]; 
SeprateMin = new double[NoLayout]; 
for(int Count = 0; Count < NoLayout; Count++) 
{
SeprateMax[Count] = 0.0; 
SeprateMin[Count] = 0.0; 
}
getweights(); 
getch(); 
double Temp = 0.0; 
for(Count = 0; Count < NoLayout; Count++) 
{
for(int InnerCount = 0; InnerCount < NoAttrib; InnerCount++) 
{
Temp = RiMatrix[Count][InnerCount] - MaxAttrib[InnerCount]; 
SeprateMax[Count] += A2Matrix[InnerCount]*pow(Temp, 2); 
Temp = RiMatrix[Count][InnerCount] - MinAttrib[InnerCount]; 
SeprateMin[Count] += A2Matrix[InnerCount]*pow(Temp, 2); 
}
Temp = SeprateMax[Count]; 
SeprateMax[Count] = pow(Temp, .5); 
Temp = SeprateMin[Count]; 
SeprateMin[Count] = pow(Temp, .5); 
}
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cout<<"\n\n";
cout<<"The Separation measures are "<<endl; 
for(Count = 0; Count < NoLayout; Count++) 
cout<<SeprateMax[Count]<<"  "<<SeprateMin[Count]<<endl; 
}
void CalculateRelativeCloseness() 
{
Closeness = new double[NoLayout]; 
double Sum = 0.0; 
for(int Count = 0; Count < NoLayout; Count++) 
{
Sum = SeprateMax[Count] + SeprateMin[Count]; 
Closeness[Count] = SeprateMin[Count] / Sum; 
}
}
void DisplayResults() 
{
double temp; 
int *Results = new int[NoLayout], itemp; 
for(int j = 0; j < NoLayout; j++) 
Results[j] = j + 1; 
int i; 
for(int Count = 1;  Count < NoLayout; Count++) 
{
itemp = Results[Count]; 
temp = Closeness[Count]; 
i = Count - 1; 
while((i >= 0) && (temp > Closeness[i])) 
{
Closeness[i + 1] = Closeness[i]; 
Results[i + 1] = Results[i]; 
i--;
}
Closeness[i + 1] = temp; 
Results[i + 1] = itemp; 
}
cout<<"\n\n";
cout<<"The final results are "<<endl; 
cout<<"StripLayout Index"<<setw(20)<<"No of Layout"<<endl; 
for(Count = 0; Count < NoLayout; Count++) 
cout<<Closeness[Count]<<setw(20)<<Results[Count]<<endl; 
delete [] Results; 
}
void CleanUp() 
{
for(int Count = 0; Count < NoLayout; Count++) 
{
delete [] DiMatrix[Count]; 
delete [] RiMatrix[Count]; 
//  delete [] V1Matrix[Count]; 
// delete [] Wtdmatrix[Count]; 
}
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for(Count = 0; Count < NoAttrib; Count++) 
//  delete [] RelMatrix[Count]; 
delete [] DiMatrix; 
delete [] RiMatrix; 
// delete [] V1Matrix; 
// delete [] Wtdmatrix; 
delete [] RelMatrix; 
delete [] MaxAttrib; 
delete [] MinAttrib; 
delete [] SeprateMin; 
delete [] SeprateMax; 
delete [] Closeness; 
delete weights; 
DiMatrix = NULL; 
RiMatrix = NULL; 
// V1Matrix = NULL; 
MaxAttrib = NULL; 
MinAttrib = NULL; 
SeprateMin = NULL; 
SeprateMax = NULL; 
Closeness = NULL; 
}
void main() 
{
clrscr();
char KeyboardResponse; 
GetAttribLayout(); 
ValidateAttribLayout(KeyboardResponse); 
cin.ignore();
while(KeyboardResponse != '1') 
{
//file://clrscr();
GetAttribLayout(); 
ValidateAttribLayout(KeyboardResponse); 
cin.ignore();
}
/* try 
{
AllocateMemory(); 
}
catch(...) 
{
cout<<"Memory allocation failed"<<endl; 
exit(0); 
}*/
GetDiMatrixInput(); 
ValidateDiMatrix(KeyboardResponse); 
cin.ignore();
while(KeyboardResponse != '1') 
{
GetDiMatrixInput(); 
ValidateDiMatrix(KeyboardResponse); 
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cin.ignore();
}
CalculateRiMatrix(); 
printRiMatrix(); 
getch(); 
// GetRelativeAttribMatrix(); 
// ValidateRelativeMatrix(KeyboardResponse); 
//   normalizedmatrix(); 
//getweights(); 
/* cin.ignore(); 
while(KeyboardResponse != '1') 
{
GetRelativeAttribMatrix(); 
ValidateRelativeMatrix(KeyboardResponse); 
cin.ignore();
}*/
// CalculateWeightedMatrix(); 
// getch(); 
// CalculateA3Matrix(); 
// getch(); 
// CalculateLambdaMax(); 
// getch(); 
//CalculateConsistencyRatio(); 
// getch(); 
// CalculateNormalisedMatrix(); 
// getch(); 
GetMaxMinAttrib(); 
getch(); 
CalculateSeprateMeasures(); 
getch(); 
CalculateRelativeCloseness(); 
DisplayResults(); 
getch(); 
CleanUp();
}
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