

Control Charts for Attributes

د. محمد عیشونی

أستاذ مساعد — قسم التقنية الميكانيكية - ٢٠٠٤ أستاذ مساعد — قسم التقنية الميكانيكية - Email : <u>m_aichouni@yahoo.co.uk</u>

مقدمة عن خرائط التحكم للخواص

- خرائط التحكم للخواص هي أداة تقنية للضبط الاحصائي لجودة المنتجات، تقوم على قياسات عامة لمدى مطابقة الوحدات المنتجة مع المواصفات القياسية من عدمه.
 - * نقوم بتسجيل بيانات الجودة على شكل اعداد للقطع المطابقة conforming أو غير المطابقة (منتج معيب)
 - هذه الخرائط على نوعين:
 - ا. خريطة نسبة المعيب p chart
 - r. خريطة عدد العيوب c chart

p chart لمعيب خريطة نسبة المعيب

 تقوم هذه الخرائط على دراسة قياس الصفات و خصائص المنتج و ذلك بتحديد النسبة المئوية الغير مطابقة للمواصفات (أو المعيبة).

* مثال:

عدد الكر اسي التالفة في القاعة = ٥ العدد الإجمالي للكر اسي المفحوصة (الموجودة في القاعة) = ٥٠ نسبة الكر اسى المعيبة = ٥/ ٥٠ * ١٠٠ = 0%

* القطعة المفحوصة : مطابقة أو غير مطابقة

٣

p chart خريطة نسبة المعيب

- * تؤخذ عينات من خط الانتاج على فترات مختلفة و تفتش على جودة المنتج بحساب عدد الوحدات المعيبة (monconforming items) و من ثم و قصد انشاء خريطة نسبة المعيب نقوم بما يلي:
- $p = \frac{\text{عدد الوحدات المعيبة في كل عينة}}{\text{العدد الاجمالي للوحدات في كل عينة}}$ د. حساب حدو د الضبط للنسبة
 - ٣. رسم خريطة نسبة المعيب مع حدود الضبط
 - ٤. در اسة اسباب أي انحر افات قد نلاحظها.

Control Limits

حساب حدود الضبط

$$UCL_{p} = \overline{p} + z\sqrt{\frac{\overline{p}(1-\overline{p})}{\overline{n}}}$$

$$LCL_{p} = \overline{p} - z\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

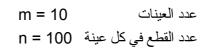
الحد الأعلى للضبط Lower Control Limit الحد الأدنى للضبط

الانحراف المعياري لنسبة المعيب م

$$\overline{\mathbf{p}}$$
 or \mathbf{p} in \mathbf

يمثل z معامل ضرب نستعمله كالتالى:

- z = 2 for 95.5% limits;
- z = 3 for 99.7% limits


c

مثال عملي لخريطة نسبة المعيب p chart

- شركة صناعية تصنع قطع ميكانيكية لمحركات الديزل. أخذت
 ١٠ عينات من خط الانتاج، تحتوي كل واحدة على ١٠٠ قطعة و تم التقتيش عنها حسب مواصفات معينة و رصدت أعداد القطع المعيبة على الجدول التالي:
 - * هل نظام التصنيع منضبط احصائيا أم لا ؟

العينة	1	2	3	4	5	6	7	8	9	10
عدد القطع المعيبة	5	2	3	8	4	1	2	6	3	4

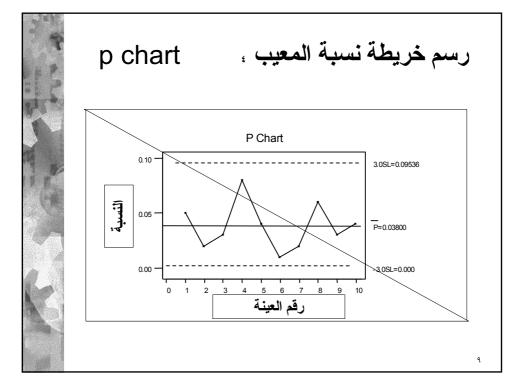
p chart ، مثال عملي

العينة	1	2	3	4	5	6	7	8	9	10
عدد المعيب	5	2	3	8	4	1	2	6	3	4
نسبة المعيب	0.05	0.02	0.03	0.08	0.04	0.01	0.02	0.06	0.03	0.04

$$\overline{p} = \frac{\sum_{i=1}^{m} \hat{p}_{i}^{*}}{m} = 0.038$$
 are discount in the property of the property

مثال عملي ، p chart

$$UCL_{p} = \overline{p} + z \sqrt{\frac{\overline{p}(1-\overline{p})}{\overline{n}}}$$


$$LCL_{p} = \overline{p} - z \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

$$\overline{p} = \frac{\sum\limits_{i=1}^{s} x_{i}}{\sum\limits_{i=1}^{s} n_{i}}$$
 Z = 3

$$UCL = 0.038 + 3\sqrt{\frac{0.038(1 - 0.038)}{100}} = 0.095$$

$$CL = 0.038$$

LCL =
$$0.038 + 3\sqrt{\frac{0.038(1 - 0.038)}{100}} = -0.02 \rightarrow 0$$

خريطة عدد العيوب في الوحدة c chart

- * خريطة عدد العيوب هي إحدى أهم خرائط التحكم (ضبط الجودة) للخواص:
 - عبارة عن أعداد حقيقية (لا يمكن حسابها بالنسبة المئوية) .
- * تبين هذه الخريطة عدد العيوب (nonconformities (defects)) في كل وحدة من المنتج:
 - الوحدة قد تكون مثلا كرسي، صفيحة صلب أو سيارة ...
 - حجم الوحدة يكون ثابت.
 - مثال: حساب عدد العيوب (خدوش، مسامير غير مثبتة الخ.) في كل كرسي من عينة تحتوي على ١٠٠ كرسي

١.

حساب حدود الضبط

الحد الأعلى للضبط Upper Control Limit

$$UCL \quad \overline{c} = \overline{c} + \sqrt{\overline{c}}$$

الحد الأدنى للضبط Lower Control Limit

$$LCL \quad \overline{c} = \overline{c} - \boxed{\mathbf{z}} \sqrt{\overline{c}}$$

متوسط عدد العيوب في كل الوحدات

$$\overline{c} = \frac{\sum_{i=1}^{k} c_i}{k}$$

عدد العيوب في كل وحدة ن

يمثل z معامل ضرب نستعمله لتحديد الحدود المراد تحقيقها:

• z = 2 : for 95.5% limits;

• z = 3 : for 99.7% limit

١.

مثال عملي لخريطة عدد العيوب chart

- شركة وودلاند تصنع ورق لطباعة الجرائد. في آخر مرحلة الانتاج قام مفتش الجودة لدى الشركة بالتفتيش عن جودة الورق بإجراء قياسات لخصائص الجودة على 5 لفات من الورق المصنع و رصد النتائج المجدولة أدناه.
- * المطلوب: عن طريق خريطة التحكم لعدد العيوب ادرس استقر ار العملية التصنيعية للشركة (هل نظام التصنيع منضبط احصائيا أم لا ؟) (احسب ب: z = 2)

اللفة	1	2	3	4	5
عدد العيوب	16	21	17	22	24

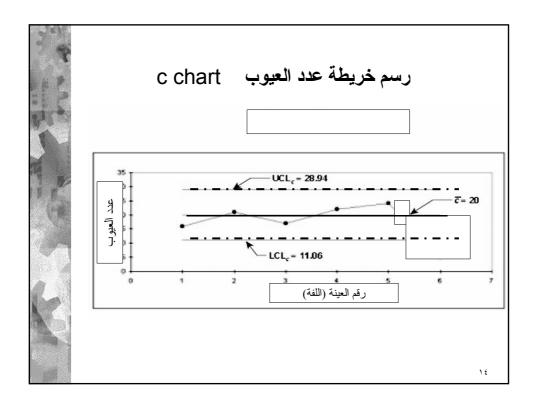
c Chart

Control Limits

حساب حدود الضبط

متوسط عدد العيوب في كل الوحدات

$$\overline{c} = (16+21+17+22+24) / 5 = 20$$


$$\bar{c}$$
 = 20 z = 2

الحد الأعلى للضبط Upper Control Limit

$$UCL_c = \overline{c} + z\sqrt{\overline{c}} = 28.94$$

الحد الأدنى للضبط Lower Control Limit

$$LCL_c = c - z\sqrt{-c} = 11.06$$

تدریب ۱ _ حالة دراسیة عن بنك

Construction of p chart Example 1

The operations manager of the booking services department of Hometown Bank is concerned about the number of wrong customer account numbers recorded by Hometown personnel. Each week a random sample of 2,500 deposits is taken, and the number of incorrect account numbers is recorded. The records for the past 12 weeks are shown in the following table.

Sample	Wrong
Number	Account Number
1	15
2	12
3	19
4	2
5	19
6	4
7	24
8	7
9	10
10	17
11	15
12	3

Is the process out of control?

(Use 3-sigma control limits.)

١.

تدریب ۲

Construction of c chart Example 2

Surface defects have been counted on 25 rectangular steel plates, and the data are shown in the table.

Construct a c control chart for nonconformities using this data to study if the process is under control

Plate	No. of				
No.	Nonconformities				
1	1				
2	0				
3	4				
4	3				
5	1				
6	2				
7	5				
8	0				
9	2				
10	1				
11	1				
12	0				
13	8				
14	0				
15	2				
16	1				
17	3				
18	5				
19	4				
20	6				
21	3				
22	1				
23	0				
24	2				
25	4				

جزاكم الله خيرا على حسن الاستماع هل من أسئلة ؟

۲...